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We present results from consistent dynamo simulations, where the electrically conducting and
incompressible flow inside a cylinder vessel is forced by moving impellers numerically implemented
by a penalization method. The numerical scheme models jumps of magnetic permeability for the solid
impellers, resembling various configurations tested experimentally in the von Kármán sodium experiment.
The most striking experimental observations are reproduced in our set of simulations. In particular, we
report on the existence of a time-averaged axisymmetric dynamo mode, self-consistently generated when
the magnetic permeability of the impellers exceeds a threshold. We describe a possible scenario involving
both the turbulent flow in the vicinity of the impellers and the high magnetic permeability of the impellers.
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Introduction.—Nearly a century ago, Larmor suggested
that the dynamo effect, an instability converting kinetic
energy into magnetic energy, could be at the origin of most
astrophysical magnetic fields. The experimental observa-
tion of the dynamo instability has been a long quest
requiring careful flow optimization and has been achieved
only in the Riga [1], Karlsruhe [2], and von Kármán sodium
(VKS) [3] experiments. While the behavior of the two
former experiments could be explained from computations
using simplified flows, this is not the case for the VKS
experiment—in which a strongly turbulent liquid sodium
flow is driven by the counterrotation of impellers fitted with
blades in a cylindrical vessel. Two major puzzles in the
understanding of the dynamo mechanism are still unan-
swered: (i) The dynamo instability was observed only in the
presence of impellers having high magnetic permeability
[4] and (ii) the time-averaged dynamo magnetic field in the
saturated regime has an axial dipolar structure [5], while an
equatorial dynamo dipole is expected from computations in
the growing phase of the instability using the time-averaged
axisymmetric flow [6].
Several numerical models have been proposed to explain

these features of the VKS dynamo in the framework of the
kinematic dynamo problem. The decrease of the dynamo
onset when implementing ferromagnetic boundary condi-
tions (FBCs) was first observed on the equatorial dipole
using the time-averaged flow [7,8]. Below the dynamo
onset and with ferromagnetic impellers, toroidal modes
were shown to be the least damped modes by paramagnetic
pumping [8]. The excitation of an axial dipole dynamo
mode was then investigated following a turbulent α − ω
mechanism [9] involving an ω effect from the time-
averaged flow shear layer and a mean-field α effect from
coherent vortices created between the blades, according to a
mechanism proposed by Parker [10]. The α tensor from

these vortices was later confirmed by hydrodynamic
computations [11]. However, vortex velocities of the order
of the impeller tip velocity were required to obtain an axial
dipole dynamo in this simplified α − ω framework [12–14].
These models implementing ad hoc mean-field terms were
extended with accurate FBCs for the impellers [15,16].
The influence of FBCs on the focusing of vortices between
the blades and on the dynamo process (α − ω or α2) was
also investigated [17,18]. Recently, a first numerical model
implementing accurate FBCs for the impellers and a
realistic flow in the laminar regime showed a transition
from an equatorial dipole to an axial dipole and a decrease
of the dynamo onset as the magnetic permeability
increases [19].
In this Letter, by solving a complete incompressible

magnetohydrodynamics (MHD) system implementing tur-
bulent flow driven by moving impellers (using a penali-
zation method) and finite magnetic permeability jumps, we
present a detailed numerical data set which reproduces
observations from the VKS experiment. In light of these
results, we propose a new complex scenario for the VKS
dynamo based on the interaction of the flow and the high
permeability impellers.
Numerical method.—We consider the MHD equations

∂tuþ ðu · ∇Þu ¼ −∇pþ ν∇2uþ∇ × ðμ−1r bÞ × b; ð1Þ

∂tbþðu ·∇Þb¼ðb ·∇Þu−∇×

�
1

μ0σ
∇× ðμ−1r bÞ

�
; ð2Þ

∇ · u ¼ 0; ∇ · b ¼ 0 ð3Þ

with the velocity field uðx; tÞ, the magnetic induction field
bðx; tÞ (rescaled by 1=

ffiffiffiffiffiffiffi
ρμ0

p
as an Alfvénic velocity, ρ

being the density of the fluid), the pressure pðx; tÞ, and the
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kinematic viscosity ν. The electrical conductivity σðx; tÞ
and the relative magnetic permeability μrðx; tÞ may be
inhomogeneous. In order to reproduce the experimental
configurations [4], the conductivity is kept constant
[σðx; tÞ ¼ σ], while the magnetic permeability may have
distinct values in the fluid ( μr ¼ 1) and in the solid
impellers driving the flow ( μr ¼ 1 up to 16). The MHD
equations are solved with a standard Fourier pseudospectral
method on a regular Cartesian grid. The fluid domain is
restricted to a cylinder with embedded boundaries. The
rotating solid objects and outer boundaries are modeled via
a penalization method [20], which recently showed its
ability to reproduce extended experimental results on
von Kármán water flows [21]. To handle the magnetic
permeability jump and to prevent Gibbs oscillations, a
sharpened raised cosine filter [22] was implemented for the
computation of derivatives. For simplicity, periodic boun-
dary conditions are used for the magnetic induction. The
periodic simulation box has dimensions of ð3πÞ3 with 3843
grid points. The fluid domain is restricted to a cylinder of
radius Rc ¼ 3.0 and height 6.0. This leaves a significant
volume of the simulation domain where the fluid is at rest,
avoiding spurious periodic solutions of the magnetic field
(the magnetic energy at the boundaries of the simulation
domain is 4 × 10−4 lower than its maximum value). The
curved-blade impeller setup is similar to the VKS experi-
ment [3,6], consisting of a disk with radius Rd ¼ 0.75Rc
fitted with eight blades of height 0.2Rc (25 grid points) and
curvature radius 0.9Rc. The thickness of the blades and the
disk is 0.15 (six grid points). The distance between the
inner faces of the impellers is 1.8Rc. In all simulations, both
impellers rotate with opposite angular velocity Ω ¼ 1.5
leading to kinetic and magnetic Reynolds numbers Re ¼
ΩRdRc=ν ¼ 10.125=ν and Rm ¼ μ0σΩRdRc, respectively
(the fluid is pushed by the convex side of the blades).
Features for laminar and turbulent flows are presented for
four distinct values of Re, namely, Re ∼ 1500, 1000, 500,
and 333 (obtained by changing the viscosity ν).
In this Letter, we focus on the influence of the relative

magnetic permeability μr of the solid impellers on the
dynamo instability. In the following, three symmetric
configurations are discussed: the whole impeller having
the same permeability μr ≥ 1 (referred to as the “full
impeller”), disk with μr ¼ 1 and blades with μr ¼ 16
(“blades only”), and the reciprocal case (“disk only”).
Our set of simulations incorporates all important ingre-
dients of the VKS experiment, namely, (i) turbulent flows,
(ii) material properties jumps, and (iii) backreaction of the
Lorentz force (allowing us to reach saturation of the
dynamo instability), which are self-consistently solved.
Simulation results.—All numerical simulations are

reported in the (Re, Rm) parameter space displayed in
Fig. 1 for the homogeneous situation (μr ¼ 1 everywhere).
The black dotted line sketches the boundary between non-
dynamo and dynamo runs and shows that the critical

magnetic Reynolds number Rmc, above which a dynamo
is observed, first increases as the turbulence of the von
Kármán flows increases. The critical Rmc then saturates for
turbulent flows (Re > 1000). This is the confirmation, in
fully self-consistent simulations including realistic boundary
conditions, of an important result previously observed in
simulations with periodic boundary conditions and different
volume forcings [23–26]. At low Re, the magnetic dynamo
mode is an equatorial dipole, as expected for the mean flow
[6,7,15]. At larger Re values, the dynamo magnetic field is
still mostly an equatorial dipole, but other azimuthal modes
become significant (see isocontours in Fig. 1).
Let us now focus on the influence of the relative

permeability of the impellers μr for Re ¼ 1500, i.e., in
the turbulent regime. For μr ¼ 1, the dynamo onset is found
around Rmc ∼ 740. Therefore, we will investigate further
the Rm ¼ 500 case (see Fig. 1).
The magnetic energy is defined as Eb ¼ ð1=2VÞ×R

Vðjbj2=μrÞdv, where V is the total volume. Figure 2(a)
displays its time evolution (in impeller turn units) for the
three impeller configurations and clearly shows that
dynamo regimes are obtained by solely increasing μr
[7,15,19]. A similar behavior was also observed at
Re ¼ 1000, Rm ¼ 750 and Re ¼ 1500, Rm ¼ 600.
Figure 2(b) shows the evolution of the dynamo growth
rates (computed from the linear fit of the logarithmic time
evolution of Eb in the growing phase) as a function of μr.
For the full impeller configuration, dynamos are observed
for μr ≥ 12. The dynamo onset is lowered as μr increases as
was previously extrapolated from magnetic induction
measurements [4,27]. Another result similar to the VKS
experiment is that the disk only and blades only configu-
rations are no dynamos for μr ¼ 16 in our simulations [4]
(though the set of dimensionless parameters differs from
that of the experiment).

0 500 1000 1500
0

500

1000

1500
µ
µ

FIG. 1. (Re, Rm) parameter space showing nondynamo (blue
empty circle) and dynamo runs (red square) and the dynamo
onset (black dotted line) for μr ¼ 1. Below the dynamo onset at
μr ¼ 1, dynamos were observed for μr > 8 (green diamonds).
Right: Isocontours of the time-averaged dynamo magnetic
energy field in the growing phase for Re ¼ 333 and Re ¼ 1500
(Pm ¼ 1).
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Based on a cylindrical coordinate system (r, ϕ, z) within
the fluid cylinder, further understanding is gained by
investigating the azimuthal mode decomposition of
the magnetic energy Em

b ¼ ð1=2VÞ∬ ½bmðr; zÞ�2drdz with

bmðr; zÞ ¼ R
2π
0 ½bðr;ϕ; zÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μrðr;ϕ; zÞ
p �eimϕdϕ. A similar

mode decomposition is also computed for the kinetic energy.
The energy ratio Em

b =Eb for the leading m ¼ 0 and m ¼
1 modes are displayed as a function of μr in Fig. 2(c), once
again for Re ¼ 1500, Rm ¼ 500. An equatorial dipole
(dominant m ¼ 1 mode) is observed for the decaying runs
(μr < 10), while an axial dipole (m ¼ 0 mode) is clearly
observed for the dynamo runs (μr ≥ 12). Large values of μr
thus favor an axial dipole. It is important to note that the
energy in the axisymmetric m ¼ 0 mode is stronger in the
saturated regime than in the growing (or linear) phase. This
is further evidenced in Fig. 3(a), which reports the energy
spectra of the dynamos observed at Rm ¼ 1500, μr ¼ 1
[referred to as a turbulent dynamo (TD) in the remaining]
and Rm ¼ 500, μr ¼ 14 [referred to as a high magnetic
permeability-enhanced dynamo (PED)], both at Re¼1500.
The TD is dominated by an equatorial dipole, with large
amounts of energy also present in the m ¼ 0, 2, and 3
modes. The PED, on the other hand, is clearly an axial
dipole. For both TD and PED, the m ¼ 3 mode of the
magnetic energy is associated with large vortices created in
the shear layer and already observed in fully turbulent water
experiments [28,29]—thus showing the ability of our
simulations to reproduce turbulent features. In our simu-
lations, these vortices are damped by the Lorentz force in
the saturated regime. The m ¼ 8 mode is associated with

eight vortices excited between the impeller blades [21],
which are also slightly damped in the saturated regime. As
a partial conclusion, our set of simulations thus reproduces
three important features relative to the influence of μr in the
VKS experiment: (i) large values of μr decrease the dynamo
onset in the full impeller configuration, (ii) hybrid con-
figurations are no dynamo, and (iii) the presence of
ferromagnetic impellers leads to a transition from an
equatorial to an axial dipole.
The azimuthally averaged axisymmetric components of

the PED H ¼ b=μr field are displayed in Figs. 3(b) and
3(c). Most of the energy of the azimuthal component is
located close to the high permeability impellers, as
observed in the VKS experiment [5] and recent numerical
simulations [19]. The axial component Hz is strong and
homogeneous in the flow bulk, with opposite polarity close
to the outer radius, as in the VKS experiment [5]. A close
investigation of the magnetic energy evolutions reported in
Fig. 2(a) shows oscillations in both the linear and the
saturated phases; these oscillations correspond to polarity
changes, as in the VKS experiment [30]. These findings
will be reported in detail elsewhere.
Magnetic streamline topology and high magnetic

permeability scenario.—The m ¼ 1 dominated time-
averaged structure of the TD is well understood from
kinematic computations using the time-averaged von
Kármán flow. On the other hand, the observation of an
axial dipole for the PED is linked to the ferromagnetic
nature of the impellers. To gain a better understanding, 3D
visualizations of the isocontours of the H components of
the dynamo field are provided in Fig. 4, averaged over
every impeller turn in the growing phase. Figure 4(a) shows
a strong and uniform Hz in the bulk, which is the signature
of the m ¼ 0 dynamo. In the vicinity of the impellers, the
structure of Hz is much more complex with alternate
polarities of Hz on either side of the blades. A similar
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FIG. 2. (a) Time evolution of magnetic energy Eb, (b) dynamo
growth rates, (c) dynamo energy ratio in modes m ¼ 0 and
m ¼ 1, and (d) normalized lifetime of the magnetic field line
winding number in the vicinity of the impellers and as a function
of μr. See the text for details.

0 2 4 6 8 10

10-2

10-1

100

(a)
(b) (c)

FIG. 3. (a) Azimuthal mode decomposition of magnetic energy,
(b) azimuthally averaged Hϕ, and (c) Hz components normalized
to the maximum value in the linear regime for Re ¼ 1500,
Rm ¼ 500, and μr ¼ 14. (b) Vectors show the poloidal dynamo
field.
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pattern is observed for Hr in Fig. 4(b). Regarding the Hϕ

component, a first observation is that the strong value of the
Hϕ component inside the disk has the same sign as behind
the impeller. This can be understood from the flow behind
the impellers, where a strong shear layer produces a strong
ω effect (this shear layer is not present in Ref. [19]), and
from continuity conditions of the electromagnetic fields
leading to magnetic field line refraction at high μr
[8,15,19]. A second observation is that, slightly above
the impeller, the strong shear layer above the blades (of
opposite sign as compared to behind the disk) leads to an
Hϕ component with the opposite sign of that behind the
impeller. While the Hϕ component changes sign through-
out the impeller, the Hz component remains of the same
sign [see Fig. 3(c)]; the complex geometry thus rules out
the symmetry arguments provided in Ref. [31] for a simpler
geometry. The features reported for each of the H compo-
nents are summarized in the streamlines visualization
reported in Fig. 4(d) and lead to a third observation:
Towards the core of the flow, the magnetic connection
between the impeller and the flow occurs through the
blades. The effect of the coherent vortices (and thus of the α
effect introduced in Ref. [9]) is clearly observed on the
streamlines shown in Fig. 4(d).
We now propose to explain the poloidal to toroidal

conversion occurring from the complex coupling between
the flow features in the vicinity of the impellers and their
ferromagnetic nature, by introducing new quantitative
diagnostics. At each 3D snapshot recorded along the
simulation, 1000 seed points are randomly set within a
test cylinder close to the impellers. The magnetic (H)
streamlines starting from theses points are integrated until
they exit the test cylinder. Two scalars are then extracted.

The first one, referred to as the “lifetime,” is the averaged
integration time of the streamline remaining inside the test
cylinder: The larger it is, the more efficient is the trapping
of magnetic field lines in the vicinity of the impellers. The
second one, referred to as the “winding angle,” is the
averaged azimuthal angle experienced by the streamline
within the test cylinder: This can be viewed as an effective
poloidal to toroidal magnetic field conversion. These
quantities, plotted in Fig. 2(d), strongly increase with μr.
The interplay between the flow features in the vicinity of
the impellers and the high magnetic permeability thus leads
to an effective ω effect, significantly enhanced by μr. The
evolution of these global quantities strongly supports a
localized scenario for the dynamo process: (i) toroidal to
poloidal conversion from an α effect linked to coherent
vortices between the blades [9,12,18] and (ii) poloidal to
toroidal conversion, strongly enhanced by the high mag-
netic permeability of the impellers, occurring in the vicinity
of the impellers. In this scenario, both conversion processes
are located close to the coherent vortices within the blades,
contrary to the α − ω mechanism proposed in Ref. [9],
which had detrimental effects [12]. Moreover, the scenario
demonstrated here strongly depends upon the magnetic
permeability of the impellers.
Conclusion.—A set of numerical simulations is pre-

sented where the MHD equations, including flow drive
from impeller rotation (via a penalization term) and jumps
of magnetic permeability μr, are self-consistently solved in
a geometry close to that of the VKS experiment. This set
simultaneously reproduces the most important experimen-
tal observations in a self-consistent treatment without
additional ad hoc terms: (i) Large μr values decrease
the dynamo onset, (ii) large μr values lead to a transition
from an equatorial to an axial dipole, and (iii) the blades
and the disk of the impellers are equally important in the
dynamo generation. We demonstrate a scenario where an
effective μr-enhanced ω effect occurs in the vicinity of
the impellers and takes into account the complex coupling
of the transport of the magnetic field by the flow and the
ferromagnetic structure. This poloidal to toroidal conver-
sion process adds up to a poloidal to toroidal conversion
from an α effect linked to coherent vortices between
the blades, leading finally to an axial dipole dynamo
mode.
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FIG. 4. (a) Hz, (b) Hr, (c) Hϕ isoamplitude contours (red,
positive value; blue, opposite negative value), and (d) magnetic
streamlines colored by the Hϕ value. Re ¼ 1500, Rm ¼ 500,
and μr ¼ 14.
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