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The influence of an externally applied magnetic field on flow turbulence is investigated
in liquid-gallium von-Kármán (VK) swirling flows. Time-resolved measurements of
global variables (such as the flow power consumption) and local recordings of the
induced magnetic field are made. From these measurements, an effective Reynolds
number is introduced as Rmeff = Rm(1−α√N), so as to take into account the influence
of the interaction parameter N. This effective magnetic Reynolds number leads to
unified scalings for both global variables and the locally induced magnetic field. In
addition, when the flow rotation axis is perpendicular to the direction of the applied
magnetic field, significant flow and induced magnetic field fluctuations are observed at
low interaction parameter values, but corresponding to an Alfvèn speed vA of the order
of the fluid velocity fluctuations urms. This strong increase in the flow fluctuations
is attributed to chaotic changes between hydrodynamic and magnetohydrodynamic
velocity profiles.
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1. Introduction
The understanding of how flows of electrically conducting fluids develop when a

significant magnetic field is imposed is of both fundamental and technical importance.
Such situations are common in practical applications such as electromagnetic pumping
of conducting fluids, control of flow motions during metal casting or crystallization
processes or confinement of thermonuclear plasmas in magnetic confinement devices.
Magnetic fields are also ubiquitous in astrophysical bodies, such as galaxies, stars
and planets, where the dynamo instability converts parts of the kinetic energy of
flowing conducting fluids into magnetic energy. The influence of magnetic fields on
astrophysical flows is thus also a generic feature (it can be observed for instance
through the influence of the Earth’s magnetosphere on the solar wind).
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In the incompressible magnetohydrodynamics (MHD) approximation, the dynamics
is governed by the coupled set of Navier–Stokes (NS) and induction equations:

ρ(∂tu+ (u ·∇)u)=−∇p+ ρν1u+ j × B, (1.1)
∂tB=∇ × (u× B)+ λ1B, (1.2)

∇ ·u= 0, (1.3)
∇ ·B= 0, (1.4)

where u(r, t), p(r, t),B(r, t) are the velocity, pressure and magnetic fields in a fluid
with (constant) density ρ, kinematic viscosity ν and magnetic diffusivity λ = 1/µσ ,
where σ is the electrical conductivity of the fluid and µ the magnetic permeability,
the current density stems from the Maxwell–Ampère equation, µ0 j(r, t)=∇ × B(r, t).
The nature of the problem is usually governed by values of the main dimensionless
parameters defined as a function of characteristic velocity U, length scale L of the flow
and typical value of the magnetic field B0 from the analysis of the NS and induction
equations. The kinetic Reynolds number Re = UL/ν compares the amplitude of the
inertial term to the viscous term in the NS equation. In the limit of large kinetic
Reynolds number one defines an interaction parameter N = σLB2

0/ρU which compares
the Lorentz force to the inertial term in the NS equation (in the low-Reynolds-number
limit, the Hartmann number Ha2 = NRe, which compares the Lorentz force to the
viscous term, is used). The magnetic Reynolds number Rm = UL/λ compares the
induction term to the diffusion term in the induction equation. The ratio of the
magnetic Reynolds number to the kinetic Reynolds number defines the magnetic
Prandtl number Pm = ν/λ, which compares the diffusive temporal/length scales of the
velocity and magnetic fields and depends only on the physical properties of the fluid.

Among the various situations in the (Re,Rm,N,Pm) parameter space, some
asymptotic limits have been studied in details. The case of flows with moderate
kinetic Reynolds number and large interaction parameter has been extensively studied
for industrial applications. As explained and verified experimentally by Sommeria &
Moreau (1982), Moreau (1998) and Eckert et al. (2001), the Lorentz force acts as an
anisotropic diffusivity which damps the velocity field fluctuations along the applied
magnetic field and hence drives the flow toward a two-dimensional structure. The
issue of exact two-dimensional versus weak three-dimensional features has recently
been addressed experimentally by Klein & Pothérat (2010) and numerically by Mück
et al. (2000). Another limit, relevant in several astrophysical situations, corresponds
to large kinetic Reynolds numbers onto which a weak magnetic field is applied. In
this case the interaction parameter is small, the Lorentz force does not influence
significantly the hydrodynamics and the situation is reduced to the advection of a
passive vector field by a (prescribed) turbulent velocity field. Several features have
then been derived in the framework of the Kolmogorov theory of turbulence, as for
instance the spatial spectrum of magnetic energy, B2(k) ∝ k−11/3 – see for instance
Moffatt (1961) – verified experimentally in Odier, Pinton & Fauve (1998). An open
question, currently debated, is the possibility that the flow turbulence induces an
effective magnetic diffusivity which may become much larger than the molecular
value, cf. Frick et al. (2010). The astrophysical limit of large values of the kinetic
and magnetic Reynolds numbers has also received much attention during the last
few decades. Among these studies, the understanding of the dynamo instability has
benefited from joint theoretical, numerical and experimental efforts.

In the context of liquid-metal dynamos, especially relevant for planetary dynamo
studies, a number of recent studies (Gailitis et al. 2001; Müller, Stieglitz & Horanyi
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2006; Monchaux et al. 2009) explored a regime in the limit of large kinetic Reynolds
numbers and moderate (to high) interaction parameter values. Dynamo action has
so far been observed in three experiments using liquid-sodium as the working fluid:
the Riga experiment, based on a Ponomarenko screw flow (Ponomarenko 1973); the
Karlsruhe experiment using an array of like-sign helical motions as proposed by
(Roberts 1972); and the von Kármán sodium (VKS) experiment based on swirling
motions, as studied numerically by Dudley & James (1989). In liquid-sodium flows,
owing to the very low value of the magnetic Prandtl number Pm, even moderate values
of Rm are associated with very high Re values, i.e. fully developed turbulence. In this
context, how the self-generated dynamo field acts on the velocity field so as to saturate
the growth of the (supercritical) instability is an open problem. In the Riga experiment,
a significant reduction of the rotational velocity of the jet was observed, as shown in
Gailitis et al. (2001) and Kenjeres & Hanjalic (2009). In the same manner the dynamo
field in the Karlsruhe experiment led to a measurable braking of the fluid in the pipe
system (Müller et al. 2006). In the case of the VKS dynamo (Monchaux et al. 2009),
the coupled (u,B) evolution has not yet been measured and the interplay between
magnetic and velocity fields is yet to be clarified.

It is the purpose of the study presented here to investigate how a fully developed
turbulent flow interacts with a strong applied magnetic field. Investigated flows are
of von Kármán type, generated in a cylinder by the rotation of impellers, and hence
of the same kind as the VKS dynamo flow, as reported for instance in Monchaux
et al. (2009). Two applied magnetic field geometries have been studied: the applied
magnetic field may be perpendicular or parallel to the flow rotation axis. Details of
the experimental setup are given in § 2. The variation of a global quantity, namely
the power injected into the flow in order to keep the driving impellers at a fixed
rotation rate, with the intensity of the applied magnetic field is then discussed in § 3.
We show that it varies linearly with the interaction parameter N. This scaling is
confirmed in § 4 by the analysis of the local induction measurements. In § 5, we
detail a noteworthy finding of our study: in the transition from a purely hydrodynamic
regime (for the lowest N values) to a fully ‘magnetic’ state (at high N, for which
turbulence is damped), an increase in the flow fluctuations has been observed. This
increase is mainly seen in the long-time dynamics of the flow, and was observed when
the influence of the magnetic field balances the influence of the flow rotation.

2. Experimental setup
The liquid-gallium flow is generated by the rotation of two impellers at each end

of a cylindrical vessel. The vessel is sketched in figure 1(a) and has a radius Rc of
97 mm and a length of 323 mm. The impellers have a diameter equal to 2R= 165 mm
and are fitted to a set of eight straight blades with height 10 mm. All parts used
in this setup are machined from non-magnetic stainless-steel. The two impellers
are separated by a distance H = 203 mm. They are independently driven by two
AC-motors which provide a constant rotation rate in the interval (|F1|, |F2|) ∈
[0.5, 25] Hz. When constrained to operate at constant rotation speed, the motors’
electric drives deliver an analogue output proportional to the current in the motor, as
an image of the applied mechanical torque.

Liquid-gallium is cooled by water circulation located behind the driving impellers;
the experiments are run at a constant temperature between 40 ◦C and 48 ◦C. Liquid-
gallium has density ρ = 6.09 × 103 kg m−3, electrical conductivity σ = 3.68 ×
106 �−1 m−1, hence a magnetic diffusivity λ = 1/µ0σ = 0.29 m2 s−1. Its kinematic
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FIGURE 1. (Colour online available at journals.cambridge.org/flm) (a) Geometry of the
experimental setup (see details in the text), and coordinate system used throughout the text;
the magnetic probe shaft is along the y-axis. (b) Counter-rotating (s2t2) flow: two counter-
rotating toroidal cells (plain arrows) and two poloidal cells (dashed arrows). (c) One-disk
(s1t1) flow: one toroidal cell and one poloidal cell. (d) Corotating (s2t1) flow: one toroidal
cell and two poloidal cells.

viscosity is ν = 3.1 × 10−7 m2 s−1. In the present study, the flow is driven either by
both impellers rotating at equal speed, in the same or opposite direction, or by the
rotation of only one disk. In any configuration, the integral kinematic and magnetic
Reynolds numbers are defined as Re = 2πR2F/ν and Rm = 2πR2F/λ where F is the
rotation rate (in Hz) and R the radius of the driving impeller(s). Rm values up to 5 are
achieved, with corresponding Re in excess of 106. The liquid-gallium flows generated
are thus fully turbulent, with high levels of fluctuations, depending on the topology
of the time-averaged flows. Detailed experimental investigations of time-averaged flow
topologies, fluctuation levels and characteristics may be found in Ravelet, Chiffaudel &
Daviaud (2008).

Three flow topologies were considered in this study, depending on the relative
values of F1 and F2. These flows are well documented from water experiments
(Ravelet et al. 2008) and their time-averaged features are briefly recalled here. The
‘counter-rotating’ flow is defined as corresponding to the case of the two impellers
rotating in opposite directions at the same speed (i.e. F1 = F2 with the notation of
figure 1a). In this case, the mean flow is made up of two toroidal cells rotating in
opposite directions and two poloidal cells due to the centrifugal forces localized close
to the impellers, as sketched in figure 1(b). The ‘counter-rotating’ flow is a cylindrical
equivalent of the s2t2 flow introduced by Dudley & James (1989). Slow dynamics of
the flow (as compared to the period of impellers’ rotation) was shown to be linked to
the evolution of the shear layer localized in the mid-plane in de la Torre & Burguete
(2007). If only one impeller rotates at the frequency F and the other one is kept at rest,
the mean flow is made up of one single toroidal cell and one poloidal cell as shown in
figure 1(c). We refer to this flow topology as the ‘one-disk’ flow which corresponds to
the s1t1 flow introduced by Dudley & James (1989). Finally, when the two impellers
rotate in the same direction and at the same rotation rate, the mean flow is made up of

http://journals.cambridge.org/flm
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one toroidal cell and two poloidal cells, as shown in figure 1(d). This flow topology is
referred to as the ‘corotating’ flow (i.e. F1 = −F2 with the notation of figure 1a), and
is of the s2t1 type introduced by Dudley & James (1989).

A set of two water-cooled electrical coils can be arranged in an Helmholtz-like
configuration to produce an applied magnetic field BA either aligned with the axis of
the impellers (along the z-axis) or perpendicular to it (along the x-axis). The current in
the coils is controlled and adjusted between 0 and 150 A by a Drusch 30 kW power
supply. The resulting applied magnetic field BA has an intensity which can reach up
to 2000 G. Measurements show that the applied magnetic field is homogeneous within
10 % over the vessel volume. As for the Reynolds numbers, an integral interaction
parameter can be defined as N = σ (BA)

2
/ρ2πF. Its value ranges between 0 and

0.5 depending on the operational conditions. The maximal value of the interaction
parameter is achieved for F = 2 Hz. Below this rotation frequency the flow is not fully
turbulent even in the absence of an externally applied magnetic field.

Magnetic measurements are obtained either with a homemade Hall-sensor array
(Sentron CSA-1V), or with a commercial Bell Gaussmeter, both probing one
component of the magnetic field. The bandwidth of these sensors is over 150 Hz
so both time averages and fluctuations of the induced magnetic field BI are probed.
The spatial evolution of the induced magnetic field is probed by an Hall sensor
array at eight positions along a radius of the vessel. For every configuration in this
study, the magnetic probes lie in the mid-plane at θ = π/2, i.e. parallel to the y-axis
(see figure 1a). Magnetic field data and electrical signals from the motor drives are
recorded using a national instrument PXI-4472 digitizer (resolution of 23 bits) at a
sampling rate equal to 1 kHz.

3. Global behaviour: injected power

In this section, the influence of the applied magnetic field BA on the global power
budget of turbulent flows is addressed. We note that, as torques and rotation rates of
the impellers are conjugate variables, it is not possible to keep both at constant value.
Thus, for each run, the rotation rates of the driving impellers are kept constant and the
time evolutions of the driving torques are recorded. The time-averaged injected power
is then computed as the product of the driving rotation rate times the time-averaged
driving torque, summed for the two impellers. Figure 2 shows the time series for the
injected power in the counter-rotating flow case, at F = 10 Hz, for two values of the
transverse applied magnetic field: BA = 100 G and 1550 G. As expected, under the
increased action of Lorentz force, one clearly observes an increase of the mean power
consumption and a decrease in the fluctuations.

Hereafter, we focus on the evolution of the mean power consumption. Let us first
consider the hydrodynamic regimes, i.e. when BA = 0. The injected power grows as
the third power of the rotation rate F of the impellers, reflecting the turbulent nature
of the flow. This scaling is indeed obtained in the limit of very large kinetic Reynolds
numbers, when the flow power consumption is independent of the viscosity of the
fluid. In turbulent flows, the power dissipated by the flow is equal to PH = Mε,
where M ' ρR3 is the mass of fluid set in motion and ε = u3

rms/R is the injected
power per unit mass in the turbulent cascade. The injected power is thus proportional
to R2u3

rms ∝ F3. In order to compare our measurements with previous studies, let us
introduce a dimensionless power number (per motor) KP, as KP = PH/(2ρR5 (2πF)3),
following Ravelet et al. (2005). Measured values are KP = 10−2 for the corotating flow,
KP = 1.31 × 10−2 for the one-disk flow, and KP = 3.57 × 10−2 for the counter-rotating
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FIGURE 2. (Colour online) Time evolution of the power consumption, measured from the
output of the motors’ electric power supplies. Counter-rotating case at 10 Hz with an applied
magnetic field BA = 100 G (solid line) and BA = 1550 G (dashed line).

flow. These differences are linked to the intensity of the large-scale shearing motions
in the flow, and resulting velocity fluctuations, as shown by Marié & Daviaud (2004).
The measured KP are in close accordance with measurements in water flows in similar
conditions (Ravelet 2005).

Let us now consider the case of a transverse applied magnetic field, i.e. the
magnetic field is parallel to the x-axis and perpendicular to the axis of rotation of the
impellers (see figure 3). When increasing the intensity of the applied magnetic field, a
first observation is that, in all configurations, the power injection at a constant rotation
rate increases (cf. figure 3a–c). This increase can be ascribed to the Joule dissipation
resulting from the induced electrical currents (or equivalently to the Lorentz force
trying to slow down the flow); the total power dissipation results from viscous
friction and Joule heating. However, the evolution of the injected power remains
proportional to F3 even for the highest applied magnetic field in each configuration.
This suggests that the power consumption is still dominated by turbulent dissipation,
with a modification of the large-scale flow as detailed in § 5.

For the three configurations, at first order, the total injected power PT varies linearly
with the interaction parameter N, as displayed in figure 3(d–f ). This scaling will
now be explained using dimensional analysis. As was pointed out previously, in
the presence of a magnetic field, the nature of the problem involves a coupling
between the velocity and the magnetic fields (u,B). In the remainder of the paper, the
uncoupled hydrodynamic fields will be denoted (U, 0) in the absence of an applied
magnetic field, while the magnetohydrodynamic fields will be denoted (U′,B) in
the presence of an applied magnetic field BA, with B = BA + BI . On average, the
injected power in a turbulent flow is equal to that dissipated. The total dissipation
PT in presence of an applied field is the sum of two terms: the turbulent dissipation
PH(U′,B) and the Joule dissipation PJ(U′,B) depending on both the velocity field and
the magnetic field. As in the experiments the interaction parameter is moderate, one
can assume, to first order, that the turbulent dissipation is not modified by the Lorentz
force:

PH(U
′,B)∼ PH(U, 0)∼ ρR2u3

rms. (3.1)
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FIGURE 3. (Colour online) Evolution of the injected power as a function of the rotation
rate F (a–c) and as a function of the interaction parameter N (d–f ): measurements (�)
and estimation (×), see § 4.2. The applied magnetic field is perpendicular to the axis of
rotation. The three investigated flows are: counter-rotating flow (a,d), one-disk flow (b,e) and
corotating flow (c,f ).

This assumption holds if the turbulent cascade is not significantly modified, as is
confirmed by the spectra of the induced magnetic field presented later in § 5 and
also as reported in Alemany et al. (1979). The Joule dissipation is defined as
PJ(U′,B) = ∫

V
j2/σ dτ ∼ j2L3/σ , V being the flow volume. As often observed in

gallium flows (see for instance Bourgoin et al. 2004), the induced magnetic field
is small compared to the applied magnetic field (BI/BA ∼ 0.5) and, again in a first
approximation, one assumes that the current density j scales as j ∼ σU′BA. So the
Joule dissipation can be written as:

PJ(U
′,B)∼ PJ(U

′,BA)∼ σU′2 (BA)
2

R3. (3.2)

At this order, one also assumes that the typical velocity (and the turbulent fluctuations)
do not vary with BA; this approximation, certainly valid at low N values, deteriorates
as the applied magnetic field increases. So, by taking U′ = urms, the Joule dissipation
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can be estimated as:

PJ(U
′,B)∼ PJ(U,BA)∼ σu2

rms (B
A)

2
R3 = σ (B

A)
2 R

ρurms
ρu3

rmsR
2 ∝ NPH(U, 0), (3.3)

so that one expects, at first order, the net power delivered by the motors to scale as

PT(U
′,B)= PH(U, 0)+ PJ(U,BA)= PH(U, 0)[1+ γN], (3.4)

where γ is a dimensionless constant which depends on the configuration.
Figure 3(d–f ) shows that, at first order, this scaling is in good agreement with the
measurements over the range of explored magnetic field intensities. However, note that
the coefficient γ is not constant as dimensionally predicted, but grows nonlinearly
with the rotation rate of the impellers. A saturation of the power injection is also
observed for the one-disk configuration. This traces back to our assumption that the
net magnetic field in the flow is essentially the applied one. If, in the estimation of
the induced current, one includes the induced magnetic field BI , j∼ σU(BA + BI), with
BI =F (U,BA), one introduces a dependence of γ on Rm and N.

Let us now finally consider the case where the applied magnetic field is parallel
to the axis of rotation, the two disks rotating in opposite directions and at the same
speed. The induction processes with an axial applied magnetic field for other types
of flow are much weaker and have nor been systematically studied. The evolution of
the injected power as a function of the impeller rotation rate, for increasing values
of the applied magnetic field, is displayed in figure 4(a). As for a transverse applied
magnetic field, the evolution of the injected power is not strongly affected by the
amplitude of the applied magnetic field. Here the evolution as a function of the
interaction parameter (figure 4b) is not linear: for small interaction parameter, the
injected power decreases as the applied magnetic field increases; whereas for the
highest interaction parameters, the power increases with the applied magnetic field. In
this configuration, it is known that a strong applied magnetic field tends to decrease
the Kelvin–Helmholtz instability which occurs in the mid-plane of a von Kármán
flow (see for instance Biskamp 2003). This laminarization of the shear layer tends to
decrease the turbulent energy dissipated in the flow. This effect might be stronger than
the dissipation linked to the Joule effect for low interaction parameter and thus lead to
a decrease of the total injected power at the lowest N values.

To conclude this section, let us return to our interpretation of the linear scaling of
P(N). At first order, this argument, based on dimensional analysis, is valid as long
as the energy transfer in the turbulent cascade scales as u3

rms/`. However, this simple
argument is not sufficient to fully understand the evolution of the injected power which
is strongly linked to the topology and the dynamics of the flow. Thus, this global
analysis has to be supplemented by an inspection of the evolution of the local velocity
gradients. For low-Rm flows, magnetic measurements provide this kind of information,
as detailed in Volk, Odier & Pinton (2006).

4. Local dynamics: induced magnetic field
4.1. Experimental results

The evolution of a local variable, namely the induced magnetic field BI , as a function
of the interaction parameter N is investigated for the different configurations studied.
In this section, all measurements are performed in the mid-plane, at r ∼ 0.36R along
the y-axis.
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FIGURE 4. (Colour online) Evolution of the injected power for the counter-rotating flow with
an axial applied field as a function of the rotation rate (a) and the interaction parameter (b):
measurements (◦), estimation (×), see § 4.2.

As for the global variable, let us first consider the configurations with a transverse
applied magnetic field. Before discussing the effect of large N values on the induced
magnetic field, the basic features of the time-averaged induction processes at low
N values are briefly recalled here for the three flows. For the counter-rotating
flow, the main induced component at the measurement location is along the z-axis.
This induction process is linked to the differential rotation of the toroidal cells and
the electrical boundary condition of the flow, as described in Bourgoin et al. (2004).
The induced magnetic field, normalized by the value of the applied magnetic field, was
shown to vary linearly with Rm. For the one-disk flow, the flow is strongly helical, and
the induced magnetic field in the axial direction is generated by Parker’s stretch-and-
twist mechanism introduced in Parker (1955); the normalized induced magnetic field
varies quadratically with Rm at low N values, as observed experimentally in Pétrélis
et al. (2003). Finally, in the case of the corotating flow, the strong coherent vortex
generated in the centre of the flow vessel causes expulsion of the transverse magnetic
field, as detailed in Moffatt (1978); this effect is tracked by measurements of the
radial component of the induced magnetic field (Odier, Pinton & Fauve 2000); the
normalized induced magnetic field varies linearly with Rm at small Rm values, before
showing saturation when the magnetic expulsion from the vortex becomes significant.

The evolution of the time-averaged value of the induced magnetic field, normalized
by the value of the applied magnetic field, is displayed in figure 5(a–c) as a function
of the magnetic Reynolds number, for increasing values of the applied magnetic field.
For small values of the applied magnetic field, the normalized induced magnetic
field varies with the impeller rotation rate as described above. The situation changes
significantly as the intensity of the applied magnetic field is increased. The amplitude
of the induced magnetic field decreases for all flows, and the induction mechanisms
become more complex, as illustrated in the case of the counter-rotating flow: the
evolution with Rm is no longer linear and changes noticeably with BA (note in
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FIGURE 5. (Colour online) Evolution of the induced magnetic field BI (straight arrows as
shown in the sketch of the experimental setup in figure 1) as a function of the magnetic
Reynolds number Rm for increasing values of the transverse applied magnetic field BA (a–c),
and as a function of an effective magnetic Reynolds number Rm− α√N (d–f ). Three distinct
induction processes are probed for the three investigated flows (see text for details): counter-
rotating flow (a,d), one-disk flow (b,e) and corotating flow (c,f ).

figure 5a the significant changes even for quite moderate values of the applied
magnetic field).

However, it will now be shown that measurements collapse onto a master curve for
each configuration. In a previous study of the influence of large magnetic field on
turbulent flows, Brito et al. (1995) have shown that a unified behaviour can be derived
when using the (modified) value of the flow velocity in the definition of an effective
magnetic Reynolds number. This is indeed what is observed in the present case when
using Rmeff = Rm(1 − α√N), where α is a dimensionless constant which depends
only on the configuration. The discussion on the derivation of such an effective
magnetic Reynolds is left to § 4.2. The corresponding rescaled curves are shown in
the figure 5(d–f ) with α = 3.8 for the counter-rotating flow, α = 0.7 for the one-disk
flow and α = 1.15 for the corotating flow. For each configuration, the collapse is
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FIGURE 6. (Colour online) Evolution of the azimuthal induced magnetic field from an
axial applied magnetic field with a counter-rotating flow, as a function of (a) the magnetic
Reynolds number Rm and (b) an effective magnetic Reynolds number Rm(1− α√N).

obtained with one adjustable parameter, the coefficient α, which does not depend on
the amplitude of BA.

Let us now consider the configuration with an applied magnetic parallel to the axis
of rotation of the impellers, with the counter-rotating flow. The leading-order induction
process, at the measurement location, is the so-called ω-effect, which induces an
azimuthal magnetic field from the strong differential velocity of the toroidal cells
(Bourgoin et al. 2004); at low N values, the normalized induced magnetic field varies
linearly with Rm. Its evolution as a function of the magnetic Reynolds number is
displayed in figure 6(a) for increasing values of the applied magnetic field. Similarly
to the transverse configurations, the induced magnetic field is reduced at large N
values, and the effective magnetic Reynolds number Rmeff ∝ Rm(1 − α√N) is also
observed to collapse the data, as shown in figure 6(b) with α = 0.5.

A similar study in the axial configuration has been reported in Gallet, Berhanu
& Mordant (2009). In that paper, it is shown that the induced magnetic field BI

normalized by RmBA only depends on the interaction parameter N. It is possible to fit
these data using the scaling we propose with α = 0.56, which is close to the value
measured in the present work. A direct comparison of the behaviour of the small-scale
fluctuations is less straightforward. Gallet et al. (2009) report velocity fluctuations
using a bandpass potential probe and observed that the spectrum is mainly modified
at high frequencies, i.e. for turbulent scales. In our case, the spectrum of the induced
magnetic field reported in § 5 shows that the dominant effect of the magnetic field lies
in the dynamics of the large scales.

4.2. Discussion and estimation of the Joule dissipation
In this subsection, based on power budget estimates, we first give an explanation for
the expression of the effective magnetic Reynolds number, Rmeff = Rm(1−α√N), then
we discuss the consistency of our approach by evaluating the Joule dissipation in the
system.
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Let us now return to the flow power consumption, PT(U′,B)= PH(U′,B)+PJ(U′,B)
addressed in § 3. Since no direct measure of the changes in the velocity field as
the applied magnetic field is imposed is available, and since the velocity field and
the magnetic field are coupled, any approach to determine the relative importance
of the Joule dissipation compared to the viscous dissipation is based on a series of
approximations. In § 3, the lowest order was considered, for which (i) the induced
magnetic field is neglected in the Joule dissipation and (ii) the Lorentz force is
neglected and the hydrodynamic dissipation is estimated assuming an unperturbed
velocity field. In that case we showed that PJ(U,BA)∝ NPH(U, 0) and that

PT(U
′,B)∼ PT(U,BA)= PH(U, 0)[1+ γN], (4.1)

which is in good agreement with the power consumption data, but which also implies
that BI/BA ∝ Rm. The ratio of the induced magnetic field to the applied magnetic field
should scale linearly with Rm, which is in contradiction with our observations. To
account for the observed evolution of BI/BA with Rm and N and its rescaling using
the effective magnetic Reynolds number Rm(1 − α√N), the next-order approximation
should be considered: the modification of the velocity field under the action of the
Lorentz force has to be estimated. As the interaction parameter is moderate, one
can assume that the modification of velocity v field by the Lorentz force is small:
v = u′ − u� u where u′ and u are the velocity fields with and without an applied
magnetic field. Let us now assume that (i) the induced magnetic field is neglected in
the Joule dissipation as in § 3, and (ii) the hydrodynamic dissipation is estimated from
the modified velocity field U′:

PT(U
′,B)∼ PT(U

′,BA)= PH(U, 0)+ PH(V, 0)+ PJ(U,BA) (4.2)

with V = U′ − U, which implies that u and v are not correlated. The observed linearity
of the injected power as a function of the interaction parameter suggests that the
hydrodynamic dissipation linked to the velocity field v also scales linearly with N:
PH(V, 0) ∝ NPH(U, 0). Writing PH(V, 0) as ρR3V2/τ with τ the characteristic energy
transfer time still being of the order of U/R, one gets

PH(V, 0)∼ ρR2V2U ∝ NPH = NρR2U3. (4.3)

The velocity perturbation is thus estimated as V ∝ U
√

N. Using the modified
velocity U′ = U + V in the estimation of an effective magnetic Reynolds number as
was introduced in Brito et al. (1995), indeed leads to an effective magnetic Reynolds
number defined as Rm(1− α√N), as proposed in § 4.1.

Finally, as a complementary approach and to the same order of approximation as
for (4.2), one can assume that (i) the induced magnetic field has to be taken into
account for the Joule power dissipation and (ii) that the Lorentz force is neglected:

PT(U
′,B)∼ PT(U,B)= PH(U, 0)+ PJ(U,BA + BI). (4.4)

The magnetic induction measurements are now used to improve the estimation of the
Joule power dissipation. For each flow configuration, the experimental curves BI/BA

are fitted by a function g(Rmeff ) with Rmeff = Rm(1 − α√N). Joule dissipation is then
expressed as

PJ(U,BA + BI)∼ σU2 (BI + BA)
2

R3 = CJNPH (1+ g(Rmeff ))
2 (4.5)

where CJ is a dimensionless constant. The net power consumption can then be
computed according to (4.4). These estimations are displayed as crosses (×) on



Transition from hydrodynamic to magnetohydrodynamic turbulence 13

figures 3 and 4. Good agreement is found for CJ = (1/2)3 for the one-disk flow
and the counter-rotating flow with a transverse applied magnetic field, and CJ = (1/3)3
for other configurations (this may be thought of as a change in the spatial extent of the
electrical currents). The discrepancies for the largest N values (10–20 % of the injected
power) may be due to the dissipation associated with the dynamics of the large-scale.

To conclude this section, an investigation of the evolution of the induced magnetic
field with the interaction parameter shows that the use of an effective magnetic
Reynolds number Rmeff ∝ Rm(1 − α

√
N) is compatible with the global power

dissipation scalings derived in § 3 and collapses the measurements for all investigated
configurations. Although the power dissipation scaling is based on the assumption that
the flow is only marginally modified, magnetic induction measurements show that the
details of the flow topology can be locally strongly modified by the Lorentz force
(refer to the dramatic modification of the induced magnetic field in figure 5a). A direct
measurement of the velocity field is not yet available. However, a detailed study on the
evolution of the induced magnetic field in the counter-rotating case as a function of N
would illustrate the action of the Lorentz force on the flow.

5. Transition from hydrodynamic to magnetohydrodynamic flows
We investigate in this section the details of the transition from a situation where

the magnetic field plays the role of a passive vector to a situation where the magnetic
field has a leading influence on the flow dynamics. In this problem, geometry is of
prime importance. We will focus on the configuration where the applied magnetic
field is perpendicular to the rotation axis of the counter-rotating von-Kármán flow.
The rationale is that very large magnetic fields or rotation rates will each act to
two-dimensionalize the flow in planes perpendicular to its direction. This competition
is expected to, and does, generate non-trivial dynamics (Zikanov & Thess 1998), as
presented here.

As in the previous section, all magnetic measurements are made in the mid-plane,
at r ∼ 0.36R along the y-axis, the applied magnetic field is parallel to the x-axis
and the two impellers generate a counter-rotating flow by rotating at F = 12 Hz
in opposite directions. As we want to study the transition, we limit ourselves to
interaction parameter smaller than 0.1 (BA ∼ 1200 G). In the range 0.1 < N < 0.27,
no flow modification has been observed.

Figure 7(a) shows the evolution of the time-averaged induced magnetic field as a
function of the interaction parameter. For small applied magnetic field, the induced
magnetic field is proportional to the square root of the interaction parameter, which
is equivalent to the induced magnetic field being proportional to the applied magnetic
field, as expected at low Rm, for which the induction equation is dominated by
the balance between the stretching of field lines and diffusion, i.e. λ1BI ∼ BA · ∇u.
We refer to this regime as an ‘hydrodynamic’ regime, because the main features
are accounted for when one computes the induced magnetic field from an purely
hydrodynamic velocity field (i.e. with vanishing influence of the Lorentz force in
the NS equation). At higher magnetic fields, the

√
N scaling is no longer observed,

and the induced magnetic field eventually decreases with increasing N values. This
regime where the flow is strongly influenced by the magnetic field will be referred
to as a magnetohydrodynamic (MHD) regime. The transition to this regime can be
estimated in the following manner. From induction measurements, let us now redefine
an effective magnetic Reynolds number as Rmind

eff ≡ BI/BA. Then, our experimental
observation is that the MHD regime is reached when N > Rmind

eff , as shown in
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FIGURE 7. (Colour online) Evolution of the axial component of the induced magnetic field
measured in the mid-plane as a function of N: (a) time-averaged value; (b) standard deviation.
The disks rotate at 12 Hz in opposite directions and the applied magnetic field is transverse.
Insets show value normalized by the applied magnetic field. The solid line corresponds to
a fit of the experimental measurements in the hydrodynamic regime and the dashed line
corresponds to N = BI/BA.

figure 7(a). Physical insight is gained when expressing the interaction parameter as

N = σRBA2

ρurms
= µσRurms BA2

ρµu2
rms

∼ Rmind
eff

(
vA

urms

)2

, (5.1)

where vA is the Alfvèn velocity. In this context, the transition to the MHD regime
happens when the Alfvèn velocity becomes of the order of the hydrodynamics velocity
fluctuations (i.e. N ∼ Rmind

eff ). This is indeed observed in figure 7(a) for N ' 0.02. For
instance, for F = 12 Hz, the maximal velocity is of the order of U = 2πRF ∼ 7 m s−1

with fluctuations of about half that value (in the pure hydrodynamic situation); the
Alfvèn speed for BA = 1 kG is vA ∼ 1 m s−1. The flow fluctuations locally excite
Alfvèn waves which are evanescent in liquid metals (in conditions where the applied
magnetic field is ∼1 kG). The Joule dissipation linked to the local current is quite
effective at damping the motion.

The fluctuations of the induced magnetic field display the same behaviour as shown
in figure 7(b). The fluctuations normalized by the applied field BA also have a
maximum for N ' 0.02 which corresponds to the transition observed in figure 7(a).
The existence of a maximum suggests that the topology of the flow has changed,
otherwise the decrease of the fluctuation amplitude would be monotonic. Another
indication of topological changes is obtained by an analysis of the autocorrelation
functions, CBI (τ ) = 〈BI(t + τ)BI (t)〉t / (BI

rms)
2. As seen in figure 8, the correlation

time, τBI = ∫∞−∞ CBI (τ ) dτ , is ∼10 times longer in the transition regime than in the
hydrodynamic regime or the MHD regime.

In order to emphasize the fact that changes in the transition regime correspond
to slow changes, we analyse in figure 9(a) the power spectral density (PSD) of the
induced magnetic field for three values of the applied magnetic field: BA = 150 G
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(N = 1.5×10−3), i.e. in the hydrodynamic regime, BA = 460 G (N = 1.4×10−2), in the
transition region, and BA = 970 G (N = 6.2 × 10−2) in the MHD regime. Comparison
of the power spectral density of the signals shows that differences are clearly observed
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FIGURE 10. Instantaneous profiles of the axial induced magnetic field in the mid-plane:
(a) BA = 150 G, hydrodynamic regime; (b) BA = 520 G, transition regime; (c) BA = 1200 G,
MHD regime. The black symbols correspond to the time-averaged induction profile. The
furthest profiles from the mean values are represented by grey symbols (greater than the
mean) and open symbols (smaller than the mean). The grey area corresponds to the standard
deviation of the profile.

only in the low frequencies, while the turbulent inertial range is unmodified. The
low-frequency dynamics of the induced magnetic field traces back to the large-scale
dynamics of the velocity field (de la Torre & Burguete 2007). In the hydrodynamic
regime, the low-frequency spectral index of the induced magnetic field PSD is around
−1/2 (Volk et al. 2006). In the transition regime, the increase of the low-frequency
fluctuations lead to a spectral index reaching −1. In the MHD regime, there is a
dramatic damping of low-frequency fluctuations. On the other hand, the high-frequency
turbulent fluctuations are not modified at large applied magnetic field. For the three
regimes, the spectral slope index is compatible with the turbulent f−11/3 scaling.

The probability density functions (p.d.f.), displayed in figure 9(b), are also strongly
modified when increasing the interaction parameter. The variance and the flatness are
increased in the transition regime, before decreasing at larger values of the interaction
parameter. For the three regimes, the deviation from a Gaussian disappears when
high-pass filtering the signal (cut-off frequency fc = F = 12 Hz – not shown).

Such long correlation times and slow evolutions in turbulent flows have been
previously reported in situations where the flow topology changes slowly in time
between several preferential states (Cortet et al. 2010). As an attempt to test further
this possibility of preferential states, we use an array of Hall probes to record the
induced magnetic field profile along a radial direction in the vessel, as introduced in
Volk et al. (2006). For the three previous values of the applied magnetic field BA,
we show in figure 10 the spatial evolution of the normalized magnetic field. The
time-averaged spatial profile is displayed by filled black symbols embedded in a
grey area which represents the standard deviation variations around the mean profile.
Extrema are displayed by open and grey symbols for the furthest below and above the
mean profile. The mean profile is defined as the time-averaged profile over 180 s, i.e.
1800 flow integral turnover times, which corresponds to 1300 magnetic diffusion times.
Averages over 1 s are referred to as instantaneous profiles (10 turn-over times or 7
magnetic diffusion time).

In the hydrodynamic regime, the induction profile is identical to previous
measurements by Volk et al. (2006), which peaks at ∼3R/4 in the mid-plane. In
the MHD regime, the shape is drastically different: the induced magnetic field no
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longer varies appreciably in the radial direction. In the transition regime, the induced
profile is observed to change chaotically between a configuration which lies close
the hydrodynamics case and a configuration close to the MHD case. The long-
time dynamics of the transitions, the existence of hysteresis and the nature of the
bifurcation between these two regimes are currently under investigation.

6. Concluding remarks
Our study has focused on essential effects of a magnetic field applied on a turbulent

flow, as it evolves from a situation for which the magnetic field is a passive tracer
to a situation where the Lorentz force is dominant. We have observed that, at leading
order, the flow power consumption increases linearly with the interaction parameter N.
A first order of approximation for the power consumption leads to the introduction of
an effective magnetic Reynolds number Rmeff = Rm(1− α√N). The effective magnetic
Reynolds number, introduced from global measurements, also collapses local magnetic
induction measurements. Finally, the very good agreement between the estimate of
the Joule dissipation from induced magnetic field measurements at the same order of
approximation and the measured power consumption showed the consistency of our
approach. When the magnetic field is perpendicular to the axis of rotation of the VK
flow, a refined study on the modification of the induced magnetic field at a given
flow driving exhibits a transition from a hydrodynamic regime to an MHD regime
as N exceeds ∼0.05. In the MHD regime the large-scale dynamics is significantly
changed, essentially corresponding to a slow down of the flow under the action of the
Lorentz force. The small-scale turbulent fluctuations are not significantly modified; this
happens at larger values of the interaction parameter. In the transition regime from
the hydrodynamic to the MHD regimes, strong increase in the flow fluctuations was
observed. This corresponds to topological changes as the flow alternates chaotically
between the original hydrodynamic mean flow profile and one dominated by MHD
forces. This type of increased intermittency in the large scales may be generic in
situations where the large-scale vorticity and magnetic fields are perpendicular. Solving
the details of this complex MHD dynamics requires high-resolution measurements
of the evolution of the local velocity field; such measurements are progressively
becoming available, and will be implemented in future studies.
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MÜCK, B., GÜNTHER, C., MÜLLER, U. & BÜHLER, L. 2000 Three-dimensional MHD flows in
rectangular ducts with internal obstacles. J. Fluid Mech. 418, 265–295.
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