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The stability of elastic towers is studied through simple hands-on experiments. Using gelatin-

based stackable bricks, one can investigate the maximum height a simple structure can reach

before collapsing. We show through experiments and by using the classical linear elastic theory

that the main limitation to the height of such towers is the buckling of the elastic structures under

their own weight. Moreover, the design and architecture of the towers can be optimized to greatly

improve their resistance to self-buckling. To this aim, the maximum height of hollow and tapered

towers is investigated. The experimental and theoretical developments presented in this paper

can help students grasp the fundamental concepts in elasticity and mechanical stability. VC 2017
American Association of Physics Teachers.

https://doi.org/10.1119/1.5009667

I. INTRODUCTION

The stability of freestanding structures is of great impor-
tance in architecture and relies on simple physical princi-
ples.1–3 The main potential causes of collapse include
misalignments of the structure and failure of the building
material itself. However, when a tower is submitted to a
compressive normal force, it can undergo sudden lateral
deflections, a phenomenon known as buckling.4 In particular,
the weight of the structure leads to non-uniform normal loads
(more intense at the base of the tower than at its top), a phe-
nomenon that will be referred to as self-buckling in the
remainder of the text. In this article, we propose to study this
instability at the laboratory scale in simple, affordable,
hands-on experiments using gelatin-based materials. The
rigidity (or Young’s modulus) of the material can be easily
varied by changing the gelatin concentration and its conse-
quences on the maximum height of a tower prior to buckling
are spectacular. We show that the linear continuous theory of
elasticity allows for precise prediction of the maximum
height of long gelatin bars (of square or circular cross sec-
tion). We introduce a useful trick to repeat over and over the
experiments using individual gelatin-based stackable bricks
produced using a homemade silicone mold of classic Lego

VR

bricks, which allows them to firmly interlock as displayed in
Fig. 1. The usefulness of this method relies on the failure
mode of the tower when it exceeds the maximum stable
height (see the rightmost photograph of Fig. 1): while irre-
versible fractures appear within a solid block, individual
bricks simply detach in the brick tower (and may be used
again for further studies). Moreover, the versatility of the
gelatin bricks allows one to investigate the increase in stabil-
ity of smartly designed freestanding structures.

The experimental protocol described in this article provides
an interesting hands-on illustration of the theory of elasticity,
more specifically to the Euler-Bernoulli theory for beam
deflection,5–9 and to the phenomenon of buckling. The results
presented in this article may also be used as an illustration of
the importance of dimensional analysis.10–12 Moreover, we
show that the predicted frequency of free oscillations
(obtained through a hand-waving argument rather than a rigor-
ous and unnecessarily complex derivation) shows excellent
agreement with the experimental measurements.

The article is organized as follows. In Sec. II, the frame-
work of the linear theory of elasticity is reviewed, a dimen-
sional analysis of self-buckling is proposed, theoretical
predictions for the critical self-buckling height are derived,
and the frequency of oscillations of stable towers are theoret-
ically investigated. Section III presents experimental results
on the mechanical properties of the gelatin-based gels as
well as the maximum height of stable towers and the fre-
quency of free oscillations. Finally, the increase in stability
of hollow or tapered towers is discussed in Sec. IV.

II. THEORY OF SELF-BUCKLING FROM ELASTICA

This section reviews and derives theoretical predictions of
the critical self-buckling height and of the oscillation fre-
quency of elastic beams using a continuum approach. The
relevance of this approach is shown in Sec. III B: the critical
self-buckling height measured of long gelatin-based blocks
is identical to that of towers made from stacked bricks (and
having the same geometry).

A. Euler-Bernoulli beam theory

The bending and buckling of an elastic tower is well
described by the Euler-Bernoulli beam theory, which is a
simplification of the linear elasticity theory applied to the
case of small deflections.13 This theory postulates the exis-
tence of a neutral fiber (at the center of the beam), whose
length remains unchanged and which remains locally per-
pendicular to the cross section of a bent beam. The essential
result of this theory is that there exists a linear relation
between the bending moment M within the beam and its
local curvature j

M ¼ EIj; (1)

where E is the Young’s modulus and I ¼
Ð Ð

r2 dA is the sec-
ond moment of area, known as the area moment of inertia in
engineering (r being the distance to the neutral fiber and dA
the surface element in the cross section). In the case of a
rectangular beam14 of width w and depth d (where by con-
vention w< d), the neutral fiber is a central plane along the
beam and I¼w3d/12 and the surface area of the cross section
is A¼wd.
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B. Dimensional analysis

Let us first consider the case of a narrow strip of paper (or a
thin metal or plastic sheet) representing the beam and held
between two fingers at a 45� angle, as in Fig. 2(a). If the strip is
short enough (typically less than 2 cm) it will remain perfectly
straight while a longer strip (say, 20 cm) will be bent, perhaps
significantly, under its own weight. There is, therefore, a clear
competition between the flexural rigidity (EI) and the weight
(per unit length) qgA, where q is the density of the material and
g is the gravitational field strength, the ratio of which has the
dimensions of a length cubed. One can therefore define, from
dimensional considerations, a characteristic length

Lc ¼
EI

qgA

� �1=3

(2)

for this situation. For typical paper (w¼ 0.1 mm, q¼ 800 kg/m3,
E¼ 3 GPa), this equation gives Lc ’ 7 cm, which corresponds
well to the simple experiment described above. Therefore, Lc

can be viewed as a critical length above which an oblique beam
noticeably bends under its own weight.

C. Buckling and self-buckling

The case of a vertical beam is more subtle. If the elastic
tower is initially perfectly vertical (however tall), its own

weight exerts no moment and cannot cause the beam to bend
or buckle. However, a straight beam may become unstable to
lateral deflections above a critical load, known as Euler’s
critical load (in the case of a tower, corresponding to a criti-
cal height).4 Buckling is thus an instability with a well-
defined threshold (or bifurcation).

When the total load is located at the tip of a vertical tower
(therefore neglecting the weight of the tower itself), the criti-
cal load above which a tower will buckle when submitted to
any perturbation depends on the boundary conditions. For a
beam of height H clamped at its base and free at its top, the
critical load Fc is given by4

Fc ¼
p
2

� �2 EI

H2
: (3)

The case of self-buckling—where the load is uniformly
distributed along its height (and with no load at the top)—is
mathematically more complex but physically very similar to
Euler’s critical load, and was solved as early as the XVIIIth

century.15 The critical height in this case is given by16

Hc ¼
3j1=3

2

� �2
EI

qgA

" #1=3

’ 1:986
EI

qgA

� �1=3

; (4)

where j1=3 ’ 1.866 is the first zero of the Bessel function
J1=3(x). Below this height, when disturbed, a tower simply
oscillates around the stable vertical position, whereas above
this height any small perturbation will cause the structure to
fail. Note that the height Hc only differs from the one
obtained by dimensional analysis, Eq. (2), by a numerical
factor.

As a side note, from Eqs. (3) and (4) one can see that the
critical height of a tower whose load is uniformly distributed
is 3j1=3/p ’ 1.78 times that of the same beam if its entire
weight qgAHc were placed at the top.

D. Oscillations of a vertical beam clamped at its base

An elastic beam hanging from the ceiling is somewhat
reminiscent of a pendulum pushed back to the vertical posi-
tion by a linear spring; it can oscillate around its vertical
equilibrium position due to elasticity (with an angular fre-
quency xe, if the weight is neglected) and due to gravity
(with an angular frequency xg if the elasticity is neglected).
These two independent frequencies are given by14,17

x2
e ¼

b1

H

� �4
EI

qA
(5)

and

x2
g ¼

j0
2

� �2
g

H
(6)

where b1 ’ 1.875 is the first zero of the function 1þ
cosðxÞcoshðxÞ and j0 ’ 2.405 the first zero of the Bessel
function J0(x). In the case of the spring-pendulum, for small-
amplitude oscillations the system is linear and the resulting
angular frequency is simply given by x2 ¼ x2

e þ x2
g (since

forces are additive in Newton’s second law of motion). As a
crude first-order assumption, one can consider that the

Fig. 2. Schematics of elastic beams: (a) oblique beam bent under its own

weight, (b) buckled tip-loaded beam, and (c) clamped beam self-buckled

under its own weight. The first case causes a continuous deformation of the

beam while the two others display a well-defined threshold and lead to sud-

den large-amplitude deformations.

Fig. 1. Stability of gelatin-based Lego brick towers. Below a critical height

(10.5 6 0.5 cm for a gelatin concentration of 16%), when perturbed, a tower

will oscillate around its stable vertical equilibrium position (at the indicated

frequency). Above the critical height, any small-amplitude perturbation

causes the tower to collapse (right-most tower).
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previous linear calculation still holds for the hanging elastic
beam. In the case of a vibrating tower whose height is less
than the critical self-buckling height, the weight has a desta-
bilizing effect and the angular frequency of the small-
amplitude oscillations is now given by

x2 ¼ x2
e � x2

g: (7)

From Eqs. (5) and (6), the height of the tower when the fre-
quency vanishes (i.e., xe¼xg) is thus found to be

Hc ¼
2b2

1

j0

 !2

EI

qgA

2
4

3
5

1=3

’ 2:045
EI

qgA

� �1=3

: (8)

Although this equation is not strictly identical to Eq. (4), it is
still proportional to the characteristic length and differs only
by the numerical prefactor. Nevertheless, the numerical val-
ues of the two prefactors are very close (within 3%), which
indicates that the crude model proposed for the oscillation
frequency is relevant. As shown below, experimental meas-
urements of the frequency are discussed in Sec. III C and are
in good accordance with Eq. (8).

III. EXPERIMENTS USING GELATIN-BASED

TOWERS

A. Mechanical properties of the gelatin gel

The experimental investigation reported below was carried
out using blocks or bricks made of gelatin, an affordable and
safe visco-elastic material. Gelatin is a gelling agent made of
hydrolyzed collagen and obtained from skin, bones, and con-
nective tissues of pigs, chickens, cows, and fish.18 An elastic
gel is formed when dissolved in hot water and left to cool.
The mechanical properties of the gel depend on the gelatin
mass concentration C, on the preparation protocol (most
importantly on the duration and temperature at which the gel
sets), and on the initial gelation strength of the dry gelatin
(characterized by the standardized Bloom number test).19

The gelatin used in our experiments has a Bloom number
ranging from 200 to 225. The mechanical properties of gela-
tin gels are very sensitive to temperature changes; typically,
a variation of 2 �C in the ambient temperature can cause a
20% change in the Young’s modulus.20 When exposed to
air, gelatin samples quickly dry out and must therefore be
kept moist during experiments. Moreover, they may slowly
swell when stored in water over several days. All gelatin
blocks or bricks were produced using homemade molds and
were left to set in a refrigerator for 24 h prior to the experi-
ments (which were conducted at 20 �C). The density of the
gels (for concentrations up to 30%) does not significantly
differ from that of pure water. We note that agar-agar gels
set within minutes and represent a good alternative to
gelatin-based gels.

The Young’s modulus E of the gelatin gels and their com-
pressive strength rc (the pressure at which they fail, forming
irreversible fractures) were measured using an Anton Paar
AR1000 rheometer in which cylindrical samples (20 mm in
height and diameter) were tested. This device can simulta-
neously measure the applied normal force (with an accuracy
of 10�4 N) and the resulting deformation (with an accuracy
of less than 1 lm). The Young’s modulus is measured as the
initial slope of the stress-strain curve while the compressive

strength is computed from the maximum stress sustained
before the sample fractures.

Figure 3 shows the results as a function of the concentra-
tion at a temperature of 20 �C. The Young’s modulus ranges
from 0 for C ’ 3.5% (meaning that the solution is simply liq-
uid at low concentrations) to 75 kPa for C¼ 20%. Note that
the values of E and rc are of the same order of magnitude,
which indicates that the material can undergo very large
deformations (more than 50%) before failing.

We want to emphasize that the high precision of a com-
mercial rheometer is an unnecessary luxury since, as men-
tioned above, the mechanical properties of the gel are very
sensitive to the concentration, the preparation protocol, and
to small temperature variations. The measurements of E and
rc can be easily performed by compressing a sample directly
on a scale while the deformation is measured with a caliper.

B. Maximum height of simple towers before self-buckling

Before introducing the use of stackable bricks made of
gelatin, we first report the maximum height of a continuous
beam made of gelatin. Two blocks (16� 16 mm and
32� 32 mm) of concentration 14% were used and their
height prior to buckling is reported in Fig. 4 (open circles).
Clearly, these two points align well with the other data sets
obtained with stacked bricks. This confirms that the behavior
of towers made of individual bricks is identical (when it
comes to the critical self-buckling height) to that of solid
towers of gelatin gels, and it validates the continuum
approach used in Sec. II. Note, however, that for large defor-
mations (far above the critical height) the solid blocks may

Fig. 3. (a) Young’s modulus E and (b) compressive strength rc of gelatin

gels at 20 �C as a function of the mass concentration in gelatin. Both quanti-

ties display a linear dependence on the concentration, and vanish at

C¼ 3.5% 6 0.5%, indicating that below this critical concentration the

medium can be considered liquid. The solid lines are linear fits.
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experience irreparable fracturing whereas individual bricks
can simply separate and be reused.

The bricks were produced using a homemade silicone
mold of classic Lego

VR

bricks. We used bricks of width
w¼ 16 mm, depth d¼ 32 mm, and height 10 mm, showing 2
rows of 4 studs, henceforth referred to as 4� 2 bricks.
Cutting these bricks in half creates 4� 1 bricks while inter-
locking them will lead to wider towers. Individual bricks are
carefully stacked until the tower falls. Using this simple pro-
tocol, the maximum height Hmax is bounded between two
integer values (between 10 and 11 bricks in Fig. 1, i.e.,
10 cm<Hmax< 11 cm). Figure 4 shows the results obtained
for 4� 1, 4� 2, and 4� 4 towers, and for three concentra-
tions C¼ 8%, C¼ 12%, and C¼ 16%. The corresponding
maximum heights range from 4 to 16 cm. The experimental
measurements are plotted as a function of the theoretical pre-
dictions of Eq. (4), using the values of the Young’s modulus
of Fig. 3.

These results validate the continuous medium approach
used for the tower made from stacked bricks, indicating
again that a tower made of individual bricks will buckle at
the same height as a solid block of gel of identical cross
section.

Note, however, that if the cross section is large enough the
compressive strength may become the limiting factor.
Indeed, the maximum height before the bottom brick of the
tower fails is given by the hydrostatic pressure qgH¼rc.
Nevertheless, for a concentration of C¼ 8% the correspond-
ing height is as large as 90 cm, whereas it reaches 350 cm for
C¼ 20%. Let us also mention that for such tall towers, the
irregularities in the shape of the individual bricks can cause
the tower to simply tip over since its center of gravity might
not remain above its base.

C. Predicting self-buckling from stable structure
self-oscillations

The oscillatory motion of stable 4� 2 towers at a concen-
tration of C¼ 16% (as in Fig. 1) was studied using a video
camera (Ximea, xiQ MQ013MG-ON). The tower is given a
gentle push (less than a centimeter in distance) and its free
oscillations are recorded at 100 fps. The period is computed
from the average duration of the first 5 oscillations yielding

an estimated uncertainty of 0.1 Hz. Figure 5 presents the
results obtained for towers of height H ranging from 5 to
10 cm. The frequency is plotted as a function of H in panel
(a) and as a function of 1/H2 in panel (b) [since the frequency
of a beam whose weight is neglected scales as 1/H2, as indi-
cated in Eq. (5)].

On both panels, the gray line (red online) corresponds to
the simplified model presented in Sec. II D, which is seen to
match the experimental data quite well. Again, this indicates
that the limiting factor in the height of a tower originates
from a competition between its elasticity (a stabilizing
effect) and its own weight (a destabilizing effect).

Let us mention that the measurement of the frequency of
the free oscillations can also constitute a good tool to accu-
rately determine the critical self-buckling height.21 Stacking
up individual bricks until the tower buckles only leads to a
precision of one brick height (1 cm in our case) whereas the
frequency vs H might simply be interpolated as a straight
line (when vanishing to zero) whose intersection with the x-
axis gives a value of Hc with a typical accuracy of 1 mm.

IV. TOWARDS HIGHER TOWERS: THE

INFLUENCE OF DESIGN AND SHAPES

The shapes of most actual towers and sky-scrapers are not
simply rectangular. From the pyramids of Egypt in ancient
times to the more modern Eiffel tower and Burj Khalifa,
architects have always conceived of creative designs. The
choice of complex shapes is not entirely aesthetic (or finan-
cial) but is often governed by physical and engineering con-
siderations.1,22 Two major improvements can be made to
increase the critical self-buckling height of an elastic tower:

Fig. 4. Experimental vs theoretical critical self-buckling height Hc for tow-

ers of rectangular cross-sections, for various dimensions and gelatin concen-

trations. The solid black line has a slope of 1 and emphasizes the excellent

agreement between the experimental data and the theoretical predictions.

Fig. 5. Frequency f of the free oscillations of a tower (4� 2, C¼ 16%): (a)

as a function of its height H and (b) as a function of 1/H2. The solid curves

are the theoretical predictions from Eq. (7). The frequency vanishes to zero

as the height tends toward the critical self-buckling height. The good agree-

ment between experiment and theory validates the hypotheses made and

shows that self-buckling is indeed the main limitation to the height of gelatin

towers.
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the structure can be made hollow or tapered. In this section,
these two effects are studied through experiments and theo-
retical predictions. It should be noted, however, that although
a hollow structure (for example) can reach a greater self-
buckling height, its overall ability to support an additional
external weight could be less than the corresponding solid
tower. It is also worth mentioning that rather than buckling
under their own weight, the biggest challenges facing mod-
ern sky-scrapers include buckling and oscillating under
strong winds and resistance to earthquakes.23

A. Hollow towers

It is seen from Eq. (4) that increasing the second moment
of area I (while the mass per unit length is kept constant)
pushes back the self-buckling limitation. A simple experi-
ment can be made to demonstrate the increase in stability of
hollow towers. Using 4� 1 bricks, one can build a simple
4� 4 tower and a hollow 5� 5 tower that have the same
cross-sectional areas, i.e., the same amount of mass per layer
(see Fig. 6). The ratio of the second moment of area of the
two structures is therefore (54–34)44¼ 2.125, showing an
outstanding increase in the rigidity of the tower. The critical
height of the hollow tower is thus 2.131=3 ’ 1.29 times that
of the solid structure. The difference between the two is
clearly visible in Fig. 6, in which the ratio of the two heights
corresponds to the predicted value.

The stability of two types of hollow towers built using a
variety of concentrations was investigated. We constructed a
5� 5 hollow tower (as already mentioned and displayed in
Fig. 6) of width 4 cm and also a 9� 9 hollow tower (made of
4� 1 bricks, with a 7� 7 empty hole in the center) of width
7.2 cm (that reached 38 cm in height!). The results are sum-
marized in Table I and are in very good accordance with the
theoretical predictions.

Another interesting consequence of Eq. (4) is the compari-
son with a solid tower of identical width. If a linear fraction
/ (e.g., /¼ 3/5 for the hollow tower of Fig. 6) of a tower is
hollow so that its surface area scales as 1 – /2 and its second
moment of area as 1 – /4, then the corresponding maximum
height scales as (1þ/2)1=3, which ranges from 1 to 21=3

’ 1.260. It therefore appears that thinner walls allow for
taller structures. However, another limitation arises as the
walls thin down. For wide structures and thin walls, the walls
themselves may start to buckle under the weight of the struc-
ture. The determination of the optimal thickness of the wall
is a complex problem with no analytical solution.24–26

B. Tapered towers

The principle behind the increased rigidity of a tapered
tower might seem simple since most of its weight is located
at the bottom. Yet the rigidity of such a tower also decreases
as the structure tapers, so an exact calculation of the critical
self-buckling height Hc is necessary.27

Unfortunately, it can be difficult to build smooth tapered
towers using individual bricks. Therefore, in this section
experiments were conducted using solid wedges and pyramids
of gelatin gels, directly molded in homemade molds. The criti-
cal height for self-buckling is then measured when holding
carefully the base of the tapered structure using both hands,
which results is rather large uncertainties (typically 2 cm).

1. Wedges

For a wedge of half-angle a (see Fig. 7), the critical height
can be predicted by adapting the results derived in Ref. 16 to
wedges

Fig. 6. Picture of solid and hollow towers (built from 4� 1 bricks at

C¼ 10%) at their maximum height. The solid tower reaches 12.5 6 0.5 cm

while the hollow tower reaches 16.5 6 0.5 cm; this corresponds to the pre-

dicted increase of 29% for hollow towers of identical cross-sectional surface

areas A (the same mass per layer).

Table I. Critical self-buckling height (from experiments and theory) of hol-

low towers for various concentrations and widths. For comparison, the

height of solid towers having the same cross-sectional areas (mass per layer)

are also given. Values of Hc have an uncertainty of 60.5 cm.

Hollow
Solid

C (%) Overall size Hole size H exp
c ðcmÞ Hth

c ðcmÞ H exp
c ðcmÞ

10 5� 5 3� 3 16.5 16.1 12.5

30 5� 5 3� 3 25.5 25.3 20.5

30 9� 9 7� 7 38.0 36.5 25.5

Fig. 7. (a) Experimental maximum height of wedge-shaped tower vs the cor-

responding predicted critical height of rectangular tower of identical width

at their base. The dashed line shows the predicted proportionality (slope of

1.190), which nicely matches the data. As expected, wedges can be 19%

taller than rectangular towers before buckling. (b) Experimental maximum

height of pyramidal towers vs that of wedge-shaped tower of identical half-

angle. The dashed line shows the predicted proportionality (slope of 2.31),

in excellent agreement with the experimental data.
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Hwedge
c ¼ j22

6

E

qg
tan2a; (9)

where j2 ’ 5.136 is the first zero of the Bessel function J2(x).
The critical height can be rewritten as a function of the corre-
sponding width a ¼ 2Hwedge

c tan a at the base, giving

Hwedge
c ¼ j22

2

Ea2

12qg

 !1=3

: (10)

In comparison, for a simple rectangular tower of width a
[see Eq. (4)] the result is

Hrect:
c ¼

3j1=3

2

� �2
Ea2

12qg

" #1=3

: (11)

Equations (10) and (11) indicate that a wedge-shaped tapered

tower can be approximately ð2j22=9j21=3Þ
1=3 ’ 1:190 times as

tall as a rectangular tower of identical width at its base.
Figure 7(a) shows the experimental maximum height before

self-buckling for wedges of various half-angles and for vari-
ous concentrations. The experimental data are plotted as a
function of the corresponding theoretical value of Hrect:

c for
rectangular towers and the dashed-line has the predicted slope
of 1.190. The agreement between the experiments and the pre-
diction is very satisfactory, showing that wedge-shaped towers
are indeed ’19% taller than their rectangular counterparts.

2. Pyramids

The shape can be further improved by building a tower
that tapers down towards the tip in both directions, giving
the shape of a pyramid. For a square cross-section, the criti-
cal height of such a pyramid of half-angle a (between oppos-
ing faces of the pyramid) is given by16

Hpyramid
c ¼ j2

3

4

E

qg
tan2a; (12)

where j3 ’ 6.380 is the first zero of the Bessel function J3(x).
Note that in Ref. 16 the results are derived for towers of cir-
cular cross sections, but the results still apply to rectangular
cross sections, using the corresponding values of I and A.

For the same half-angle, the height of a pyramid can there-
fore be as much as 3j2

3=2j2
2 ’ 2:31 times that of a wedge-

shaped tower. The maximum height of pyramids and wedges
of identical half-angles were experimentally measured for
various values of a and various concentrations. Figure 7(b)
shows a comparison between the two shapes; the slope of the
dashed line is the predicted ratio. Note that while it is some-
what surprising that pyramids of a given half-angle can be
more than twice as tall as wedges with the same half-angle,
the difference in height is not quite so dramatic when the
comparison is made for equal base widths. In this situation, a
pyramid can be approximately 2.311=3 ’ 1.32 as tall as the
corresponding wedge-shaped tower of identical base width.

V. CONCLUSION

We have shown that the main limiting factor of the stabil-
ity of gelatin-based brick towers is buckling under their own
weight. The classical theory of elasticity provides a

continuum approach whose predictions (for critical height
and oscillation frequency of a stable tower) are in good
agreement with experimental measurements. Two improve-
ments that can help push the limits of self-buckling have
been demonstrated: structures can be made hollow or
tapered. Combining both techniques, we were able to build a
brick tower (pyramidal and hollow, 12� 12 at its base, with
C¼ 30%) as tall as 56 cm.

As an extension, the mechanical properties of the gels
could be investigated further. Indeed, gelatin-based gels are
not simply elastic but display a viscoelastic behavior (remi-
niscent of the properties of silly putty28). The storage modu-
lus (which characterizes the elasticity) is typically larger
than the loss modulus (which characterizes the viscous
behavior), but for low concentrations both quantities are of
the same order of magnitude.29 Although as a first-order
approximation the material can be considered purely elastic,
the bricks can undergo slow deformations when submitted to
a constant pressure (a phenomenon known as creep flow,30,31

typically occurring within a few minutes). These properties
can affect the stability of the brick-towers. Stacks whose
height is less than but close to the expected critical height for
self-buckling might be initially stable when built, but can
slowly become unstable and buckle within minutes.
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