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Statistical properties of the temporal distribution of polarity reversals of the geomag-
netic field are commonly assumed to be a realization of a renewal Poisson process with
a variable rate. However, it has been recently shown that the polarity reversals strongly

depart from a local Poisson statistics, because of temporal clustering. Such clustering
arises from the presence of long-range correlations in the underlying dynamo process.
Recently achieved laboratory dynamo also shows reversals. It is shown here that lab-

oratory and paleomagnetic data are both characterized by the presence of long-range
correlations.
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1. Introduction

The observation of the paleomagnetic data 1,2,3 have shown that, unlike the so-

lar magnetic field, where the polarity reversals are strictly periodic, geomagnetic

measurements of the last 160 million years present rather sudden and occasional

polarity reversals. The reversal process is normally very rapid with respect to the
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typical time interval between successive reversals, which may range from 104 up to

107 years 1,3,4. Recent works on data analysis, experimental dynamo and theoretical

modeling have inproved the knowledge of the Earth dynamo. However, the main

fundamental questions concerning the polarity reversals still remain unanswered
1,5,6,7. The nature of the triggers (external or internal to Earth) and the physical

mechanisms giving rise to the reversals, the reason for the long time variations in

the average reversal rate (cf. e.g. 2,8), are still open problems.

The sequence of geomagnetic reversals (see the example from the CK95 database
3 shown in Fig. 1) seems to result from a of a stochastic process. The same be-

haviour is observed for experimental dynamo 9 and from numerical simulations 7.

While experimental dynamo is a recent excellent achievement, the numerical ap-

proach, namely the direct solution of the Maghetohydrodynamics (MHD) equations

(see 5,10,11) is still far from being satisfactory for a statistical analysis. However,

reversals are also observed in field resulting from simplified models, such as few

modes models 12,13,14, models of noise-induced switchings between two metastable

states 15,16,17, or mean-field dynamo models with a noise-perturbed α profile 7.

Recently, it has been shown through a simple statistical analysis, that the re-

versals of the paleomagnetic field are not random 18,19,20, namely the statistics

of interevent times (∆t = ti+1 − ti, where ti is the time of the i-th event of

the record) departs from a Poissonian distribution (namely an exponential law

P (∆t) = λ exp(−λ∆(t)), where λ represents the reversal occurrence rate 1,16,21),

including a non-stationary Poisson process, in which case a power-law distribution

could arise from the superposition of Poisson distributions with time variable rates

λ(t), see 22. This result shows that geomagnetic reversals are clustered in time,

probably because of presence of memory in the process generating polarity rever-

sals.

Here we show that experimental dynamo reversals also are characterized by cor-

relations and clustering, suggesting that the reversal process is a universal property

of dynamo, which does not need any external triggering.

2. Local Poisson hypothesis and paleomagnetic data

In this section we will describe the statistical tool used in this work to test, as a

zero-th order hypothesis H0, whether the observed sequence is consistent with a

Local Poisson Process. The reversals rate profile λ(t) being in principle unknown,

the test should be independent on it. A method introduced in cosmology 23 and

more recently used for solar flares 24,25 geomagnetic activity 26), random lasers in

liquid crystals 27, and stock market analysis 28 will be used here. Consider the time

sequence of reversals as a point-like process, and suppose that each reversal occurs

at a discrete time ti. The suitably normalized local time interval h between reversals

can be defined by introducing δti as

δti = min{ti+1 − ti; ti − ti−1} , (1)
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Fig. 1. Bottom: Polarity of the earth’s magnetic field (from today) as in the CK95 record (partial).
The black bars are the normal (present) polarity. Top: the probability density function P (∆t) of

persistence times ∆t for CK95 database (statistical errors are shown as vertical bars).

and τi by

τi =

{

ti−1 − ti−2 if δti = ti − ti−1

ti+2 − ti+1 if δti = ti+1 − ti
(2)

δti and τi are then the two persistence times following or preceeding a given

reversal at ti. If the local Poisson hypothesis H0 holds, both δti and τi are in-

dependently distributed according to an exponential probability density: p(δt) =

2λi exp(−2λiδt) and p(τ) = λi exp(−λiτ) with local rate λi. The distribution of the

variable h defined by

h(δti, τi) =
2δti

2δti + τi

(3)

will not depend on λi.

For the surviving function of the probability density

P (h ≥ H) =

∫

∞

H

P (h)dh =

∫

∞

0

dx2λe−2λx

∫ g(x,H)

0

dyλe−λy (4)
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where P (h) is the probability density function of h and

g(x,H) = 2x

[

1

H
− 1

]

,

it can be easily shown that, under the hypothesis H0,

P (h ≥ H) = 1 − H ,

that is, h is a stochastic variable uniformly distributed in h ∈ [0; 1].

In a process where τi’s are systematically smaller than 2δti’s, clusters are present

and the average value of h is greater than 1/2. On the contrary, when the process

is characterized by voids, the average value of h is less than 1/2. From time series,

it is easy to calculate the surviving function P (h ≥ H) and the probability density

function P (h).

The test described above has been recently applied to four different datasets of

geomagnetic polarity reversals, including the already mentioned CK95 18,19,20. The

probability density function P (h) is reported in Fig. 2 for the CK95 datasets. A

significant deviation from the uniform distribution was observed in all the datasets,

due the presence of clusters.
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Fig. 2. Probability densities P (h) of the stochastic variable h and corresponding surviving func-
tions P (h ≥ H) for all the empirical datasets. The theoretical probability expected under a Poisson
statistics is also shown.
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Fig. 3. (a) Omega effect : the differential rotation on a von Kármán flow advects and stretches an

externally applied axial field B0z so as to generate a toroidal component Bθ. (b) Postive feed-back
: the amplitude of Bθ is used to drive a power source which generates the current in the external
loop. Two Helmoltz coils are set on either end of the cylindrical flow vessel; Bθ is measured in

the mid-plane by a Hall probe connected to a Bell gaussmeter. The measured value is fed into a
linear amplifier whose output drives a Kepco current source. In order to explore the role of the
turbulent fluctuations, the amplifier has separate channels for the DC and flcutuating parts of the
induction.

3. Experimental dynamo

The dynamo laboratory model 9 mimics an alpha-omega cycle where part of

the dynamo cycle is generated by an external feed-back but the flow turbulence is

still included and has a leading role. In order to achieve this in a simple laboratory

dynamo, we relax the requirement that the current path be fully homogeneous,

and we effectively prescribe an alpha mechanism by which a toroidal magnetic field
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generates an induced poloidal one. However, the omega poloidal to toroidal conver-

sion still results from a fully turbulent process. Our experimental fluid turbulent

dynamo is very much inspired by a variation of the solid rotor dynamo proposed

by Sir Edward Bullard in the early 20th century, and described in figure 1. Two

coaxial disks counter rotate at a rate Ω. When an axial magnetic field B0z is exter-

nally applied, the flow differential rotation induces a toroidal field Bθ, this is the

omega effect. The value of this field is then used to drive a linear current amplifier

in the loop that generates B0z. The poloidal to toroidal conversion is entirely due

to the fluid motion, and incorporates all turbulence effects. It has been extensively

studied in previous “open loop” experiments. When B0z is externally fixed, one has

Bθ = kRmB0z where Rm = R2Ω/λ is the magnetic Reynolds number (with λ the

magnetic diffusivity of liquid Gallium) and k is a “geometric” constant which in our

experiment has been measured of the order of 0.1. The toroidal to poloidal conver-

sion is then obtained by feeding the axial coils with an electrical current linearly

driven by a signal proportional B1θ, so that B0z = αGBθ which reinforces B0z with

G an adjustable gain. In such a closed loop setup, one then has Bz = αGkRmB0z,

and self-sustained dynamo is reached as Ω > Ωc = λ/GkR2. Clearly, the adjustable

gain of the linear amplifier allows to adjust the value of Ωc to an experimentally

accessible range. At this point it should be emphasized that although the feed-back

scheme is very similar for the Bullard rotor dynamo and for our fluid experiment,

the expected dynamics is much richer because of the strong fluctuations in the

turbulent flow, where Reynolds numbers in excess of 106 are reached. Indeed, the

von Kármán flow is known for its complex dynamics, presenting not only small

scale turbulent fluctuations but also large scale ones – for instance fluctuation up to

114% for the differenteial rotation effect has been reported). Compared to the 1963

pioneering experiment of Lowes and Wilkison with solid rotor motions, the study

here fully incorporates fluid turbulence and the associated fluctuations of magnetic

induction. The role of these fluctuations, inherent to large Reynolds number flows,

remains one of the mysterties of natural dynamos, and of noisy instabilities in a

braoder framework.

In this experiment the value of the magnetic field at saturation Bsat is fixed by

the maximum current that can be drawn from the power amplifier driving the coils.

We measure Bsat ∼ 30 G, a value such that the Lorentz forces cannot modify the

hydrodynamic flow –since it yields an interaction parameter of the order of 10−3.

The saturation of the instability is therefore driven by the amplifier non-linearities

rather than by the back-reaction of Lorentz forces on the dynamical velocity field.

As a consequence, the Bz component of the generated magnetic field saturates at the

same mean amplitude Bsat for all rotation rates (Bsat corresponds to the magnetic

field generated by the coils when the current source is saturated), the saturation

amplitude of the toroidal field Bθsat = kRmBsat linearly increases with Ω.

Another noteworthy observation is that the presence of turbulent fluctuations

plays a crucial role in the triggering of the magnetic field reversals. In the experimen-

tal results reported here, the current source is driven by an amplifier whose input
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is Bθ + g.b′θ, with Bθ the low pass DC component of Bθ and b′θ its AC fluctuating

part. This arrangement allows to study separately the role of slow variations and

turbulent fluctuations in the feed-back loop. In the results reported in this article,

we have set g = 1.18. A homopolar dynamo, i.e. without reversals, was obtained for

smaller values of g or when the b′θ input in the amplifier was replaced by a synthetic

gaussian white noise (even with a high amplitude).

We show here the results of the h-test obtained in a realization (serie27) with

Ω = 12 Hz, and cutoff frequency fc = 600 mHz. Similar resutls were observed

with different parameters, and this study is left for more extended work. Figure 4

shows the reversals surviving function in the case described here. The behaviour is

very similar to the paleomagnetic case, indicating again presence of clustering and

correlations, rather than a random behaviour. This indicates that the mechanism

responsible for the clustering is present in both dynamoes, suggesting some sort of

universality of the process.
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Fig. 4. Probability densities P (h) of the stochastic variable h and corresponding surviving func-
tions P (h ≥ H) for the experimental dataset described in the text. The theoretical probability
expected under a Poisson statistics is also shown.
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4. Conclusion

In this short paper, the statistical properties of persistence times between geomag-

netic reversals have been investigated. We performed a statistical test which showed

that geomagnetic reversals are produced by an underlying process that is far from

being locally Poissonian, as recently conjectured by 22. Thus, the sequence of geo-

magnetic reversals is characterized by time correlations. As spontaneous reversals

of the geodynamo field have been observed in high resolution numerical simulations
10,11, the main results contained in this paper seem to indicate that such rever-

sals could be related to the non-linear nature of the turbulent dynamo. In order

to confirm this conjecture, we performed the statistical test mentioned above on

recent results from laboratory dynamo. Our analysis has shown that the departure

from Poisson statistics found in the paleomagnetic data, related with the long range

correlations introduced by the chaotic dynamic of the system 19,20, are also present

in the laboratory dynamo. Such correlations can be associated with the presence of

some degree of memory in the underlying dynamo process 29,7 which gives rise to

clustering of reversals.
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