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Magnus gliders are spinning toys displaying spectacular looped trajectories when launched at
large velocity. These trajectories originate from the large amplitude of the Magnus force due to
translational velocities of a few meters per second combined with backspin of a few hundred radians
per seconds. In this article we analyse the trajectories of Magnus gliders built from paper cups,
easily reproducible in the laboratory. We highlight an analogy between the trajectory of the glider
and the trajectory of charged particles in crossed electric and magnetic fields.The influence of the
initial velocity and the initial backspin on the trajectories is analyzed using high speed imaging.
The features of these trajectories are captured by a simple model of the evolution of the Magnus
and drag forces as a function of the spin of the gliders. The experimental data and the modeling
show that the type of trajectories - for instance the occurence of loops - depends mostly on the value
and orientation of the initial translational velocity, regardless of the value of the backspin, while the
maximum height of the apex depends on both the initial translational velocity and initial backspin.

I. INTRODUCTION

Spinning objects moving rapidly in air often display
complex trajectories due to the non-linear evolution of
the aerodynamic forces they experience. In addition to
the drag (present regardless of the spin rate), the rota-
tion induces a force that is perpendicular to the velocity,
known as the Magnus effect. The first explanation of
the Magnus effect is often attributed to German physi-
cist Heinrich Gustav Magnus [1], although a number of
scientists (including Sir Isaac Newton) described the phe-
nomenon far earlier [2].

The combined effect of spin and drag on translating ob-
jects is extraordinarily important in sports [3, 4], and has
attracted much attention in the context of soccer [5, 6],
baseball [7], golf [8, 9], tennis [10], but also badminton
and the dynamics of shuttlecocks [11, 12] or other games
involving spinning objects without spherical symmetry,
exemplified by frisbees or boomerangs [13]. Indeed, the
trajectory of lifted balls are sometimes puzzling for sport
players, such as free kicks in soccer [14], paradoxical
pop-ups in baseball [15] or zigzagging paths at very low
spin [16]. In this context, the dimensionless number con-
trolling the amplitude of the Magnus force is referred to
as the spin number Sp [17].

In this article, we analyze and model the trajectories of
a spinning toy, known as the Magnus glider (or Magnus
flyer), widely disseminated thanks to a popular video by
Bruce Yeany [18] (see also supplementary video). A Mag-
nus glider typically consists of two light cups with their
bottoms glued together, launched (using a rubber band)
at a high velocity (typically 10 m/s) with high backspin
(typically 100 rev/s). Due to its initial backspin, the flyer
experiences a Magnus force that remains perpendicular
to the velocity, sometimes resulting in looped trajecto-
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FIG. 1. Chrono-photography showing the positions of the
Magnus glider every 75 ms, after launching from the bottom
left corner. The trajectory (dashed red line) displays a loop.

ries. It should be emphasized that, contrary to conven-
tional gliders, the Magnus flyer only experiences lift due
to its initial rotational kinetic energy which eventually
dissipates –Magnus glider is therefore a misnomer, but
the term is retained here due to its popular use in spite
of its inadequacy. Further technical details of the Magnus
glider itself and launching procedure are given in section
II and in the supplementary video. Fig. 1 shows chrono-
photography of the successive positions of the Magnus
glider (every 75 ms), initially launched at a velocity of
15 m/s and a spin rate of 660 rad/s: the backspin gen-
erates a Magnus lift force strong enough to lead to this
spectacular looped trajectory. Magnus gliders are thus
a unique tool to investigate the various complex trajec-
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tories observed for sports-balls at the laboratory scale,
with two major advantages: the first one being that tra-
jectories remain two dimensional, since a Magnus glider
is much closer to a cylinder than to a ball; this is a strong
asset for imaging trajectories. In this paper, we will only
work in the vertical 2D-plane and any lateral motion is
ignored. This is in general a very good assumption since
experimentally all flights remains planar, but any asym-
metry in the flyer itself may lead to lateral instability.
The second advantage is that complex trajectories may
be easily imaged since the typical spatial scale is of the
order of a few meters (as compared to tens of meters
or more for usual sports-balls trajectories) and launching
Magnus gliders does not require advanced technical skills
(as compared, for instance, to the long practice required
to pitch baseballs).

The importance of the Magnus effect is not restricted
to sports-balls trajectories, and several important stud-
ies were led in the context of aeronautical or marine en-
gineering applications such as Flettner boats [19] or air-
planes [20]. Here, we introduce a simple educational tool
allowing for the investigation of the Magnus force and its
features, accessible at the laboratory scale.

The article is organized as follows. The details of the
experimental protocol and image analysis are provided
in section II. In section III, the trajectories of several
experimental launches are computed using a model of the
aerodynamic forces using data compiled from previous
aerodynamical studies. Other features of the trajectories,
such as oscillations and the spin-down of the glider due
to drag, are then analyzed. Finally, the conditions for
obtaining looped trajectories similar to the one shown in
Fig. 1 as a function of the various control parameters are
discussed in section IV. Section V concludes the article.

II. EXPERIMENTAL TRAJECTORIES OF

MAGNUS GLIDERS

A sketch of the Magnus glider used in our study is
provided in Fig. 2(a). It is made from two paper cups
of height L/2 = 9 cm, bottom radius 2.75 cm, and top
radius 4 cm, glued together at their bottoms. The glider
has an average radius R = 3.37 cm and a total length
L = 18.8 cm. In order to ease the detection of trajectories
and angular velocities from high speed video-imaging, the
Magnus glider is painted black, and paper end-caps with
two large white disks per end-cap are glued to its sides
(see Fig. 1 and the supplementary video for further de-
tails, as well as the appendix A). The total mass of the
Magnus glider is m = 36.8 g. The initial spin and propul-
sion are provided using a 1-m-long rubber band wrapped
around the center of the Magnus glider (the bottom of
each cup), attached to a fixed point and stretched to
launch the assembly, as sketched in Fig. 2(b) (see sup-
plementary video). The rubber band is wrapped around
the glider with constant tension provided by a weight at-
tached at the bottom the band (see the supplementary
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FIG. 2. (a) Sketch of the Magnus glider showing the forces
acting during free flight. (b)-(f) Time sequence showing the
launching protocol using a rubber band. The black point
represents a fixed point.

video and appendix A for details). The Magnus glider
is then held at a distance l from the fixed point, provid-
ing an initial elastic tension to the remaining part of the
rubber band which will create forward thrust. As the
rubber band contracts and unwinds from the glider, the
glider gradually acquires back-spin and linear velocity, as
sketched in Fig. 2(c)-(f). For each run, the reference time
t = 0 is defined as the time at which the rubber band is
completely unwound and has no contact with the glider.
At time t = 0, the glider has an initial velocity V0 and
initial angular velocity ω0. The initial velocity V0 has an
amplitude V0, and makes an angle α0 with the horizon-
tal (Fig. 2(e)). The values of V0 and ω0 depend on three
parameters: (1) the number of turns of the rubber band
around the Magnus glider, (2) the mass of the weight
attached to the bottom of the band, (3) the tension of
the remaining part of the rubber band. Note that during
the launch phase (steps (c)-(f) in Fig. 2), a (Magnus) lift
force is exerted on the Magnus glider. Its origin is that
a flow is driven by the rotation of the glider: outside
of the boundary layer, and in the center of mass refer-
ence frame, the flow velocity at the top of the glider is
larger than the flow velocity at the bottom of the glider
due to the addition of the translational speed to the flow
driven by rotation. Due to the difference in flow veloc-
ity, a pressure gradient exerts a vertical force directed
upwards. As a consequence, the initial launch angle is
not directly set by the angle at which the rubber band
is stretched since the glider experiences a lift force dur-
ing the launch procedure (t < 0). The values of V0, α0

and ω0 are therefore computed a posteriori from image
processing of the videos.

The trajectories are recorded using a Phantom v2511
high speed camera, at a rate of 4000 fps, with a reso-
lution of 1280 by 800 pixels. We stress here that the
trajectories of the Magnus gliders could be imaged with
cameras available on mid-range smartphones as discussed
in appendix B. Each image is processed to extract the
locations of the centers r1(t) and r2(t) of the two white
disks on the end-plate [21]. For each image, the location
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of the center r(t) of the Magnus glider is determined as
the average (r1(t) + r2(t))/2, while the angular position
θ(t) of the Magnus glider is determined as the angle be-
tween r2(t)−r1(t) and the horizontal (see supplementary
videos for details). The location of the Magnus glider at
time t is noted r(t) = x(t)x̂ + z(t)ẑ, where x̂ is the hor-
izontal direction and ẑ is the upward vertical direction.
The instantaneous velocity V(t) and the instantaneous
angular velocity ω(t) are computed from r(t) and θ(t).

For the regimes reported in this article V0 is of the or-
der of 10 m/s, while the typical angular velocity ω0 is of
the order of 500 rad/s. Introducing ν as the kinematic
viscosity of air, the features of the flow created by the
Magnus glider, and its trajectory, depend upon two di-
mensionless numbers, namely the Reynolds numbers Re
defined as

Re =
2RV

ν

and the Spin number Sp defined as

Sp =
ωR

V
.

The Reynolds number at time t ≃ 0 is in excess of 5 ×

104, which means that the flow is fully turbulent. For
the experiments reported in this study, the Spin number
is always larger than 2. From previous studies in wind
tunnels [22, 23], we know that the values of the drag and
lift forces depend on the geometrical parameters and on
the values of Sp and Re.

Figure 3 shows the three types of trajectories of the
Magnus glider obtained for increasing values of the initial
velocity V0 and angular velocity ω0 from top to bottom
(see caption). The trajectory in the top panel (lowest
speed and spin rate) has the shape of an arch and will
be referred to as an arch, that in the central panel as a
cusp and that in lower panel as a loop.

The time evolution of the angular velocity ω of the
Magnus glider is reported in the second column of Fig. 3.
The red dots indicate ω = dθ(t)/dt, computed using a
Savitsky-Golay of first order on 81 points (which corre-
sponds to a low-pass filter with 50 Hz cut-off frequency)
and the black dashed line is an empirical fit of the form
ω0 exp (−t/τ0). Although the decrease in rotation speed
is very clear, the fractional decrease is small over the du-
ration of a typical experiment as τ0 is of the order of a few
seconds. In the following, the change in angular velocity
is taken into account but a simpler assumption of con-
stant rotation speed yields very satifactory results as well
(see next section for a thorough discussion). The right-
most column displays the velocity V (t) (solid red lines),
computed using a Savitsky-Golay of first order on 401
points (which corresponds to a low-pass filter with a 10
Hz cut-off frequency) as well as the time evolution of the
Spin number Sp (dotted black line), using the functional
fit ω0 exp(−t/τ0) for the angular velocity. The velocity of
the ascending glider decreases due to drag and the con-
version of kinetic energy into potential energy. Clearly,

a strong energy dissipation is caused by the drag forces:
the velocity at the end of the trajectories, at z = 0 (i.e.
at time t ≃ 1.3 s) typically only amounts to one third
of the the initial velocity, also at z = 0. We note that
the Spin number is always greater than 2, and its ini-
tial value quickly increases since the velocity decreases.
We also note that, for the cusp regime, the velocity van-
ishes at the apex, and as a consequence the Spin number
diverges. A first observation is that regimes displaying
a cusp or a loop require high initial linear and angular
velocities; the exact conditions will be elucidated in sec-
tion IV.

III. MODELING THE AERODYNAMIC

FORCES ACTING ON MAGNUS GLIDERS

A. Predicting trajectories from drag and lift forces

In this section, we discuss the features of the aerody-
namic forces required to adequately model the trajectory
of the Magnus glider. The equations of motion applied
to the center of mass of the Magnus glider r(t) are:

ma = mg + FL + FD, (1)

where a is the Magnus glider acceleration, FL is the lift
force due to the Magnus effect and FD the drag force.
Before discussing realistic models, it is instructive to

address the simplest model of an ideal fluid of density
ρ, for which the flow features around the Magnus glider
may be described using potential flow theory [24]. In the
(non-inertial) center of mass reference frame, the flow is
expressed as the addition of a vortex flow surrounding
the glider with an uniform incoming flow (due to the
glider translation). Since there is no viscosity, there is
no drag exerted on the Magnus glider, and, restricting
the computation to a two-dimensional case, the lift force
due to Magnus effect reads FL = ρV(t) × Γ, where Γ

is the circulation of the flow along the cylinder, defined
as Γ = 2πω0R

2L. Therefore, in the framework of po-
tential flow theory, the Magnus force is proportional to
the product of the translational velocity with the rota-
tional velocity. In the presence of forces perpendicular to
the velocity, trajectories obtained from integration of the
equations of motion are known as trochoids (a generic
family of curves including the cycloid). These trajecto-
ries are well known in the context of plasma physics for
the guiding center dynamics of single charged particles
in the presence of a constant magnetic field B0 [25, 26].
Indeed, in the presence of a constant electric field E0 per-
pendicular to B0, the equations of motion for a particule
of mass mq and charge q reads mqa = qE0 + qV × B0,
which is analogous to that of the Magnus glider in the
framework of an ideal fluid (the electric force qE0 being
analogous to gravitational forcemg and the Lorentz force
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FIG. 3. (left) Trajectory, (center) time evolution of the angular velocity ω, and (right) time evolution of the amplitude of the
velocity V (t) (solid red line) and spin number Sp(t) (dotted black line) for three launches of the Magnus glider. The measured
initial conditions are (top) ω0 = 362 rad/s, V0 = 8.4 m/s and α0 = 18◦, (middle) ω0 = 492 rad/s, V0 = 11.9 m/s and α0 = 21◦

and (bottom) ω0 = 623 rad/s, V0 = 15 m/s and α0 = 29◦.

qV×B0 being analogous to the Magnus force ρV(t)×Γ).
The charged particle gyrates at the cyclotron frequency
around a guiding center drifting perpendicularly to the
electric field and the magnetic field – an effect known as
the electric drift in plasma physics. The radius of gyra-
tion is known as the Larmor radius, and is by the ampli-
tude of the velocity perpendicular to the magnetic mag-
netic. Applying this analogy to the context of Magnus
gliders leads to a drift perpendicular to the gravitational
field and spin axis. This simple model of zero-viscosity
flow has the pedagogical virtue of being analytically solv-
able, with trajectories symmetric around the apex. As
already pointed out, due to the existence of drag, the ex-
perimental trajectories reported here are not symmetric
around the apex and a further degree of refinement is
required to model the dynamics of the Magnus glider.

A more detailed model incorporates realistic drag and
lift forces. For non-spinning objects, the drag force
is usually expressed as FD = 1

2
Cd(Re)ρV

2S where S
is the cross sectional area of the Magnus glider (here,
S = 2RL) and Cd(Re) the drag coefficient, which depend
on Re [24]. Here, and following the notations widely used
in the literature, the drag and lift forces are expressed
as [3, 17, 22, 23]:

FD =Cd(Re, Sp)
ρSV 2

2
v̂

FL =Cl(Re, Sp)
ρSV 2

2
ω̂ × v̂,

where v̂ is the velocity unit vector and ω̂ the angular ve-

locity unit vector and where the drag and lift coefficients
Cd and Cl depend on the Reynolds and Spin numbers.
These coefficients have been investigated extensively for
cylinders of various aspect ratio, since the seminal work
of Magnus on a brass cylinder, followed by successive in-
vestigations by Lafay [27, 28] and by the group led by
Prandtl in Göttingen [29]. The experimental and nu-
merical investigations of the evolution of drag and lift
coefficients of spinning cylinders have been compiled by
Swanson [22], and more recently by Baladamenti [23].
Most of these studies were led in the context of technical
applications such as Flettner boats [19] or other aeronau-
tical ships or airplanes [20] and provide a useful database
for the modeling of the aerodynamical forces applied to
the Magnus glider. In the next paragraph, we extrapo-
late the values of the drag and lift coefficients presented
in previous studies to the geometry of our Magnus glider.

For non-spinning objects, and in the turbulent regime
(i.e. Reynolds numbers in excess of 103), it is well-known
that the drag coefficient is Re-independent [24]. A sim-
ilar turbulent regime was also observed for spinning ob-
jects [22, 23]; we will thus consider drag and lift coef-
ficients to be Re-independent (below the drag crisis oc-
curring around Re ∼ 4 × 105 for cylinders, an order of
magnitude larger than the Reynolds numbers reached in
this study). The values of the drag and lift coefficients
for cylinders strongly depend on various control parame-
ters [23] such as the the cylinder aspect ratio, the rough-
ness of the surface, the presence of endcaps, etc. Among
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FIG. 4. (Top) Lift and (bottom) drag coefficients as a function
of the Spin number Sp from the Göttingen wind tunnel (red
crosses) and fitted curves for a 1.7 aspect ratio. The blue
dash-dotted line corresponds to the potential flow theory.

the measurements of the drag and lift coefficients in wind-
tunnels for spinning cylinders of various aspect ratios, the
closest configuration to our case was studied for an as-
pect ratio 1.7 [30] in the Göttingen wind tunnel, nearly
90 years ago. We extracted the experimental data from
the Göttingen study, shown in Fig. 4 as red crosses. Note
that, in the framework of the potential flow theory dis-

cussed above, the lift coefficient reads Cpf
l = 2πSp and its

evolution is reported as a blue dash-dotted line in Fig. 4.
Note that Cl ∝ Sp means that the Magnus force scales
as the product of the translational velocity with the ro-
tational velocity. The first important observation is that
the lift coefficient extracted from the Göttingen wind-
tunnel experiment is at least one order of magnitude
lower than the one computed from potential flow theory.
The second observation is that both Cl and Cd strongly
depend on the Spin number Sp. Fits of the Göttingen
experimental data for Sp > 1 (i.e. in the range of Spin
numbers reached here) are shown as dashed black lines
in Fig. 4, respectively as CAR=1.7

d = −0.35 + 0.88S0.55
p

and CAR=1.7
l = −0.31 + 1.3S0.34

p . We stress that the
Göttingen experimental points are somewhat scattered
around the fits. The compilation provided by Badala-
menti [23] shows that both Cl and Cd depend on the as-
pect ratio of the cylinder. We thus choose to model the
aerodynamic forces in Eq. 1 using a drag and a lift coeffi-
cients proportional to the Göttingen data shown in Fig. 4,
i.e equal to βdC

AR=1.7
d , and βlC

AR=1.7
l , with βl,d ∼ 1,

since the aspect ratio of the Magnus glider L/(2R) is
equal to 2.67.

The values of βl and βd are obtained from the best fits
of nine experimental trajectories, reported in Fig. 5 (red
solid lines), for various values of the initial kinematic pa-
rameters of the Magnus glider. Equation 1 is integrated
numerically using as initial conditions the values of ω0,
V0 and α0 obtained experimentally for the nine trajec-
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FIG. 5. Nine experimental trajectories (solid red line) and
best fit (dashed black line) using the model of Eq. 1, with the
drag and lift coefficients shown in Fig. 4. Initial conditions ω0,
V0 and α0 at (x, z) = (0, 0), computed from the experimental
data, are specified for each trajectory.

tories [31]. A further approximation is to consider that
the angular velocity is kept constant during the flight of
he Magnus glider – this assumption remains valid as long
as the flight duration is lower than τ0 and since the drag
and lift coefficients only weakly depend on the Spin num-
ber for values larger than 2. The numerically-integrated
trajectories are displayed in Fig. 5 (dotted black lines),
and correspond to βl = 1.03 and βd = 0.9. The evolution
of the drag and lift coefficients used for the numerical in-
tegration are shown in Fig. 4 (solid black line) as a func-
tion of the Spin number, and are in agreement with the
wind-tunnel measurements. The trajectories computed
from numerical integration of the model and displayed
in Fig. 5 show a very good agreement with the experi-
mental trajectories. As a partial conclusion, we showed
here that the modeling of the experimental trajectories is
very accurate when using the lift and drag coefficients ob-
tained from wind tunnel measurements [30] for cylinders,
in configurations close to our Magnus glider and assum-
ing a constant angular velocity. A possible extension to
this work would be a precise experimental characteriza-
tion of the aerodynamic coefficients of joined truncated
cones. We stress here that the remarkable agreement
between the experiments and the model is observed al-
though the Magnus glider is a very light projectile whose
trajectory may be strongly influenced by external pertur-
bations (weak draft or air convection).

Finally, we note that a further refinement of the model
could be incorporated from an added mass effect, since
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of the peak frequency fp, expressed as a Strouhal number, as
a function if the initial Spin number.

the mass of air mair in the volume of the Magnus glider
is 4% of the mass of the Magnus glider. This refine-
ment would lead to consider the following equation of
motions: (m+mair)a = mg+FL +FD. This refinement
only marginally affects the results and does not modifies
the message carried here: incorporating the added mass
effect leads to βam

l = 1.12 and βam
d = 1.

B. Fast oscillations of the glider

A closer observation of the trajectories (or the ve-
locities) in Fig. 3 shows strong oscillations around the
time-averaged trajectory. The power spectral density
of the horizontal component x(t) of a typical trajectory
is displayed in Fig. 6, showing a well-defined peaks at
fp = 21 Hz for the fast oscillations of the glider. The
origin of these oscillations is now discussed. The inset
of Fig. 6 shows the evolution of the peak frequency fp,
expressed as a Strouhal number 2fpR/V0 as a function
of the Spin number at time t = 0 for the nine trajecto-
ries reported in Fig. 5. While we cannot rule out that
these oscillations are excited by perturbations during the
launching phase of the Magnus glider, a probable origin
lies in the wake detachment from the Magnus glider at
early times. Indeed, the evolution of 2fpR/V0 is compat-
ible with the evolution of the Strouhal number as a func-
tion of the Spin number, where the Strouhal number is
defined as 2fR/V0 with f the vortex-shedding frequency.
The compilation by Badalamenti [23] indeed shows that
the Strouhal number lies between 0.1 and 0.25 and in-
creases with the Spin number: all the features observed
here are thus compatible with oscillations excited from
vortex-shedding at early times of the trajectory.

C. Friction decreases angular velocity

Let us now discuss the time evolution of the angular
velocity of the Magnus glider, as reported in the cen-
tral panel of Fig. 3. From top to bottom, the charac-
teristic times τ0 are respectively 7.1 s, 6.1 s, and 4.4 s.
The decay of the angular velocity is due to the friction
within the boundary layer of the spinning Magnus glider.
In wind-tunnel experiments, the amplitude of the dissi-
pation is usually quantified from torque measurements.
The torque T required to spin a cylinder at angular ve-
locity ω in the presence of a cross-flow V is expressed
as T = CT ρV

2R2L with a torque coefficient CT and as-
suming a turbulent friction force, scaling as ρV 2, applied
uniformly on the surface of the cylinder. The compila-
tion of the estimates of CT from previous studies [23]
shows that CT scales linearly with Sp as CT ∼ c Sp, with
c between 0.02 and 0.06 (this indeed strongly depends on
the roughness of the surface). Assuming the moment of
inertia of the Magnus glider being that of a cylindrical
shell of mass m and radius R, Newton’s law of rotation
reads

mR2
dθ2

dt2
= −CT (Sp)ρV

2R2L ∼ −c ωρV R3L,

and since ω = dθ/dt,

dω

dt
∼ −

c ωρV RL

m
.

The angular velocity thus decays exponentially with a
characteristic time m

cρV RL
. Assuming c = 0.05 (in the

range from the literature), the estimates for the decay
times are respectively 8.1, 5.8 and 4.5 s for V0 equal
8.4, 11.9 and 15.1 m/s respectively, which is in excellent
agreement with the experimental observations.

IV. WHEN DOES THE MAGNUS GLIDER

LOOP BACK ?

In the previous section, we introduced a model for the
drag and lift forces that accurately describe the aero-
dynamic forces applied to the Magnus glider. In this
section, we solve numerically the equations of motion to
identify which of the three types of trajectories are ob-
served as a function of the initial kinematic parameters
V0, α0 and ω0. Indeed, due to our experimental proto-
col using a single rubber band to launch and spin the
Magnus glider, there is a strong correlation between the
amplitude of the initial velocity V0 and the initial an-
gular velocity ω0. More specifically, for three values of
ω0 (respectively to 360, 500 and 660 rad/s), Eq. 1 is
solved numerically for various values of V0 and α0, using
the values of the drag and lift coefficients introduced in
the previous section. The angular velocity was assumed
to remain constant. The results are reported in Fig. 7,
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FIG. 7. Phase diagram of behavioral regimes, color-coding
of the altitude of the apex of the trajectory (in meters) in
the parameter space (V0, α0) for ω0 equal to (top) 360 rad/s,
(middle) 500 rad/s and (bottom) 650 rad/s. The white lines
display the location of the cusps. See text for details.

where the steps are 0.1◦ for α0 and 0.1 m.s−1 for V0. The
white lines correspond to trajectories where the horizon-
tal velocity vanishes, i.e. at the apex of the cusps: this
line is thus a separatrix between arches, on the left, and
loops, on the right. The white dashed line in the middle
and bottom panels corresponds to the separatrix shown
as a solid line in the top panel. As a first conclusion, the
angular velocity has a weak effect on the type of trajec-
tory. A second rather counter-intuitive conclusion can be
drawn from the inspection of the colorbar of Fig. 7 which
represents the altitude of the apex of the trajectory (in
meters): higher altitudes are reached at lower angular
velocities. These results are easily explained from the
evolution of the aerodynamic coefficients with the Spin
number as shown in Fig. 4 for Spin numbers larger than 2.
Indeed, the drag coefficient increases faster than the lift
coefficient with the Spin number. Thus, a higher angular
velocity leads to a higher drag, and thus lower altitude,
while it does not strongly modifies the lift force. The
white crosses labeled 1 to 9 in Fig. 7 correspond to the
values of V0 and α0 for the trajectories reported Fig. 5 (1
referring to the top-left trajectory and 9 to the bottom
right trajectory). Trajectories 1 to 4 indeed correspond
to arches. Trajectories 5 and 6 lie very close to the white
line, i.e. correspond to cusps, while trajectories 7 to 9
are looped trajectories. As a partial conclusion here, we
demonstrated that the type of trajectory only weakly de-

pends on ω0 and mainly depends on the amplitude and
orientation of the initial velocity V0, while the height of
the apex strongly depends on ω0.

V. CONCLUSION

In this article we described an experimental investiga-
tion of the dynamics of Magnus gliders made from light
paper cups. Such gliders are a simple, inexpensive and
easy to image in a classroom laboratory allowing to mea-
sure the spectacular effect of the Magnus lift on the tra-
jectories of spinning objects. The analysis of high-speed
movies revealed three types of trajectories: arches, cusps
and loops. These trajectories were accurately modeled
using simple analytical descriptions for the drag and lift
forces, based on previous aerodynamical studies in wind
tunnels. The model predicts that the type of trajectory
mainly depends on the amplitude and orientation of the
launching velocity V0. The altitude of the apex strongly
depends on the spin for a given launching velocity, and,
counter-intuitively, decreases with increasing spin. These
features are readily understood from the evolution of the
drag and lift forces with the Spin number.
The investigation of the dynamics of Magnus gliders in

the vicinity of the drag crisis, i.e. for Reynolds numbers
around 4 105, where the drag force suddenly decreases
would undoubtedly be a natural follow-up of our study.
The influence of the reverse Magnus effect [17], linked to
the difference in the boundary layers on the upstream and
downstream sides could also lead to unexpected spectac-
ular trajectories. We addressed the aerodynamic origin
of small amplitudes fast oscillations on the trajectories
of a symmetric Magnus glider, but similar oscillations
could also be triggered by asymmetric gliders i.e., those
for which the center of mass is off the axis of rotation.
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Appendix A: Building and launching Magnus

gliders: technical details and dead ends

The Magnus gliders used for this study were made out
of paper cups, of height L/2 = 9 cm, bottom radius 2.75
cm, and top radius 4 cm, glued together at their bottoms.
They were launched using long rubber bands assembled
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from domestic rubber elastic bands. The domestic rub-
ber bands were 1 cm wide, 1 mm thick and 10 cm long
and several of them (between 5 and 10 depending on the
experiment) were connected using a loop to loop knots.
The resulting band was wrapped around the center of the
Magnus glider (i.e. taking advantage of the reinforced
rim of the bottoms of the cups) with constant tension
provided by a weight (between 1 kg and 3 g, depending
on the experiment) attached at the bottom the band, and
hanging 1 or 2 m below the Magnus glider. The free end
of the rubber was then firmly held while the other end
was stretched at a length l between 50 and 80 cm (i.e.
roughly twice the length of the un-stretched remaining
part of the band).

Several type of cups were tested, motivated by the va-
riety of Magnus gliders reported in the video by Bruce
Yeany [18]. Styrofoam cups are extremely light, but also
extremely brittle, which restrict the ranges of tension and
stretching of the rubber without breaking the Magnus
gliders. Light plastic cups were also too fragile to sustain
the wrapping the rubber band. We also tested small pa-
per cups and paper towel rolls, but their trajectories were
very unstable (i.e. the trajectories did not remain 2D).

The reinforced bottom rims of paper cups were found to
be an asset for the mechanical strength of the assembly.

Appendix B: High speed imaging requirements

High speed imaging of the trajectories require a reso-
lution larger than 1200 by 700 pixels. The capture of the
rotational dynamics (around 100 rev/s) requires a frame-
rate larger than a few hundreds of frames per seconds. In
our manuscript we indeed use an ultra high speed cam-
era, but at a moderate frame-rate of 4000 fps. We stress
here that many of the cameras available in undergrad labs
would allow to correctly image the experiments. Using
standard mid-range smartphones which routinely image
up to 240 fps in 2021 would be sufficient to image the
trajectories (with a far better resolution than what we
report in this study). The rotation rate for all of the
regimes reported in our manuscript could be imaged us-
ing high-end smartphones which image up to 1920 fps in
2021 with a 1280x720 pixels resolution.
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