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Popsicle sticks can be interlocked in the so-called “cobra weave” to form a chain under tension.

When one end of the chain is released, the sticks rapidly disentangle, forming a traveling wave that

propagates down the chain. In this paper, the properties of the traveling front are studied

experimentally, and classical results from the theory of elasticity allow for a dimensional analysis of

the height and speed of the traveling wave. The study presented here can help undergraduate students

familiarize themselves with experimental techniques of image processing, and it also demonstrates

the power of dimensional analysis and scaling laws. VC 2017 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.5000797]

I. INTRODUCTION

A. What is a popsicle stick bomb?

Wooden popsicle sticks can be bent and interlocked into a
pattern known as the “cobra weave” (due to its resemblance
with the patterns formed by the scales of the snake of the
same name), as shown in the top panel of Fig. 1. In the dis-
played setup, each individual stick is bent to rest alternately
above and below four perpendicular sticks (see also the bot-
tom panel of Fig. 2), but other geometrical configurations
can also be woven. When weaving the chain, one realizes
that a large potential energy is stored in the sticks, and the
ends of the chain must be held still by using a weight or
one’s hand (not shown of Fig. 1). When one end of the chain
is released, the so-called “stick bomb” detonates—the poten-
tial energy is released as the sticks pop up and a traveling
wave is formed.

This system is reminiscent of similar mechanical chain
reactions, such as travelling waves in a line of dominoes,1–3

or in an assembly of mousetraps,4,5 both systems displaying
propagation fronts and conversion of the stored potential
energy (whether gravitational or elastic) into kinetic energy.
This stick bomb also involves a competition between elastic
and gravitational energy, which also governs the bounce of a
ball.6,7

In this article, the speed of the traveling wave and the
height reached by individual sticks are studied through sim-
ple hands-on experiments.

B. What undergraduate students can learn from this
problem

Such a dramatic physics demonstration has high pedagogi-
cal potential. This problem can indeed provide an amusing
introduction to solid mechanics, giving a simple example of
the conversion of stored elastic energy into kinetic and gravi-
tational potential energy8 in which students can measure an
energetic yield and consider sources of dissipation. The
problem also provides an interesting illustration of the theory
of elasticity; the study of the statics and dynamics of a single
bent stick can be modeled using the Euler–Bernoulli theory
for beam deflection.9,11–14 Moreover, students may familiar-
ize themselves with experimental techniques, such as particle
tracking, or with the interpretation of a space-time dia-
gram.15 Finally, this paper may help undergraduate students

grasp the importance of dimensional analysis16–18 as well as
the predicting power of scaling laws.19,20

C. Outline

The aim of this study is to understand the dependence of
the velocity and height of the traveling wave on the proper-
ties of the popsicle sticks and of the weave. In a nutshell,
Sec. II examines the elasticity of a single stick, Sec. III
focuses on the traveling wave obtained with a given set of
identical sticks, and the properties of the sticks (dimensions
and material) are investigated in Sec. IV.

To model the popsicle stick bomb and understand why a
wave propagates, sticks are modeled by beams within the the-
ory of elasticity framework whose important results are recalled
in Sec. II. We will first focus on the static aspects by consider-
ing the mechanical equations, boundary conditions, and the
energy stored in a beam. The dynamics of a stick will also be
discussed for a clamped beam, by studying the frequency (in
the linear approximation) of the first transverse vibration mode.
We then explain how the properties of the sticks are measured
and discuss the efficiency of the conversion of stored elastic
energy into kinetic and gravitational energy.

Experimental data obtained for the traveling waves using
a given set of wooden sticks will be explored in Sec. III,
where the experimental methods used to measure the speed
and height of the traveling wave are explained.

Finally, in Sec. IV, we will derive scaling laws allowing
one to predict the speed and height of a cobra wave, given
only a few intensive (Young’s modulus, density) and exten-
sive (geometrical dimensions) properties of a stick. The pre-
dicting power of the scaling law and the influence of
dimensionless parameters are discussed.

II. ELASTICITY OF A SINGLE STICK

A. Euler–Bernoulli beam theory

This section analyzes the elastic properties of a single
stick. Unless otherwise mentioned, all classical results are
taken from Landau et al.9 Note that Ref. 21 describes a sim-
ple and affordable device for the measurement of Young’s
modulus (designed so as to minimize the computations that
in many instances prove to be a deterrent in the understand-
ing of physical concepts), while Refs. 22 and 23 present sev-
eral simple cantilever-based experiments using common
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household items (celery, carrot, and a plastic spoon) that are
appropriate for introductory undergraduate laboratories or
independent student projects.

1. General hypotheses

The Euler–Bernoulli beam theory is a simplification of the
theory of elasticity, limited to small deformations and in
which the shear stress is neglected. In this framework, there
exists a neutral axis along the beam whose length remains
constant and to which the cross section remains perpendicu-
lar. In the case where the beam is only constrained by (two)
point supports (i.e., with no distributed load or torque), the
position of the static beam z(x) obeys9

d4z

dx4
¼ 0: (1)

Here, z is the vertical position of the neutral axis, whose
length remains constant, as a function of the x-coordinate
along the beam. The result of Eq. (1) is that the shape of the
beam is given by a third-degree polynomial whose coeffi-
cients are determined by the boundary conditions. Equation
(1) can be derived analytically, but a hand-waving argument
can help understand its fundamental physical meaning. The
local curvature of the stick, c ¼ d2z=dx2, is the first relevant
derivative of the profile z(x) that plays a crucial role. Indeed,
gravity does not affect the shape of rigid beams and can
therefore be neglected (except for the unrealistic case of
extremely flexible sticks whose shape is affected by gravity).
A stick can therefore be translated (affecting the absolute
value of z) or rotated (changing dz/dx) without any changes
to the physics of the bending. In terms of curvature, then, the
content of Eq. (1) is that d2c=dx2 ¼ 0, implying that the cur-
vature varies linearly (or is constant) along the axis.

2. Elastic potential energy

The elastic potential energy stored in the bent beam is
given by9

Uel ¼
ðL

0

1

2
EI

d2z

dx2

� �2

dx; (2)

where E is Young’s modulus and I the second moment of
area, given by I ¼ lh3=12 for a rectangular beam of constant
cross-section l � h and length L. As a simple example of the
use of Eq. (2), consider the clamped beam with displaced
end shown in Fig. 2. As explained above, between any two
consecutive contact points, the equation of the beam is a
third degree polynomial. In this case, the position of each
end of the beam is known, which provides two of the four
necessary boundary conditions. The final two boundary con-
ditions are obtained by noting that the first derivative is con-
tinuous at the left end, giving z0ð0Þ ¼ 0, while the second
derivative is zero at the right end because there is no net tor-
que at this end. These boundary conditions suffice to deter-
mine the shape of the beam, which can then be substituted
into Eq. (2) to obtain

Ucl
el ¼

3

2

EI

L3
d2 clampedð Þ: (3)

A more complicated situation is the case of four contact
points (see Fig. 2), which can be thought of as three separate
segments for which 12 coefficients must be determined. The
positions of each end of the three segments are known (pro-
viding six equations), and the continuity of the first and sec-
ond derivatives provides another six equations. The equation
of the beam can therefore be computed and the elastic energy
can be computed to be

U4p
el ¼ 432

EI

L3
d2 4 pointsð Þ: (4)

A similar computation can be carried out while taking into
account the width l of the sticks, which shifts the position of
the contact points as shown in Fig. 2. For sticks of width

Fig. 1. Photographs of a typical experiment: (top) top-view of the popsicle

sticks interlocked in the cobra weave; (bottom) side-view that shows the

propagating wave.

Fig. 2. Sketches of a single stick in three different configurations. For clar-

ity, the thickness h and the deformation d are largely exaggerated.
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l¼ 10 mm and length L¼ 110 mm, the elastic energy can be
computed numerically to be

U4s
el � 872:4

EI

L3
d2 4 sticksð Þ: (5)

3. Vibrations

While Sec. II A 2 describes beams at rest, understanding
the dynamics of the beam deformation is clearly relevant for
the study of the traveling wave. The equation of motion
describing the dynamics of a uniform beam of mass m under-
going transverse deformations (forbidding any twisting) can
be derived from the Lagrangian of a stick (see Ref. 9 for
details) and is given by

EI
@4z

@x4
þ m

L

@2z

@t2
¼ 0: (6)

Solving Eq. (6) allows one to compute the eigenmodes of a
vibrating beam and the corresponding frequencies. For
instance, the angular frequencies of the eigenmodes of a
beam clamped at one end (cantilever) are given by

xn ¼ an

ffiffiffiffiffiffiffiffiffi
EI

mL3

r
; (7)

with a1 � 3:52; a2 � 22:0, and a3 � 61:7. For a free beam
(under no constraints), Eq. (7) still holds, with a1 � 22:4;
a2 � 61:7, and a3 � 121:0. Note that in both cases the
eigenfrequencies are proportional to a characteristic
frequency

x� �
ffiffiffiffiffiffiffiffiffi
EI

mL3

r
; (8)

with a geometrical prefactor that depends on the boundary
conditions.

4. Equivalent spring-mass system

Obviously, the energy stored varies widely from one con-
figuration to another, but it is important to note that the elas-
tic potential energy is always proportional to an energy
ð1=2Þkd2, where k / EI=L3, with a geometrical prefactor.
This energy can be regarded as the potential energy stored in
a (linear) spring (with spring constant k). Due to the large
number of lengths in the problem (length, width, and thick-
ness of the beam and pitch of the pattern), a direct dimen-
sional analysis is not straightforward, and several
dimensionless groups can be formed. However, the theory of
elasticity provides one with an effective spring constant k,
which enables dimensional analysis. For a stick in a cobra
weave, the characteristic stored elastic energy is given by

U�el ¼ 72:2
Elh5

L3
; (9)

since, in this case, the deflection is given by d ¼ h (the factor
72.2¼ 872.4/12 comes from the prefactors in U4s

el and I).
Note also that the eigenfrequencies in Eq. (8) can be

viewed as the angular frequency of a (linear) mass-spring
system: x� /

ffiffiffiffiffiffiffiffiffi
k=m

p
, which defines a characteristic time

T� /
ffiffiffiffi
m

k

r
; (10)

for a beam woven in the cobra pattern. In terms of the mate-
rial properties, the characteristic time can be written as

T� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4

h2E

m

lhL

� �s
¼ L2

h

ffiffiffi
q
E

r
¼ L2

h c0

; (11)

where q is the mass density and the ratio c0 ¼
ffiffiffiffiffiffiffiffiffi
E=q

p
is the

speed of sound in a material whose Poisson’s ratio � is zero.9

For a more realistic value of � ¼ 0:3 for hard wood,24 the
speed of sound (compression waves) is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E

q
1� �

1þ �ð Þ 1� 2�ð Þ

s
� 1:16 c0: (12)

Interestingly, the characteristic time in Eq. (11) can therefore
be seen as the product of the length-to-thickness aspect ratio
of the sticks, L/h, and the time L=c0 it takes a sound wave to
propagate along the stick.

B. Measurement of the mechanical parameters

The mass and dimensions of the sticks can be easily mea-
sured using a scale and a caliper. Meanwhile, Young’s mod-
ulus E (or, equivalently, the effective spring constant k) was
measured using two methods on a beam clamped at one end.
The first method consists of simultaneously measuring the
force F applied at the free end of the stick (using a dyna-
mometer) and the resulting deflection d (using a caliper).
The relation between the two is given by the Euler–Bernoulli
theory to be

F ¼ 3EId
L3

: (13)

We have checked that the relation between the force and the
deflection remains linear for small deflections (d < L=10),
and the slope gives a direct measurement of the effective
spring constant, which leads to the value of the Young’s
modulus.

The second method consists of studying the first mode of
vibration of a clamped stick and is far more reproducible
than the first method. The frequency of this mode is given by
Eq. (7), which allows the determination of Young’s modulus
(or the effective spring constant). Figure 3 shows the position
of the free end of a wooden stick of length L¼ 85 mm after it
was given an initial deflection of d¼ 5 mm and then
released. The data were obtained by tracking the position of
the end of the stick using the Analyze Particle tool in
the video analysis program ImageJ,10 from a video taken at
1000 fps with a resolution of 10� 1500 pixels. It is worth
noting that the vibrations of the stick are rapidly damped due
to internal dissipation within the stick.

C. Energy release and efficiency

In this section, we discuss the efficiency of the conversion
of elastic potential energy into gravitational energy. To mea-
sure the ratio of these energies, we performed a simple
experiment consisting of a stick resting between two nails
(as shown in the inset of Fig. 4). A force F is applied (and
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measured) at the free end of the stick using a dynamometer.
The energy stored in the stick is not computed from theory,
which relies on a number of assumptions, but is instead
directly measured as the work provided by the dynamometer.
Moreover, we checked that for small deformations (less than
10% of the length of the stick), the force is a linear function
of the deflection: FðxÞ / x. The stored energy is therefore
given by

Uel ¼
ðd

0

F xð Þ dx ¼ 1

2
F dð Þ d: (14)

When the stick is released, it first rises up to some maxi-
mum displacement before continuing its oscillatory motion.
We measure the maximum height H reached by the center of
mass of the stick, allowing us to compute the maximum
gravitational potential energy Eg ¼ mgH (where g is the
gravitational field strength). Repeating this experiment for
several values of F, one is able to plot Eg as a function of Uel

in order to determine the efficiency of the conversion of elas-
tic energy into gravitational energy. As can be seen in Fig. 4,
only a fraction of the available energy is converted into grav-
itational potential energy. In fact, this plot shows a (reason-
ably) constant conversion efficiency of 0.25, meaning that
75% of the elastic energy is either converted into vibrations
(mostly transverse but possibly in twisting modes as well) or
dissipated (either internally or due to air resistance).

This empirical efficiency of 25% is specific to the setup
used here, and one should therefore expect a different effi-
ciency for a stick in their own cobra weave. The simple
geometry presented in this section optimizes the height
reached by a stick whereas a more symmetrical shape, such
as the cobra weave (see Fig. 2) would favor vibrations at the
expenses of height. Moreover, in the cobra weave, friction
between the sticks can be very high and is another source of
energy dissipation, as is collisions between the sticks.
Hence, the efficiency of the conversion of elastic energy into
gravitational energy for a popsicle stick bomb is expected to
be even lower than 25% (as will be discussed in Sec. III B).

III. SPEED AND HEIGHT OF THE WAVE FOR ONE

SET OF STICKS

The height and velocity of the wave may depend on
numerous parameters. The material properties and the
dimensions of the sticks will be discussed in Sec. IV. Here,
we focus on results obtained using a given set of wooden
sticks, varying only the pitch of the cobra pattern.

A. Experimental methods

A 3 m-long chain of sticks is woven following the pattern
of Fig. 1, while keeping the extremities clamped using large
weights. When the weight is removed at one end, the stick
bomb detonates and the propagation of the wave is filmed
using a camera (Ximea, xiQ MQ013MG-ON) at rates up to
2000 fps with a resolution of 1500� 10 pixels. In order to
perform a spatiotemporal analysis, the videos were processed
using the Orthogonal View function in ImageJ. Choosing
a fixed horizontal line located at approximately half the
height of the wave, a threshold is then applied to make the
picture black and white. The profile along this line is then
plotted for all frames, yielding the space-time diagram
shown in Fig. 5.

The chain reaction triggered at one end of the chain gives
rise to a traveling wave, and Fig. 5 shows the evolution of
the front and rear positions of the wave as a function of time.
A steady state, in which the width of the wave (at half-
height) remains constant and the trajectory is a straight line,
is reached after the front has traveled for no less than 1.5 m
(dashed line). It is therefore important that the length of the
chain be longer than this transient length (which may depend
on the type of sticks used). The velocity of the wave is

Fig. 3. Free oscillations of the free end of a clamped wooden stick (Wood 2

in Table I) shown on linear (top) and logarithmic (bottom) scales.

Measuring the oscillation frequency leads to the value of Young’s modulus

of the stick. The damping is caused by internal dissipation within the stick.

Fig. 4. Gravitational energy of a stick as a function of the elastic energy

stored, in the case of the simple setup shown in the inset. A stick is placed

between two nails and bent at its free end. When the force is released, it

moves vertically upward to a maximum displacement. The data show a

remarkably linear behavior, which defines a constant conversion efficiency

of roughly 25%.
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measured as the slope of the trajectory in the steady-state
regime. Meanwhile, the height of the wave can be measured
directly (see Fig. 1) by finding the height reached by the cen-
ter of mass of the highest stick. The results are then averaged
over the steady state.

We note that the sticks used in Figs. 1 and 5 were made of
remarkably flexible wood and were soaked in water for sev-
eral days to produce a low wave speed (1.7 m/s), which
results in sharper images and clearer space-time plots.
However, in the rest of the paper, more rigid sticks are used
(see Table I for details).

B. Results and discussion

The results presented in this section were obtained using
one set of rigid sticks (Wood 2 in Table I) that were soaked
in water for three weeks (thickness h¼ 2.3 mm, width
l¼ 10 mm, length L¼ 114 mm, density q¼ 970 kg m�3, and
Young’s modulus E¼ 5.0 GPa, measured using the method
presented in Sec. II B).

This section is devoted to the study of the influence of the
pitch p of the pattern (see Fig. 6) on the speed and height of
the wave. The pitch appears to be a crucial parameter and
can be easily changed by varying the angles between the
sticks when building the chain. Geometrically, the pitch is
given by

p ¼ 2L

3
sin a=2ð Þ ; (15)

where a is the angle between the sticks (see Fig. 6). The
same set of sticks was used to build several chains with

different values of p, and the results of this study are shown
in Fig. 7.

The first conclusion that can be drawn is that the wave
height is unaffected when the pitch is varied, whereas the
speed of the wave clearly increases with increasing pitch. As
discussed in Sec. II, for the simpler case of a single stick, the
height reached by the wave finds its origin in the elastic
energy stored when the chain is built. In a steady state, each
individual stick can on average only hope to recover its own
elastic energy. When neglecting both the width l of the bent
stick (i.e., considering 2D cross sections as in Fig. 2) and the
twisting of the sticks, the elastic energy stored in the bending
is independent of the pitch, which leads to a constant height
when the pitch is varied. The data presented in Fig. 7 also
enable one to estimate the efficiency of the energy conver-
sion. On average, the efficiency is roughly 5%, considerably

Fig. 5. Space-time diagram of the wave using wet wooden sticks. The two

lines represent the horizontal position of the ascending (front) and descend-

ing (rear) portions of the “hump” seen in Fig. 1, measured at half the height.

A steady state is reached after the front has traveled 1.5 m (dashed line), cor-

responding to roughly 100 sticks.

Table I. Parameters for the different sticks used.

Name h (mm) 6 0.1 l (mm) 6 0.1 L (mm) 6 1 c0 (m/s) 6 100

Wood 1 2.2 9.5 113 4600

Wood 2 2.4 10.0 114 2000

Wood 3 2.3 10.0 114 2300

Wood 4 1.1 5.3 136 6500

PVC 1 2.0 9.7 100 1400

PVC 2 2.0 9.7 120 1400

PVC 3 2.0 9.7 140 1400

PVC 4 2.0 9.7 133 1400

Fig. 6. Sketch of the cobra weave; the black lines correspond to the sticks of

length L. The pitch p is defined as the distance between the extremities of

two consecutive sticks.

Fig. 7. Dependence of the speed (top) and height (bottom) of the wave on

the pitch of the pattern. The speed V depends linearly on the pitch, with a

forced offset corresponding to the width l of the sticks; the height H is inde-

pendent of the pitch. The horizontal line indicates an efficiency of 5%.
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less that the 25% obtained with the more favorable setup of
Fig. 4.

As discussed in Sec. II, the motion of a stick occurs over
a characteristic time T�, specific to each set of sticks and
with numerical prefactors that depend on the exact configu-
ration. For a given set of sticks (for a fixed characteristic
time T�), when the pitch is varied, a simple dimensional
analysis provides one with a characteristic velocity p=T�. If
the velocity is relevant to the phenomenon, the speed of the
wave should scale as the ratio p=T�. This predicted linear
dependence of the velocity as a function of pitch is experi-
mentally supported (solid line on top of Fig. 7). For the
sake of clarity, the width l of the sticks is not shown in Fig.
6, but clearly the pitch must exceed this value. Therefore,
the linear fit is obtained while forcing an offset of
l¼ 10 mm. While the velocity can be accurately computed
from space-time diagrams such as in Fig. 5, reproducing the
experiments leads to a typical variability of �10% in the
speed. Similarly, the maximum height is measured using
video snapshots (see Fig. 1), which again leads to a typical
uncertainty of �10%.

In conclusion, a dimensional argument allows one to pre-
dict both the linear dependence of the speed and the constant
height as a function of the pitch.

IV. SCALING LAWS

A. Various materials and dimensions

The previous section presented data obtained with the
same wooden sticks as the pitch of the cobra weave was var-
ied. In addition to these experiments, the dimensions and
material of the sticks were varied (Table I gives a summary
of the sticks used) while the pitch of the cobra weave was
kept constant (with a ¼ 90�). In order to vary Young’s mod-
ulus, the wooden sticks were soaked in water, with durations
ranging from a few days to a few weeks. This process suc-
ceeded in making the wooden sticks less rigid, but it also
affected their density (up to a factor 2) and size (with an
increase of up to 10%). For all sets of sticks, both Young’s
modulus E and the density q were independently measured
prior to any experiment and the corresponding (so-called)
speed of sound c0 ¼

ffiffiffiffiffiffiffiffiffi
E=q

p
is reported in Table I. Plastic

sticks of various sizes, cut from a sheet of PVC (polyvinyl
chloride), were also used.

Figure 8 shows the experimental results obtained using
these various sticks plotting both the height H and velocity V
of the wave. The relation between H and V is not expected to
be simple, and the data are not expected to fall onto a master
curve; the figure is only intended as a synthetic way to pre-
sent the experimental results. However, a general trend can
be seen as the stiffer and lighter sticks tend to travel faster
and reach a greater height.

B. Characteristic velocity and height

As explained in Sec. III B, the velocity of the wave is pro-
portional to the pitch of the pattern divided by the character-
istic time of vibration of a stick. Therefore, a relevant
characteristic velocity can be defined as p=T� / L

ffiffiffiffiffiffiffiffiffi
k=m

p
/

ffiffiffiffiffiffiffiffiffi
E=q

p
ðh=LÞ � V� ¼ c0 h=L. While the linear dependence

on the pitch was confirmed in Sec. III, the more complex
dependence on the material parameters through the speed of
sound c0 and the aspect ratio h/L will now be examined. It is

important to emphasize that the characteristic speed V� is not
a theoretical prediction of the actual speed since unknown
numerical prefactors have been left out.

The gravitational potential energy Eg ¼ mgH gained by
a single stick finds its origin in the elastic energy stored
during the weaving. Comparing these two energies is
equivalent to comparing the height H with a characteristic
height H� defined as H� � 72:2U�el=mg [see Eq. (9)]. This
characteristic height can then be seen as the maximum
average height reached by the sticks if all the potential
energy were converted into gravitational energy. Again,
the predicted dependence of the height on the material
parameters and dimensions of the sticks requires an experi-
mental validation.

To summarize, we have identified both a characteristic
horizontal velocity ðV�Þ and a characteristic height ðH�Þ of
the traveling wave to be

V� ¼ c0

h

L
(16)

and

H� ¼ 72:2
c0

2

g

h

L

� �4

: (17)

The characteristic velocity and height are specific to each
set of sticks and depend solely on the speed of sound and
the aspect ratio. For dry wood, the speed of sound is on the

Fig. 8. Top: The speed V and height H of the wave for each type of sticks

tested. The squares represent the four types of PVC sticks, and the circles

the four types of wooden sticks. The points are spread out and no simple

relationship between the two quantities is expected. Bottom: Plot of the

rescaled data, V=V� and H=H�. One can see an apparent collapse of the

data, depending on the material used.
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order of 4000 m/s, and the aspect ratio of the wooden pop-
sicle sticks is h=L ¼ 2=110, leading to a characteristic
velocity of V� ’ 70 m/s. While the data in Fig. 8 are some-
what smaller than this value, given that we have neglected
numerical prefactors, it is at least the right order of magni-
tude. Meanwhile, the characteristic height has a value
H� ’ 18 cm, which again gives the right order of
magnitude.

C. Collapse

As one can see in Fig. 8, the values of V and H vary
broadly for the different types of sticks used; the speed
ranges from 7 to 36 m/s and the height from 15 to 100 cm.
Another way to view these data is to plot the same data after
rescaling by the characteristic quantities (which are specific
to each type of sticks), as shown in the bottom panel of Fig.
8. When viewed in this way, the data appear to collapse into
two separate groups, according to which material the sticks
are made from (wood or PVC).

The existence of these two sub-sets might have been
expected, as the dimensional analysis used to derive the
characteristic scales inherently excludes some phenomena
that might play a crucial role. Two possibilities are friction
between the sticks (either static or dynamic) and internal dis-
sipation. These phenomena can be characterized, respec-
tively, by the friction coefficients (ls and ld) and the quality
factor Q (or damping) of the oscillations (see Fig. 3). It is
clear that increasing either the friction or the damping can
only lead to lower values of the height and the velocity.
Performing accurate and reproducible measurements of fric-
tion coefficients can be a difficult endeavor, but in our
experiments, it is evident that the wooden popsicle sticks
have greater friction coefficients than the smooth PVC sticks.
Moreover, measurements of the decay rate of the free vibra-
tions of a clamped beam clearly indicate that the internal dis-
sipation of wood is greater than that of PVC. These
observations allow us to understand, at least qualitatively,
the separation of the data into the two groups seen in the bot-
tom panel of Fig. 8.

V. CONCLUSION

In summary, the linear theory of elasticity allows us to
derive scaling laws for the height and speed of the traveling
wave. These predictions are then compared to a series of
experiments that vary the pitch of the weave as well as the
dimensions and materials of the sticks. This problem is a
good example of how dimensional analysis can shed new
light on a complex phenomenon.

Several aspects of the popsicle stick bomb are not
addressed in this paper and might deserve further attention.
For example, it can be seen in Fig. 1 that the shape of the
wave is not symmetric. Indeed, the wave shape differs
depending on which end of the chain is released, i.e., on the
direction of propagation. Equivalently, if the chain is flipped
over before release, the wave properties are affected. Note
that the scaling laws should still apply although the numeri-
cal prefactors might differ. In particular, it would be interest-
ing to study whether the rescaled velocity and height of this
so-called “reverse” wave fall in the same region as those of
the “regular” wave.

Another factor that has not been investigated is the influ-
ence of the base. Indeed, the speed and height depend on
whether the chain is set on a hard surface (such as a labora-
tory table) or on a softer surface (such as a rug or carpet).
Numerous home videos found online25 also show that the
wave can propagate without a direct support. It would there-
fore be interesting to study the case of a chain hanging
vertically.

Finally, the pattern of the weave can be varied. A cobra
weave can be created by interlocking one stick to three or
five (instead of four) perpendicular sticks and a square pat-
tern can also be built. The elastic energy and characteristic
time would clearly vary but once more it would be interest-
ing to check if the scaling laws hold.
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