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A bidimensional array of magnets whose magnetic moments share the same vertical orientation, and
lying on a planar surface, can be gradually compacted. As the density reaches a threshold, the assembly
becomes unstable, and the magnets violently pop out of plane. In this Letter, we investigate experimentally
and theoretically the maximum packing fraction (or density) of a bidimensional planar assembly of
identical cylindrical magnets. We show that the instability can be attributed to local fluctuations of the
altitude of the magnets on the planar surface. The maximum density is theoretically predicted assuming
dipolar interactions between the magnets and is in excellent agreement with experimental results using a
variety of cylindrical magnets.
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The remarkable behavior of an assembly of magnets has
drawn interest for more than a century. Ewing proposed an
analog experiment with compass needles in a fixed 2D
array to study hysteresis cycles of the magnetic properties
of crystals as early as 1890 [1]. These experiments have
recently been revisited in order to study the thermodynam-
ics of dipolar lattices [2] or frustrated magnetic systems at
the macroscopic scale [3] or at the nanoscale [4–6].
Nonlinear waves encountered in solids, ionic crystals
[7], or plasma crystals [8] have also been widely studied
in analog experiments employing magnets free to move
along one direction, showing behaviors ranging from
dispersive waves [9] to moving breathers [10] or solitary
waves [11]. The behavior of turbulent dynamos have also
been reproduced using magnets assemblies [12], and the
spontaneous dynamics of unconstrained chains of magnets
have recently attracted attention [13–15].
In this Letter, we elucidate the physical mechanisms

limiting the maximum packing fraction of a planar
assembly of magnets whose magnetic moments are aligned
in the same (vertical) direction. This study was motivated
by the recently released game Magination [16] in which
magnets are placed one by one on a supporting surface,
and the resulting repulsive magnetic interactions cause the
system to self-organize (Fig. 1 and Supplemental Material
A [17]). As the density of magnets increases, the horizontal
forces acting between them increase, but the magnets
manage to stay in contact with the supporting surface.
However, when the density exceeds a critical value, the
assembly becomes unstable (see the videos in the
Supplemental Material [17] and Fig. 1). This Letter reports
experimental and theoretical findings on this threshold.
Two effects can trigger this sudden transition: a particu-

lar magnet has to be submitted to either a net vertical
magnetic force (which exceeds its weight) or to a horizontal
magnetic torque (which exceeds the moment of its own

weight). In an ideal situation where all magnets were
perfectly aligned on an ideal plane [Fig. 2(a)], the sym-
metry of the geometry would forbid any net vertical
magnetic force or any magnetic torque. However, any
fluctuation in either the altitude of the magnets or in the
nearly vertical orientation of their magnetic moments
[Fig. 2(b)] could trigger a transition. Both sources of
misalignment can be due to imperfections in the supporting
surface, the magnets themselves, or due to dust particles,
virtually invisible to the naked eye. In the remainder, the
effect of both the force and the torque are investigated
separately in order to elucidate if one prevails over the
other.
Here, we investigate these effects through experiments

performed using a variety of cylindrical magnets and derive
theoretical predictions, in the small-perturbation limit,
assuming a permanent dipole-dipole interaction between
the magnets.
Experimental details.—The magnets are placed on a

horizontal surface (a 5 mm thick PMMA plate), lubricated
using a dry powder lubricant which yields a friction
coefficient as low as 0.05 (20 μm glass beads, Potters
industries [18]) which allows them to easily rearrange as
the density is gradually increased. Experiments were
performed using flat cylindrical magnets whose aspect
ratio (height to diameter) ranges from 0.2 to 1. We used
grade Y35 ferrite (Fe) or grade N42 NdFeB alloys (Nd)
magnets [19], whose diameters range from 5 to 30 mm and
heights range from 3 to 10 mm. As a convention, a 10 mm
diameter and 3 mm high ferrite magnet will be labeled
Fe-10-3. Note that for the densities we have studied, the
magnetic field created by the nearest neighbors of a magnet
largely exceed the ambient field, which will therefore be
neglected in the remainder.
The orientations of the magnets’ magnetic moments μ

are to the first order identical and perpendicular to the plane

PHYSICAL REVIEW LETTERS 120, 264301 (2018)

0031-9007=18=120(26)=264301(5) 264301-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.120.264301&domain=pdf&date_stamp=2018-06-29
https://doi.org/10.1103/PhysRevLett.120.264301
https://doi.org/10.1103/PhysRevLett.120.264301
https://doi.org/10.1103/PhysRevLett.120.264301
https://doi.org/10.1103/PhysRevLett.120.264301


(see the study of their variability in Supplemental Material
B [17]), so that any two magnets exert a repulsive
horizontal force on one another. The magnets are circum-
scribed within a given surface by confining walls against
which the outermost magnets rest. The density of magnets
can be increased either by adding magnets to a system of
constant surface area or by bringing the bounding walls
closer.
In an inhomogeneous packing, when the density is high

enough, the net horizontal force exerted on one magnet can
exceed the friction forces and cause the magnet to move
towards a region of lower density. As the packing fraction is
gradually increased, the system therefore rearranges and
tends to be uniform. Note that in order to help this process,
the plane can be cautiously horizontally shaken. Figure 1
shows that the magnet coming out of the plane is sur-
rounded by six magnets in hexagon. We have verified (see
Supplemental Material A [17]) that the magnets are placed
on a hexagonal pattern [20] (except at the edges), and we
assume that this is the case later on.
Modeling.—As mentioned above, the physical origin of

the instability can be attributed to the existence of a net
vertical magnetic force [if the altitude of a magnet is

positive, Fig. 2(c)] or to a magnetic torque [if a magnet
is not ideally horizontal, Fig. 2(d)]. The stability of the
system is therefore the result of two competing effects:
the weight of the magnets (stabilizing) and the magnetic
efforts (destabilizing) caused by the surrounding magnetic
moments. Stability criteria are derived for magnets of mass
m and diameter d and where z is the altitude, in the case of
Fig. 2(c), and θ its inclination (due to surface profile or
inclination of magnetic moment from the ideal case), in the
case of Fig. 2(d), and g acceleration due to gravity. We
checked the validity of the dipolar approximation on the
spatial evolution of the magnetic fields as well as on the
interactions between magnets (see the Supplemental
Material C [17]). In order to conveniently compare the
competing effects of gravity and magnetism, a character-
istic length L0 is introduced:

L4
0 ≡ 3μ0μ

2

4πmg
; ð1Þ

where μ0 is the magnetic permeability of vacuum and μ is
the magnetic moment of the magnets. Note that not only is
L0 a simple way to normalize the distances but it also
provides a useful method for measuring the moment of a
magnet. A magnet is glued to a nearly vertical plane (its
moment being horizontal and perpendicular to the plane). A
second magnet resting on the same vertical plane (its
moment being aligned with the first one) is allowed to
slide along a vertical line above the first one. Here, L0 is the
equilibrium distance between the centers of the magnets for
which the magnetic force acting on the top one counter-
balances its weight mg. Thus, L0 is a length which
characterizes the competition between weight and magnetic
forces.
Six magnetic moments μ aligned along the vertical

direction located at the vertices of a planar hexagon of
sizeD (the smallest distance between lattice points) create a
vertical magnetic field at its center B ¼ 6μ0μ=ð4πD3Þuz.
The net vertical force acting on a magnet placed at the
center is given by μ∂zBz, while the torque it experiences is
given by μ × B. Assuming a dipole-dipole interaction, one
finds, in the limit of small altitude z (see calculations in
Supplemental Material C [17]):

t = -68 ms t = 0 ms t = 68 ms t = 136 ms t = 273 ms

10 mm

FIG. 1. Time sequence showing the dramatic out-of-plane burst of magnets assembly as the critical density is reached. The first magnet
bursting at t ¼ 0 is highlighted in red. Magnetic dipoles μ appear as blue arrows, while the forces from the first neighbors of the
hexagonal pattern are shown as orange arrows on the left.

FIG. 2. Schematics of an ideally planar system (a) and realistic
situation with slighted misaligned magnets (b). Model cases in
which (c) only the altitude z of the central magnet varies (creating
a net vertical force Fz) and (d) in which the central magnet is
inclined by θ (creating a torque τ).
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Fz ¼ 6 × 9
μ0μ

2

4π

z
D5

; τ ¼ 6
μ0μ

2

4πD3
sin θ: ð2Þ

These conservative forces derive from potential energies, to
which the gravitational potential energy can be compared:
Ug ¼ mgz for the force, and Ug ¼ 1

2
mgd sin θ for the

torque. Figure 3 sketches the corresponding energy land-
scapes for positive values. Both profiles show an energy
well for low altitudes and inclinations. As a side note, one
can realize that in this athermal system (the thermal energy
kBT being exceedingly negligible), a stable configuration
cannot overcome (for which one magnet would jump out of
plane) the energy barriers. There is, however, a critical
altitude zc and inclination θc above which the system
becomes unstable. In the following, we examine which of
the two effects is dominant.
The central magnet is unstable if the net magnetic force

exceeds its weight (for critical altitude zc) or if the torque
exceeds that of its weight (for a critical inclination θc):

zc
L0

¼ 1

18

D5

L5
0

; tan θc ¼
dD3

4L4
0

: ð3Þ

Experimental validation.—The maximum packing frac-
tion was measured experimentally using two methods for
Fe-10-3. In the first one, a magnet rests on the supporting
surface, while six surrounding magnets are held at the
vertices of a virtual hexagon using individual supports and
are gradually brought closer. In this case, there is no need
for a dry lubricant. The maximum density (or smallest
distanceD) is measured when the central magnet jumps out
of the plane.
In the second method, six magnets are glued on the

supporting surface (a 5 mm thick PMMA plate) and form a
hexagon, which imposes a fixed density. A free magnet is
placed at the center as the plate itself rests on a thick steel
plane which holds the central magnet down and prevents it
from jumping out of plane (again without dry lubricant).
The metal plate is slowly lowered, and the packing is

considered to be stable if the central magnet remains on the
surface during the process. The first method is clearly easier
to implement but was thought to be less accurate since the
central magnet tends to move sideways during the com-
paction process. However, the maximum density measured
from the two methods are identical (with uncertainties of
less than 1 mm on the smallest distance D). For practical
reasons, a simplified protocol, in which only three sur-
rounding magnets (at the vertices of an equilateral triangle)
are gradually brought closer, was used for the other set of
magnets. Note that in this case the numerical prefactors in
(3) need to multiplied by 2. Table I summarizes the
experimental results for L0 and D in the case of triangle
configuration and the corresponding values of zc and θc
computed using (3) (with numerical prefactors multiplied
by 2).
The direct interpretation of Table I is not straightforward,

though the critical inclinations for ferrite magnets are rather
high; indeed, a 5.7° inclination of a 15 mm in diameter
magnet would require one side to be 1.5 mm higher than the
other. Such a tilt angle would be very obvious to the naked
eye and clearly unrealistic for magnets resting on a PMMA
plane. Note that the fluctuations of the orientation of the
magnetic moment with respect to the body of the magnets
remain below 0.6° (as shown in Supplemental Material B
[17]), which is considerably smaller than the θc values
reported in Table I. Our experimental results may be recast
assuming typical values for the surface flatness and
inclination. The typical elevation is linked to the surface
flatness of a standard PMMA plate, much larger than the
typical 0.1 mm surface flatness of a research-grade optical
table [21]. However, in addition to the impurities present on
the surface, fine particles of metal often remain stuck to
magnets, and we estimate the typical elevation as being
1 mm. Thus, we estimate the altitude differences between
100 microns and 1 mm, which are much larger than the
typical size of the dry lubricant powder. As for the angle,
we hypothesize that it is only due to the topography of the
surface. Thus, the extreme angles are calculated simply by

0 0

(a) (b)

FIG. 3. Energy landscapes. (a) Corresponds to situations with
θ ¼ 0 and only the potential of vertical magnetic force and (b) to
situations with z ¼ 0 with only the potential of magnetic torque.
The red lines are the sum of gravitational and magnetic potential
energies.

TABLE I. Minimum distance D, characteristic distance L0,
corresponding critical altitude zc, and inclination θc for a variety
of magnets. Incertitudes for zc and θc come from measurements
of D and L0 not shown in the table.

Type D (mm) L0 (mm) zc (mm) θc (deg)

Fe-5-5 14.4 17 0.67� 0.15 4.6� 0.6
Fe-10-3 17.1 21 0.84� 0.24 7.4� 1.2
Fe-15-3 20.8 28 0.59� 0.07 5.7� 0.4
Fe-25-10 31.7 45 0.73� 0.21 5.0� 0.8
Nd-10-3 23.1 32 0.50� 0.13 2.7� 0.4
Nd-10-5 23.8 37 0.34� 0.14 1.7� 0.4
Nd-20-10 38.7 63 0.46� 0.13 1.7� 0.3
Nd-30-6 47.9 78 0.45� 0.35 1.9� 0.8
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making the ratio between the previous heights and the
diameter of the magnet. From these extrema, the corre-
sponding distances D (i.e., the maximum density) may be
computed from (3) for the various values of L0. Figure 4(a)
shows the experimental data of the popup distanceD (black
dots), along with the predicted values of D due to vertical
force (left, blue) and torque (right, yellow). It can be seen
that all experimental points are within the ranges of
theoretically predicted distances for force or torque or
both. For some magnets (Nd-30-6, Fe-25-10, Fe-15-3,
Fe-10-3), we can state that the vertical force is responsible
for the jump of the magnet. For all other magnets used, it is
impossible to identify whether only the force or torque is
responsible for the take-off of the magnet: both effects must
be taken into account. Intuitively, the narrower and higher
the magnet is, the more likely it will tip over and not take
off with vertical force. The length L0 and therefore the
magnetic moment of the magnet μ has a great importance in
the problem. We present only results for magnets with an
aspect ratio lower than 1. Indeed, for magnets with an
aspect ratio larger than 1, the assembly is highly unstable.
Note that the demagnetization of the magnets is a second-
order effect as discussed in Supplemental Material D [17].
In order to visualize more clearly the limits for surface

defects, Fig. 4(b) shows the minimum popup distance for
vertical force as a function of the length L0 characterizing
the magnet. We see, as shown in Fig. 4(a) that all
experimental points lie between the two critical height
limits zc ¼ 100 μm or 1 mm. This graph makes it possible
to draw two conclusions: it is not necessary to take the
torque into account (with the magnets used here) to explain
the take-off of the magnet, but the values in Fig. 4(a) seem
to affirm that both effects are important in some cases. In
addition, all experimental points are closer to the 1 mm
limit than the 100 micron limit. This may have two
explanations: either our surfaces are not smooth enough
and clean enough to reach 100 microns of defect size,

or the two effects (strength and torque) complement each
other to further destabilize the system.
Applicability to the initial protocol.—It should be noted

that the data presented in Table I and Fig. 4 were obtained
with a single free magnet at the center of a ring of fixed
magnets. In the case of a large array (as Fig. 1), not all
magnets can statistically stay at the lower limit. Instead, as
the number of magnets increases, it becomes more and
more probable than one reaching the upper limit. The
system being as unstable as its weakest link (the most
unstable magnet), the maximum density of a large
assembly can therefore be determined using the upper
limit (zc ≃ 1 mm). Note also that (3) was derived by taking
into account only the six closest neighboring magnets.
However, with the rapid decrease of the magnetic field with
distance, this provides an excellent first order approxima-
tion. A complete numerical computation indeed shows that
taking an infinite number of magnets into account would
only reduce the critical distance D by less than 3%.
For the Fe-10-3 magnets shown in Fig. 1, the predicted

value of the critical distance is D ¼ 17.2 mm, which cor-
responds to a density of n¼ 2=ð ffiffiffi

3
p

D2Þ≃39magnets=dm2.
However, using the compaction protocol presented in
Fig. 1, the maximum density reached before the system
blasts never exceeds 16 magnets=dm2 (D ¼ 27 mm), less
than half of the predicted value. The protocol used can
explain this discrepancy.
It is indeed virtually impossible for the system to

homogeneously rearrange as the density is gradually
increased. Even if all four confining walls were simulta-
neously and steadily brought closer, the density would
always be greater near the edges. When one wall is moved,
compaction (i.e., density) waves propagate throughout in
the system, creating strong local fluctuations in the density.
Moreover, the system can be trapped in a frustrated state,
from which an increase in density would require global
rearrangements rather than local adjustments.
The maximum density may also be measured using a

protocol similar to the second method presented above. The
outermost magnets of a hexagonal pattern (of predefined
density) are glued to the PMMA plate so as to form a rigid
confining boundary. A test magnet is then set at the center
of the pattern as the plate rests on a steel plane, and the
stability of the pattern is probed when lifting the PMMA
plate away from the steel plane. Note that a compromise
has to be found since thin PMMA plates can easily bend (as
it is lifted from the metal plate), while thicker plates would
reduce the attractive force exerted by the steel on the
magnets. We were able to produce stable arrays of 61
Fe-10-3 magnets (i.e., a hexagonal patter of 9 units
diameter) with a lattice D ¼ 19 mm, while arrays of pitch
D ¼ 17 mm and D ¼ 18 mm never managed to remain
stable upon removal of the metal plate. This second
protocol therefore allows one to achieve densities that
are very close to the theoretical prediction (D ¼ 17.2 mm).

FIG. 4. Popup distance measured experimentally and predicted
range{ see (3) with zc ¼ ½0.1 − 1� mm}. (a) Minimum distanceD
for a variety of magnets. Lines: for vertical force (left, blue) and
torque (right, yellow) Black points: experimental values. (b) Same
experimental points plotted as function of distance L0. Limits are
only for vertical force.
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Conclusion.—The physical mechanisms which limit the
maximum density of an array of identical magnets were
elucidated. Our experimental results and theoretical pre-
dictions (based on dipolar interactions) indicate that the
critical density above which the system becomes unstable
results from a competition between the magnetic forces and
torques on the one hand (due to irregularities of the surface
and/or the magnets themselves) and gravity on the other
hand, the ratio of these effects being characterized by the
length L0. While the predicted maximum density can be
difficult to reach by individually adding magnets in a given
perimeter or by gradually compressing an array, we
propose a protocol in which the density is set to a chosen
value while the magnets are held down onto the plane. By
gradually relieving this constraint, one is able to obtain
stable assemblies of magnets with a density very close to
the theoretical limit.
Our experiments and theoretical predictions were per-

formed for a hexagonal pattern of magnets (the natural
configuration), but it would certainly be interesting to study
the effect of defects in the crystalline order or to extend our
work to other crystalline arrangements, disordered struc-
tures, or polydisperse assemblies of magnets. Moreover,
our stability analysis shows that the overall stability of the
system is determined by that of its most unstable magnet (or
weakest link), but the collective dynamics of the collapse of
the entire array once a single magnet has popped out of
plane seems to be very rich and should deserve further
investigation.
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