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The shape of closed strings and chains propelled at a constant velocity and launched at an angle relative
to gravity is studied experimentally, theoretically, and numerically. At low velocity, strings adopt a shape
close to the well-known catenary, while at high velocity, they can rise to a nearly horizontal profile.
We show that the latter regime can be counterintuitively attributed to aerodynamic effects, although the
ambient air exerts no lift on a string moving longitudinally along its profile. A theoretical approach along
with numerical simulations confirms these observations and allows one to predict the shape of any closed
string or chain. Moreover, depending of the regime, waves rising from any local perturbation along the
string may travel either upstream or downstream and seem to die out at the turning point. We show that
these observations can be explained by the tension profile along the string, which strongly depends on the
aerodynamic effects relative to the weight, and our theoretical analysis allows us to predict the position
of the wave front.
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Introduction.—Despite their apparent simplicity, ropes
and chains are well-known to display intriguing phenom-
ena due, among other things, to self-interactions or inter-
actions with solid boundaries and surrounding fluids. Sur-
prisingly, chains pulled from a horizontal plane [1] or out of
a container [2–6] can form spectacular self-supporting
vertical arches. Besides these striking phenomena, under-
standing the dynamical weight of falling chains in simple
configurations—chains falling from a smooth surface [7–9]
or from an initial U-folded arrangement [10]—have long
attracted much attention [11,12]. In textile manufacturing
(a major industrial application), a variety of whirling modes
is observed in rotating spindles [13]. Several modern
applications rely on the dynamics of long and slender
objects dragged in fluid environments, such as sonar
sensors towed at the end of a long cable attached to
a ship [14,15], or aerial systems towed by aircrafts for
payload delivery [16], refueling, or atmospheric research
[17]. In these situations, the steady-state profile and the
temporal dynamics of the cables depend on the hydro-
dynamic forces, the tension of the cable, the gravity, and
the flexural rigidity [14,15,18,19]. In this Letter, we
investigate the steady-state shape and the wave propagation
of disturbances of closed inextensible strings propelled at a
constant velocity at an arbitrary angle with gravity.
Elongated structures in the propelling direction may then
be observed above a critical velocity. Observations from
various experimental setups are presented and compared to
theoretical predictions, showing a counterintuitive result:
the string lifts when air friction exceeds the weight.
The respective influence of the weight and the drag on
the overall profile is then analyzed using numerical
simulations. Finally, the propagation of disturbances

along the string are studied in the two limit cases,
respectively, dominated by the weight or by the drag force.
Understanding the evolution of the tension of the string
along the profile allows us to explain why traveling waves
can travel either upstream or downstream and to elucidate
why they die out at the turning point.
System description.—The shape of closed strings or

chains propelled at a high velocity v at an arbitrary angle
with the horizontal αð0Þ is investigated first. A typical
experimental arrangement is shown in Fig. 1: a string
(or a chain) is guided between two vertical wheels spinning
against one another (see Supplemental Material, Video part
I [20]). Further technical details are given in Supplemental
Material I [20].
Since the propelling wheels are in the vertical ðx; yÞ

plane, the string remains in this plane. Therefore, math-
ematically, the shape can be described by the local angle α
with respect to the horizontal, seen as a function of the
curvilinear coordinate s, measured from the propelling
point A at which the string leaves the wheels, to point B at
which it comes in contact with the bottom wheel or with
the guiding system as Fig. 1, i.e., from 0 to the length L.

FIG. 1. A light closed 2 m long string is propelled by two
rotating wheels towards the right, at angle αð0Þ ¼ 27° relative to
the horizontal and velocity v ¼ 9.5 ms−1.
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The point at which the string turns around (i.e., for which
α ¼ −π=2), notedO, delimits the outbound branch (i.e., the
AO section) and the inbound branch (OB). Experimentally,
the knot made to close the string may trigger waves in the
string (mostly on the inbound branch) as can be seen in
the Supplemental Material Video [20] and Fig. 2. For a
seamless loop, however, these instabilities disappear.
Governing equations.—The strings and chains used

cannot be elongated, and as a consequence, the linear
velocity, v, remains uniform (although it obviously changes
direction) along the length of the string L. The flexural
rigidity and the internal dissipation of the cotton strings and
beaded chains used in our experiment can be neglected
(except in the case of high curvature, see Supplemental
Material [20] and Fig. 3). Two external forces act on the
string: (i) its own weight per unit length λg—λ being the
linear mass—and (ii) air drag (along the flow) per unit length
f d. Let us emphasize, again, that, due to the symmetry of a
string moving along its tangent, the aerodynamical effects
reduce to a drag forcewithout any lift. Introducing the tension
TðsÞ within the string, the equations of motion read
(projected on the horizontal, x, and vertical, y, coordinates)
[15,21]

dðT cos αÞ ¼ −λv2 sin αdαþ fd cos αds;

dðT sin αÞ − λgds ¼ λv2 cosαdαþ fd sin αds:

Introducing an effective tension Teff ¼ T − λv2, and a
kinetic tension Tk ¼ λv2, these equations can be rewritten
in dimensionless form as

dðT̃ cos αÞ=ds̃ ¼ D cos α; ð1aÞ

dðT̃ sin αÞ=ds̃ ¼ W þD sin α; ð1bÞ
where T̃ ¼ Teff=Tk is the effective dimensionless tension,
s̃¼s=L the dimensionless curvilinear coordinate,W¼gL=v2

the dimensionless weight of the string (reminiscent of
a Froude number [22]) and D ¼ fdL=ðλv2Þ the dimension-
less drag. Projecting Eq. (1) on the Frenet-Serret frame
indicates that T̃ vanishes when the string becomes vertical
(α ¼ �π=2), showing that, at the turning pointO, the tension
is set by the kinetic tension Tk.
Competition between weight and drag.—First, let us

focus on the regime in which the weight dominates over the
drag. Figure 2(a) shows the steady-state shape of a heavy
chain rotating at various velocities (v ¼ ½0–15� m s−1): the
profile is nearly independent of the velocity and very
similar to the catenary obtained for a motionless chain.
This result can be readily understood when neglecting drag
in Eq. (1), resulting in a set of equations identical to that
describing the classical hanging chain at rest, whose unique
solution is the well-known catenary [7,23]. Therefore, the
actual tension, TðsÞ, is given by that of a catenary, shifted
by the additional uniform kinetic tension Tk, and the shape
is not affected by inertial effects.
Figure 2(b) shows the steady profiles obtained with a light

cotton string for various velocities (at a given propelling
angle αð0Þ ¼ 0): the shape significantly widens and rises for
large velocities. In order to confirm the strong effect of
aerodynamics on the shape of a propelled string, experiments
were conducted in a vacuum chamber [see Fig. 2(c)]. As the
pressure decreases (while the velocity and propelling angle
remain unchanged), the initial nearly horizontal profile
gradually turns into a hanging catenary, which again
clearly demonstrates the predominant effect of air drag in
the phenomenon.
Equation (1) can be numerically integrated using a

simple Euler scheme and a piecewise method to avoid
the singularity at the turning point (α ¼ −π=2 and T̃ ¼ 0).
Figure 3 compares this analytical solution to the exper-
imental profile shown in Fig. 1, using D=W as a fitting
parameter (D=W ¼ 2.4� 0.05). The excellent agreement
shows that Eq. (1) captures the physical ingredients to

(a) (b) (c)

FIG. 2. Steady-state shapes of a 2 m long (a) heavy beaded chain and (b) light string for increasing velocities. (c) Propelled string
(35-cm long) in a vacuum for constant velocity and propelling angle [αð0Þ ¼ 0] for various pressures.

(a)
(b)

FIG. 3. (a) Comparison between the experimental, analytical,
and numerical profiles, (b) values of D=W for the best analytical
fit to experimental profiles as a function of v2.
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account for the shape of propelled strings. The best
analytical fits to a series of experimental profiles with
increasing propelling velocity v [Fig. 3(b)] demonstrates
the quadratic dependence ofD as a function of v, consistent
with the typical Reynolds number Re for a 1 mm string
moving at v ¼ 10 ms−1 in air (Re ∼ 1000). Therefore,
the drag force per unit length may be expressed as [24]
fd ¼ 1

2
ρCdπRv2, where ρ is the density of air,Cd is the drag

coefficient, andR is the radius of the string. Figure 3(b) gives
a direct measurement of Cd ¼ 0.17� 0.01.
Numerical simulations.—In order to further investigate

the phenomenon, time-resolved numerical simulations
were performed (see Supplemental Material Video [20]).
They implement a series of 1000 point masses, individually
submitted to gravity and drag forces fd ¼ 1

2
ρCdπRv2, and

connected to their two closest neighbors by springs (stiff
enough to avoid elongation of the string). The simulations
are time driven and Newton’s equations of motion are
simultaneously integrated for each individual mass point
using a Verlet algorithm. The normal forces between the
masses and the wheels are computed using the same
stiffness as that of the interparticle springs, and the frictional
tangential forces are computed using the regularized
Amontons-Coulomb law of solid friction [25]. Setting
D=W ¼ 2.4, the steady state profile numerically obtained
perfectly matches the experimental and analytical shapes,
as shown in Fig. 3(a), which validates the numerical
model. In this Letter, the analysis of the time-resolved
numerical simulations is restricted to the steady-state pro-
files, allowing us to compute physical parameters, such as
moments of the various forces. Nevertheless, the simulations
allow the study of propagation of traveling waves or of
the transient dynamic (see Supplemental Material Video
part II [20]).
The steady shapes obtained numerically are shown in

Fig. 4(a) for various values of D=W for a horizontal
propelling angle. The shape becomes increasingly horizon-
tal as the ratio D=W increases, which captures the behavior
observed when the pressure or the velocity are increased.
Figure 4(b) displays the shapes obtained for various pro-
pelling angles (for a given velocity) in the regime where the

drag force dominates (D=W ¼ 2): the string widens when
approaching a horizontal position, whereas it narrows down
as it reaches a vertical position (either pointing up or down).
These observations raise the question of what mechanically
causes the string to rise from the vertical hanging catenary as
D=W increases. First, let us note that not only is there no lift
acting on any segment of a string, but the sum of all drag
forces along the entire string is zero (causing, however,
energy dissipation, compensated by the power delivered
by the motors). The explanation lies in the moment of the
local drag forces. As the string rises, the moment of the
weight increases (reaching its maximum as the string
reaches the horizontal axis). Simultaneously, the moment
of the drag force increases as the shape widens, to the point
where it can balance out the moment of the weight. This is
confirmed by direct computation of both moments, which
shows an exact correspondence (see Supplemental Material
[20] and Fig. 1). The transition between the weight-
dominated hanging regime and the drag-dominated regime
is rather sharp and typically occurs for 1 < D=W < 5 (see
Supplemental Material [20] and Fig. 2).
Tension along the string.—For D=W ≪ 1, the catenary

can be approximated by two nearly vertical sections con-
nected by a sharp turn [see Fig. 5(a)]. Equation 1(b) shows
that the tension within a string moving at a velocity v
increases from the turning pointO (at which it is equal to the
kinetic tension Tk) as the altitude y increases. Therefore,
along the string (i.e., with increasing curvilinear coordinate
s), the tension initially decreases along the outbound branch,
before increasing along the inbound branch [see Fig. 5(a-ii)].
On the other hand, forD=W ≫ 1, the tension increases with
increasing s, both along the outbound and inbound branches
since the air drag is everywhere directed against the velocity
[Fig. 5(b-ii)]. The difference in tension, due to passing
through the wheels (from B to A), corresponds to the
mechanical work provided by the motors to compensate
the energy dissipation due to the drag forces. Note, also, that
the tension at point A is given by Tk − Lfd=2 and can
mathematically become negative if the string is too long.
Physically, the string would then be under compression

FIG. 4. (a) Evolution of the steady-state string profile as a
function of D=W for αð0Þ ¼ 0 and (b) for various propelling
angles (for D=W ¼ 2).

(a)

(b)

FIG. 5. Tension and wave celerity within chains and strings in
(a) the weight-dominated regime and (b) the drag-dominated
regime.
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rather than tension, causing it to buckle. This sets a minimal
length-dependent velocity which ensures that the string
remains under tension. This also indicates that below the
critical buckling length, the profile surprisingly does not
depend on the string length.
Traveling waves.—One of the most interesting features

of moving chains and strings is the way traveling waves
propagate in response to an initial perturbation (see Fig. 6
and Supplemental Material Video parts III and IV [20]).
A local transverse perturbation on a motionless chain (or
string) under tension TðsÞ created two waves, traveling in
opposite directions at a celerity c ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TðsÞ=λp

, to first
order (see Supplemental Material II [20]). In a moving
medium, the celerity of the waves combines with the speed
v: in the frame of reference of the lab, one wave travels
at cfast ¼ vþ c while the other travels at cslow ¼ v − c.
When the tension remains close to the kinetic tension,
at first order, the celerity c is close to the velocity v, see
Fig. 5(a-iii) and 5(b-iii). As a consequence, the apparent
velocity cslow is considerably smaller than v, corresponding
to waves moving slowly in the frame of reference of the lab.
In our experiments, any local perturbation will, therefore,
create both a slow wave and a fast wave which quickly
reflects on the propelling wheels (at point B) where it turns
into an upstream slow wave along the inbound branch. This
explains the existence of two slow waves, as observed in
the Supplemental Material Video [20] and in Fig. 6. Note
that the fast wave propagation before reflection at point B
explains the time lag between the two slow waves.

A series of snapshots of waves propagating on a heavy
vertical beaded-chain (D=W ≪ 1) are shown in Fig. 6(a)
rotating at v ¼ 14.6 ms−1. An initial perturbation (near the
turning point O) creates two slow waves: one traveling
upward along the outbound branch (from O to A, yellow
dashed line), and one propagating downward (from B to O,
green dashed line) after reflection of the fastwave. Therefore,
both slow waves travel upstream, i.e., against the velocity.
Indeed, in this weight-dominated regime (D=W ≪ 1),
T > Tk and the apparent celerity, cslow is always negative
[Figs. 5(a-ii) and 5(a-iii)]. A similar series of snapshots is
displayed in Fig. 6(b) for a nearly horizontal light propelled
string (D=W ≫ 1) rotating at v ¼ 14.6 ms−1. An initial
transverse perturbation (near the beginning of the outbound
branch, A) also creates two slow waves both traveling
towards the turning point O: one wave travels downstream
along the outbound branch (from A to O, blue dashed line)
whereas thewave born from the fast-wave reflection at point
B travels upstream along the inbound branch (from B to O,
red dashed line). In this drag-dominated regime (D=W ≪ 1),
the tension is greater than Tk only on the inbound branch
leading to a negative apparent celerity cslow, while cslow is
positive on the outbound branch [Figs. 5(b-ii) and 5(b-iii)].
This transition where the celerity of waves comes to exceed
that of the media in which they travel is reminiscent of the
transition between subsonic and supersonic regimes for
acoustic waves in a chocked Laval nozzle [26] and of the
transition at unity Froude number in surface waves going
through a hydraulic jump [27–29]. Note, also, that cslow
vanishes near the turning point, where T ¼ Tk, meaning that
the waves slow down (and die out) at this point, a phenome-
non clearly visible in the Supplemental Material Video [20].
In the case of a high kinetic tension (i.e., for high v), the

celerity of the slow waves varies linearly with the curvi-
linear coordinate s, and the position of a wave front swf is,
therefore, given by (see Supplemental Material III [20])

swf − sO ¼ ðs0 − sOÞe�t=τ;

where s0 is the curvilinear position of the initial perturba-
tion, sO that of the turning point O, and the time constant τ
is given by τW ¼ 2v=g for D=W ≪ 1, and by τD ¼ 2λv=fd
for D=W ≫ 1. The position of the wave fronts was tracked
using an image-processing software [30] and the results are
shown in Figs. 6(c) and 6(d). In both regimes, and along
both branches, the position of the wave front is, indeed,
perfectly fitted by an exponential law (dashed lines). In
Fig. 6(c), one can notice that the slopes (in the semilog
inset) are not identical in the outbound (τoW ≃ 2.13 s) and
inbound branches (τiW ≃ 4.04 s), while the predicted value
is τW ¼ 2.98 s, which is remarkably close to the average of
the two branches. This discrepancy can be attributed to the
air drag, decreasing (respectively. increasing) the tension in
the outbound (respectively. inbound) branch. The deviation
from the predicted τW value, therefore, serves as a measure

(a)

(b)

(c) (d)

FIG. 6. Series of snapshots showing the propagation of
slow waves following an initial perturbation in (a) the weight-
dominated regime and (b) the drag-dominated regime. (c) and
(d) Time evolution of the wave front shown above.
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of fd, which shows that, in that case, D=W ≃ 0.3. In the
drag-dominated case, the values of τD for both branches
are very close (τoD ≃ 0.46 s for the outbound branch and
τiD ≃ 0.58 s for the inbound branch) while the predicted
value is τD ¼ 0.6� 0.1 s. Again, the discrepancy can be
explained by the influence of theweight, which increases the
tension in both branches, leading to shorter time constants
than τD. From this deviation, one estimates D=W ≃ 5.
Conclusion.—In this Letter, we have studied the effect of

drag on the steady shape profiles of closed inextensible
strings propelled at a constant velocity at an arbitrary angle.
When the weight dominates over the drag force, the shape
is close to a vertical catenary. Counterintuitively, when the
drag force greatly exceeds the weight, the string impres-
sively rises in the direction of the propelling angle. We have
shown that the physical explanation lies in the balance
between the moment exerted by the weight and by the drag
force. Moreover, the propagation of transverse perturba-
tions is elucidated by analyzing the variation of the tension
along the string, allowing one to precisely predict the
position of a wave front traveling in a string. Conversely, a
study of the waves can serve as an accurate tool to infer the
tension along a moving string.
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Lyon, the Université Lyon Claude Bernard, the École
Normale Supérieure de Lyon. The authors are thankful
to Bruce Yeany for sharing educational videos on the
internet, and to H. Gayvalet, J. Sautel, J. C. Geminard,
P. Wang, and A. Walbecq for fruitful discussions.

*nicolas.taberlet@ens-lyon.fr
[1] J. A. Hanna and C. D. Santangelo, Phys. Rev. Lett. 109,

134301 (2012).
[2] J. S. Biggins and M.Warner, Proc. R. Soc. A 470, 20130689

(2014).
[3] J. S. Biggins, Europhys. Lett. 106, 44001 (2014).
[4] E. G. Virga, Phys. Rev. E 89, 053201 (2014).
[5] J. Pantaleone, Am. J. Phys. 85, 414 (2017).
[6] E. G. Flekkøy, M. Moura, and K. J. Måløy, Front. Phys. 6,

84 (2018).

[7] W. Tomaszewski, P. Pieranski, and J. Geminard, Am. J.
Phys. 74, 776 (2006).

[8] J. C. Geminard and L. Vanel, Am. J. Phys. 76, 541 (2008).
[9] E. Hamm and J. C. Geminard, Am. J. Phys. 78, 828 (2010).

[10] W. Tomaszewski and P. Pieranski, New J. Phys. 7, 45 (2005).
[11] J. H. Jeans, An Elementary Treatise on Theoretical

Mechanics (Ginn and Company, Boston, MA, 2007).
[12] E. G. Virga, Proc. R. Soc. A 471, 20140657 (2015).
[13] W. B. Fraser, Phil. Trans. R. Soc. A 342, 439 (1993).
[14] A. Dowling, J. Fluid Mech. 187, 507 (1988).
[15] A. Dowling, J. Fluid Mech. 187, 533 (1988).
[16] P. Williams, D. Sgarioto, and P. M. Trivailo, Aerosp. Sci.

Technol. 12, 347 (2008).
[17] H. Siebert, S. Gerashchenko, A. Gylfason, K. Lehmann,

L. R. Collins, R. A. Shaw, and Z. Warhaft, Atmos. Res. 97,
426 (2010).

[18] J.-L. Lopes, M. Paidoussis, and C. Semler, J. Fluid Struct.
16, 715 (2002).

[19] M. Obligado and M. Bourgoin, New J. Phys. 15, 043019
(2013).

[20] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.123.144501 for techni-
cal details, additional mathematical derivation and addi-
tional figures.

[21] E. de Langre, M. P. Paidoussis, O. Doare, and Y. Modarres-
Sadeghi, J. Fluid Mech. 571, 371 (2007).

[22] J. Eggers and E. Villermaux, Rep. Prog. Phys. 71, 036601
(2008).

[23] P. Mohazzabi and J. R. Schmidt, Can. J. Phys. 77, 505
(1999).

[24] M. P. Paidoussis, Slender Structures and Axial Flow—
Volume 2 (Elsevier/Academic Press, London, 2003).

[25] E. Pennestri, V. Rossi, P. Salvini, and P. P. Valentini,
Nonlinear Dyn. 83, 1785 (2016).

[26] R. Courant and K. Friedrichs, Supersonic Flow and Shock
Waves (Springer-Verlag, New York, 1999), ISBN 978-0-
387-90232-6.

[27] A. D. D. Craik, R. C. Latham, M. J. Fawises, and P.W. F.
Gribbon, J. Fluid Mech. 112, 347 (1981).

[28] H. G. Hornung, C. Willert, and S. Turner, J. Fluid Mech.
287, 299 (1995).

[29] J. W.M. Bush and J. M. Aristoff, J. Fluid Mech. 489, 229
(2003).

[30] Imagej, http://rsb.info.nih.gov/ij/.

PHYSICAL REVIEW LETTERS 123, 144501 (2019)

144501-5

https://doi.org/10.1103/PhysRevLett.109.134301
https://doi.org/10.1103/PhysRevLett.109.134301
https://doi.org/10.1098/rspa.2013.0689
https://doi.org/10.1098/rspa.2013.0689
https://doi.org/10.1209/0295-5075/106/44001
https://doi.org/10.1103/PhysRevE.89.053201
https://doi.org/10.1119/1.4980071
https://doi.org/10.3389/fphy.2018.00084
https://doi.org/10.3389/fphy.2018.00084
https://doi.org/10.1119/1.2204074
https://doi.org/10.1119/1.2204074
https://doi.org/10.1119/1.2870271
https://doi.org/10.1119/1.3429983
https://doi.org/10.1088/1367-2630/7/1/045
https://doi.org/10.1098/rspa.2014.0657
https://doi.org/10.1098/rsta.1993.0028
https://doi.org/10.1017/S0022112088000540
https://doi.org/10.1017/S0022112088000552
https://doi.org/10.1016/j.ast.2007.08.006
https://doi.org/10.1016/j.ast.2007.08.006
https://doi.org/10.1016/j.atmosres.2010.05.007
https://doi.org/10.1016/j.atmosres.2010.05.007
https://doi.org/10.1006/jfls.2002.0448
https://doi.org/10.1006/jfls.2002.0448
https://doi.org/10.1088/1367-2630/15/4/043019
https://doi.org/10.1088/1367-2630/15/4/043019
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.144501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.144501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.144501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.144501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.144501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.144501
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.144501
https://doi.org/10.1017/S002211200600317X
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1088/0034-4885/71/3/036601
https://doi.org/10.1139/p99-045
https://doi.org/10.1139/p99-045
https://doi.org/10.1007/s11071-015-2485-3
https://doi.org/10.1017/S002211208100044X
https://doi.org/10.1017/S0022112095000966
https://doi.org/10.1017/S0022112095000966
https://doi.org/10.1017/S0022112003005159
https://doi.org/10.1017/S0022112003005159
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/

