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Abstract – When a hex nut or a ridged-edge coin placed inside an inflated rubber balloon is spun
vigorously, it emits a surprisingly loud and clear sound as the spinning object impacts the rubber
and triggers vibrations of the membrane, a phenomenon known as the screaming balloon. We
identify the mechanisms behind the acoustic emission and show that the fundamental frequency
of the sound is given solely by the rate of successive impacts of the spinning object onto the
membrane as it rolls without slipping. A counterintuitive observation is that the acoustic power
emitted by a given ridged-edge object remains independent of the size of the balloon (over a wide
range of volume) in which it spins. This experimental finding is explained by the influence of the
tension within the membrane on the acoustic intensity. Finally, we propose a scaling law for the
frequency dependence of the acoustic intensity and show that the sound level depends greatly on
the number of ridges on the edge of the spinning object.

Copyright c© EPLA, 2019

Introduction. – The physics of musical instruments
is a rich and fascinating subject involving complex and
highly coupled physical phenomena [1]. Linear theories
only constitute a first-order model [2] as a complete un-
derstanding of most instruments requires to include non-
linear effects (e.g., the interplay between stick-slip and
the natural modes of vibration of a bowed string [3,4],
the exact design of the bell of a trumpet [5], or the
equal temperament of a piano [6], the trapping of acous-
tic waves in musical saws due to the bending of the metal
strip [7,8]). Bidimensional geometries such as drums ex-
hibit sophisticated normal modes whose frequencies are
not commensurable (as in Chladni figures [9]), producing
a sound sometimes regarded as dissonant. However, by
locally adjusting the thickness (or the mass per unit sur-
face) of a membrane, one may turn tabla drums into har-
monic instruments [10]. In the singing wine glasses [11–13]
as well as in the Tibetan singing bowl [14], sound emis-
sion emerges from the coupling between the mechanical
resonances of tri-dimensional structures and fluid dynam-
ics. In all cases the frequency of the acoustic emission
is determined by the resonant eigenfrequencies of strings,
tubes, plates, or tri-dimensional structures —the sound
level being frequently amplified through a sound board,

a sound box or a bell. Sound emission could also origi-
nate from repetitive pulses on structures. Natural exam-
ples include stridulations [15] where sound is created by
insects rubbing their plectrum (or scraper) on the ridged
pars stridens, as heard for cicadas or crickets [16]. A sim-
ilar process is used for some percussion instruments, such
as the guiro or the washboard where sound is generated
by rubbing a stick (or nails) on a ridged wooden or metal-
lic surface [17]: periodic pulses thus excite the structure
and the periodicity is solely set by the velocity of the
stick (or of the hand). From the musical point of view,
the sound perception is related to the pitch. While for
resonant percussions the pitch is given by the resonance
features, it strongly depends upon the temporal proper-
ties of the impulses in the case of repetitive pulses [18].
In the case of periodic pulses at high audible frequen-
cies —typically above one hundred hertz— the pitch was
shown to be unambiguously determined by the period-
icity of the pulses [19,20]. In this article we investigate
the sound produced by a hex nut (or a ridged-edge coin)
spinning inside an inflated rubber balloon (see fig. 1 and
Supplementary Video ScreamingBalloon.mp4 (SV)).

On the high-speed video (parts 2 and 4), one can see the
edges of the nut protruding out of the balloon and setting
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Fig. 1: (a) Sketch of the phenomenon. (b) Traces left on a
transparent balloon by a M6 hex nut, showing successive im-
pacts of the edges on the membrane. (c) Image sequence from
a high-speed video showing the rolling-without-slipping motion
decomposed in time. The red and blue dashed lines indicate
the locations of two successive ridges impacts.

the membrane into motion. As is common for drum in-
struments, the entire membrane vibrates and the deforma-
tion is not limited to the vicinity of the nut. However, we
demonstrate here that the frequency of the sound emis-
sion follows the rate of successive impacts of the spinning
object on the membrane, contrary to the classical musi-
cal drums and similarly to the washboard or the guiro
precussions. This article is organized as follows. The
frequency spectrum of the sound is investigated and the
physical origin of the dominant frequency, of its overtones
and sub-harmonics is elucidated. The influence of the ten-
sion within the membrane on the sound intensity is exam-
ined and an energetic approach of the acoustic emission is
proposed.

Spectral properties of the sound emitted by the
screaming balloon. – In this paper, transparent latex
balloons (Transparent Size 9 latex balloons, Bishara) were
used as they allow one to visualize and track the motion of
the nut or coin. These balloons conveniently remain spher-
ical over a large range of volumes. In order to avoid con-
densation of water inside, the balloons were inflated with
dry compressed air. The microphone used for the inves-
tigation of the sound spectral characteristics (Microphone
of an Apple iPhone 5c) has a bandwidth corresponding
to the audible range (100 Hz–20 kHz) and acoustic signals
are aquired at 24 kHz. In order to track the motion of
the nut/coin, the balloons were filmed at 300 FPS (Ximea
xiQ model MQ013MG-ON) and high-speed videos were
recorded up to 10000 FPS (Phantom - v2511).

Fundamental frequency of the sound. Figure 2(a)
shows a typical spectrum of the sound emitted by a hex
nut (M5, steel). A clear dominant frequency f0 is vis-
ible (f0 � 1320 Hz in this case). Higher commensu-
rable harmonics, with decaying amplitude, are also clearly
visible and are due to the anharmonicity of the signal. In-
deed, the nature of the impacts is expected to create a
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Fig. 2: Fourier transform of a typical acoustic signal emitted
by a hex nut spinning in a balloon (a) entire frequency range;
(b) low frequencies. The insets show the data on a semi-log
scale.

non-sinusoidal waveform and their Fourier transform con-
tains multiple frequencies. The resonances observed in
fig. 2 are somewhat broad due to the strong dissipation
within the rubber balloon —a typical quality factor of 20
was measured and presented in fig. 2 of the Supplementary
Material Supplementarymaterial.pdf (SM). In order to
study the dependence of f0 on the relevant parameters, a
nut/coin is manually given a high initial spin. The bal-
loon is then firmly held from the top and the bottom as
the nut/coin rolls and gradually loses its kinetic energy
while emitting an acoustic wave (see SV, parts 1 and 5).
As a side note, the sound emitted while the balloon is held
down does not significantly differ from that of a free bal-
loon. No assumptions are made regarding the trajectory
of the nut/coin (elliptical, helical, horizontal) and its lin-
ear velocity, v, is computed from particle tracking (at 300
FPS). Measurements were performed for a variety of hex
nuts (M2 and M8) made of steel (density � 8) or nylon
(density � 1.24) as well as using several ridged-edge coins,
whose characteristics are given in table 1 of the SM. For
hex nuts, d is the length of one face (i.e., the distance
between two edges), while for coins, d is the distance be-
tween two consecutive ridges. The dominant frequency
was measured from the power spectrum with an accuracy
given by the width of the distribution, and the uncertain-
ties on the velocity v due to the particle tracking algorithm
were estimated to remain below 5%.

Figure 3 displays the dominant frequency, f0, as a func-
tion of the velocity-to-step ratio, v/d and shows that the
two quantities are identical within experimental uncertain-
ties. This holds for all nut/coin size, material, mass as
well as for any value of the volume (and hence overpres-
sure inside) of the balloon, and for frequencies ranging
from 100 Hz to almost 10 kHz. Unlike drum instruments
whose pitch depends on the tension in the membrane, the
pitch is clearly only determined by the linear velocity v of
the nut/coin along its trajectory, and by the step d of the
ridged exciter, regardless of any other quantity:

f0 =
v

d
. (1)

This demonstrates that the nut/coin undergoes a rolling-
without-slipping motion on the membrane (caused by the
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Fig. 3: Dominant frequency of the sound as a function of the
speed-to-step ratio (v/d) for a variety of hex nuts and ridged-
edge coins. The inset is a zoom of the same data set at lower
frequencies.

high friction coefficient of rubber [21]), as also clearly
shown in the time lapse sequence of fig. 1(c). Indeed,
between two consecutive impacts, the nut travels a dis-
tance d and the resulting frequency of impacts is given by
v/d. These results rule out the relevance of other phe-
nomena as a potential source of the emitted sound, such
as any acoustic or mechanical resonance within the bal-
loon (which can still exist, see fig. 1 of the SM, although
it does not set the frequency of the sound) or any hypo-
thetical stick-slip motion (as in bowed strings).

Similarly to the washboard or the guiro percussions, the
pitch depends linearly on the velocity v of the impacting
object (the stick for the percussions and the nut for the
screaming balloon) —there is however an extra degree of
freedom for the screaming balloon. While, for washboards
and guiros, the pitch of the sound is solely given by the ve-
locity of the stick impacting the ridged structure, of step d,
which radiates the sound, it is set here by the velocity and
the geometrical properties of the impacting solid (i.e., the
step d of the nut or the coin), independently of the balloon
which radiates the sound.

Sub-harmonics. A close examination of the frequency
spectrum reveals that it also contains lower harmonics (see
fig. 2). The frequency of the highest-amplitude lower har-
monic, fs is equal to one-sixth of the fundamental fre-
quency f0 (fs � 220 Hz in this case). The ratio f0/fs = 6
was confirmed using a M2 hex nut for various values of the
fundamental frequency, obtained for various velocities and
balloon sizes (see n = 6, orange points in fig. 4(a)). This
indicates again that the frequency content of the signal
depends solely on the step, d, and the velocity, v, and is
independent of the other specification of the nut (mass or
diameter) and balloon (Young’s modulus, thickness, di-
ameter, pressure). The ratio f0/fs = 6 for a hexagonal
nut indicates that the sub-harmonics are caused by small
asymmetries of the nut. Indeed, if one side of the nut is
heavier or lighter, or if an edge is sharper or smoother than
others, then the amplitude of the corresponding impact
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Fig. 4: Fundamental f0 vs. first sub-harmonic for a variety
of regular n-polygonal nuts, from squares (n = 4) to decagons
(n = 10). (a) f0 vs. fs showing a linear dependence of slope n
(dashed lines). (b) Frequency ratio f0/fs as a function of the
number of sides of the polygonal nuts.

would differ, superimposing a 6-times-smaller frequency
to the signal. Thus, the low-frequency content of the
spectrum does not result from non-linear sub-harmonics
generation.

The same procedure was repeated for 3D-printed polyg-
onal nuts, from squares (n = 4) to decagons (n = 10) (of
typical size 10 mm). The results are shown in fig. 4(a)
where the dashed lines correspond to f0 = nfs. The same
data is plotted in fig. 4(b) as the ratio fs/f0 vs. the num-
ber of sides of the polygonal nut n. Within experimental
uncertainties, the sub-harmonic is clearly given by f0/n.
It is also worth mentioning that sub-harmonics are also
visible in the Fourier spectrum of the sound produced by
coins (see fig. 7) but due to the larger number of ridges,
fs is considerably lower than f0 and for clarity, the data
is not shown in fig. 4.

Sound intensity. – We have shown that the funda-
mental frequency (along with the overtones and under-
tones) is given by the rate of collisions and does not
directly depend on the mass and material of the nut, or
on the exact properties of the balloon. However, these
physical quantities are expected to have a clear effect on
the sound intensity (i.e., level or power). More specifi-
cally, the tension T within the elastic membrane might
have a strong effect, as is the case in all string and drum
instruments [1].

The sound intensity was measured using a commercial
sound level meter (TES-1350A, TES Corp.) placed 1 m
away (horizontally) from a balloon in which a hex spins
around the equator. The sound level was recorded for sev-
eral balloon sizes (up to 44 cm in diameter, corresponding
to a volume of 45 L) for a M5 steel hex nut producing
an acoustic wave at f0 = 750 ± 50 Hz, leading to an un-
certainty of ±1 dB. The results are shown in fig. 5(c).
The sound level is indeed greater (and reaches 65 dB)
for large volumes but the data shows a counterintuitive
plateau for small volumes. For an extended range of radii
between 6 cm and 14 cm (see dashed lines), the acoustic
intensity remains constant (around 55 dB) although the
volume of the balloons increases by a factor 10 (from 0.9 L
to 11.5 L).
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Fig. 5: (a) Overpressure inside the balloon, (b) tension in the
membrane and (c) sound amplitude of the acoustic wave emit-
ted by a M5 nut at f0 � 750 Hz, as a function of balloon radius.

In order to elucidate the origin of this plateau, the over-
pressure, ΔP , in the balloon was measured using a U-tube
manometer (with an accuracy of 100 Pa) as its volume
was varied. Figure 5(a) shows ΔP as a function of the
balloon radius and three classical regimes [22–24] can be
observed: an initial sharp increase (radius ≥ 6 cm), fol-
lowed by a slow drop (between 6 cm and 14 cm), and fi-
nally a slow increase for larger volumes (radius ≥ 14 cm).
The intermediate regime is reminiscent of Young-Laplace
equations for bubbles and droplets governed by surface
tension [25]. For an elastic material however, there ex-
ist two limitations: at high deformations the elastomer
molecules are over-stretched and the material stiffens [26],
leading to an increase in ΔP , whereas at small deforma-
tions the material recoils to its original length with van-
ishing tension.

For a sphere of radius R, the mechanical equilibrium
imposes ΔP = 2T/R, where T is the tension within the
membrane. Note that this equation holds for any spherical
membrane and that no assumptions are made regarding T .
In particular, T is not a priori expected to be a constant
(as it would be for a gas/liquid interface) but in general, it
should depend on the radius of the sphere, since the elastic
material is stretched as the volume of the balloon varies.
The membrane tension is shown in fig. 5(b) which reveals
that T remains constant for 6 cm ≤ R ≤ 14 cm, which
precisely corresponds to the range of constant sound level.
Therefore, the plateau in the sound level can be attributed
to an unexpected regime in which the tension within the
membrane remains constant while the balloon is stretched
by a factor 3.

Conversion of kinetic to acoustic energy. – Evi-
dently, the membrane serves as an amplifier for the sound
but the acoustic energy primarily originates from the ki-
netic energy of the object spinning in the balloon. The
kinetic energy K (including the rotational energy) of a
ridged-edge solid of mass m, rolling without slipping at a
velocity v, and emitting a sound at a frequency f0 reads
K = 3/4mv2 = 3/4md2f2

0 . Every time a ridge impacts on
the membrane (at a rate f0), a fraction, α, of this kinetic
energy is converted into acoustic energy. The acoustic
power (or sound level), must therefore follow:

Pac = α × 3/4md2f3
0 (2)
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Fig. 6: Sound level (in dB at 1m, and in watts) as a function
of the fundamental frequency for a series of coin (a). The same
data rescaled as a function of 3

4md2f3
0 (b).

For the study of the frequency dependence, coins are
preferably used over hex nuts as they allow one to explore
a wider range of frequencies and emit a sound far above
the natural resonant modes of the balloon (see fig. 1 in
the SM). Indeed, for frequencies corresponding to the first
resonant modes of the balloon, the sound intensity can
typically increase by a factor 2. Note, however, that due
to the rapid frequency sweep (due to the velocity de-
crease) and oscillations (due to a non-perfectly horizon-
tal coin/nut trajectory) along with the quality factor of
the membrane (Q = 20, see SM), the eigenmodes of the
balloon are hardly excited. This justifies the assumption
that the conversion factor (or efficiency) α is taken to be
a constant. Again, in the low-frequency range (0–500 Hz),
this assumption might not hold as the eigenmodes might
resonate, but the experimental data shown in figs. 6 and 7
clearly show that for higher frequencies (> 500 Hz) the
fraction of kinetic energy converted to acoustics remains
constant. Figure 6 shows the acoustic power as a function
of the frequency on a log-log scale for a variety of coins.
The sound level in dB (recorded 1 m away from a balloon of
radius 10 cm) was converted into acoustic power (in watts)
assuming a spherical waveform (right y-axis). For clarity,
the experimental uncertainties are not shown but are of
the order of 1 dB. The first conclusion that can be drawn
from fig. 6(a) is that the predicted 3rd power law for the
frequency dependence is valid for all coins, and that, for
a given frequency, the sound intensity is higher for larger
d. Interestingly, all data sets collapse on a unique master
curve when plotted as a function of md2f3

0 in fig. 6(b) that
validates (2). This allows one to measure the energy ratio
α = (5.6 ± 0.5)·10−7. This very small value indicates that
only a slight fraction of the available energy is converted
into an acoustic emission at every impact.

It would be however more relevant to compare the
acoustic power to the loss of energy per impact (rather
than to the absolute value of the energy). Figure 7 shows
the spectrogram obtained with a coin, initially emitting
a sound at f0(t = 0) = 15 kHz (as a side note the over-
tones and sub-harmonics are clearly visible). As its initial
energy is slowly converted into acoustic energy as well as
dissipated in the membrane, its velocity decreases along
with the emitted frequency. Assuming that a fraction β of
the kinetic energy is dissipated at every impact, one can
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Fig. 7: Spectrogram of the sound emitted by a coin (1/2 Swiss
franc). Dashed line: theoretical prediction using eq. (3).

find the time dependence of the fundamental frequency
(see SM, part D):

f0(t) =
f0(t = 0)

1 + βtf0(t = 0)/2
. (3)

The red dashed line shows a fit (β = 14.2 · 10−6) of the
data using this prediction, and the very good agreement
justifies the assumption that the relative energy loss per
impact, β, is constant. This small value explains the long
duration of a typical run: it takes τ = 2/(βf0(t = 0)) �
9.25 s for the frequency to be halved (see SV, part 5).
The ratio α/β � 4% appears to be the relevant parame-
ter to characterize the efficiency of the energy conversion:
only 4% of the energy actually available is used to emit
sound while the rest is dissipated (in all likelihood in the
membrane). The high damping in the membrane is con-
sistent with the low quality factor of the free oscillations
of the balloons, Q � 20, (see fig. 2 in the SM), which
indicates that most of the energy dissipates within a few
vibrations. However, this seemingly low efficiency is in
reality rather high for a drum instrument or an electro-
acoustic loudspeaker [27].

Let us finally mention that the energy conversion of
hex nuts (whose edges are more prominent than coins) is
considerably higher, leading to a louder sound (typically
+30 dB at any given frequency), associated with a faster
decay rate (no more than a few seconds vs. a few minutes
for coins, see SV).

Conclusion. – We have shown that the fundamental
frequency of the screaming balloon is given solely by the
rate of successive impacts of the edges of a nut/coin rolling
without sliding on the membrane. The richness of the
spectrum is due to the anharmonicity of the signal (for
higher harmonics) and to irregularities in the shape of the
nut (for sub-harmonics). The tension within the mem-
brane was found to remain constant over a wide range of
radii, which explains the plateau in the acoustic intensity
of the sound when the volume of the balloon is increased.
Finally we showed that the acoustic power is directly re-
lated to the kinetic energy of the nut/coin.

One aspect of the sound would probably deserve fur-
ther investigation: as nuts/coins remain close in general to
the equator, the emitted sound might show a pronounced
anisotropy. Moreover, a detailed analysis of the effect
of the shape of the ridges on a coin (whether sharp or
smooth) could shed some light on the conversion ratio from
kinetic to acoustic energy. Furthermore, a study of the in-
terplay between the frequency imposed by the nut/coin
and the resonant modes of the balloon itself would prob-
ably be interesting. Finally, in our study, the nut/coin is
given an initial velocity by manually spinning or shaking
the balloon but mechanisms by which the nut/coin is set
into motion were not explored.
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