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Exercise 1: Traveler Salesman Problem with edge weights 1 or 2

Let TSP{1,2} denote the restriction of TSP to instances where the edge weight function takes
its values in {1, 2} only.

Question 1. Under the assumption P 6= NP , show that, for all ε > 0, there does not exist any (1 + 1
n − ε)-

approximation for TSP{1,2}.

Exercise 2: Easy Steiner

Question 2. Show that if the vertices used in an optimal Steiner tree are given with the instance, then the
Steiner Tree problem can be solved in polynomial time.

Exercise 3: MAX-DIRECTED-CUT

Given a directed graph G = (V,E) and a non-negative weight function on the arcs, w : E →
R+, find a maximum weight directed cut, i.e., a subset of vertices, S ⊆ V , that maximizes the total
weight of its outgoing arcs (i.e., the total weight of the arcs (u→ v) such that u ∈ S and v 6∈ S).

Question 3. Give (and analyze) a randomized 1
4 -approximation for this problem. Give a family of tight

instances.

Question 4. Using the method seen during the lectures, derandomize your algorithm to obtain a deter-
ministic 1

4 -approximation. What is its time complexity? Give a family of tight instances.

Exercise 4: Cycles and tournois

A tournois is a complete graph G = (V,E) whose edge have been directed (i.e., such that, for
all pair of vertices u, v ∈ V , either (u → v) ∈ E or (v → u) ∈ E). Given a tournois G, the acyclic
vertex set problem consists in finding a maximum size subset of vertices, S ⊆ V , such that the
subgraph induced by S in G is acyclic.

Question 5. Show that a tournois without cycle of length 3 is acyclic.

We admit that there exist a f -approximation for the restricton of SET-COVER to the instances
where each element of the universe belongs to at most f sets.

Question 6. Give (and analyze) a 3-approximation for the acyclic vertex set problem.
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Exercise 5: Traveler Salesman Path Problem

Given a undirected complete graph with a metric edge weight function, find a minimum
length simple path, i.e., a path that contains each vertex exactly once.

There exists three variants of the problem, depending on whether 0, 1 or 2 endpoints of the
path are fixed by the input.

Question 7. Give (and analyze) a 2-approximation for the variants where 0 or 1 endpoint of the path are
given in the input (i.e., where (a) the traveler can go from and arrive to any vertex or (b) where the traveler
has to start from a given vertex but can arrive to any other vertex).

Give a family of tight instances.

Question 8. Give (and analyze) a 3/2-approximation for the variant where none of the endpoints are
given in the input.

Give a family of tight instances.

Exercise 6: Derandomization by the Method of Conditional Expectation

Question 9. Let X and B be two random variables, such that B takes its values in a finite set B. Show
that:

max
b∈B

E(X |B = b) ≥ E(X).

We will now use this fact to derandomize a Monte-Carlo algorithm by replacing every random
bit draw by the “best random choice” for this bit (i.e., the b that maximizes E(X |B = b) in the
question above).

Let A(I, ω) be a randomized α-approximation for a given maximization problem Π (α <
1), where I denotes the problem instance and ω = ω1ω2 · · · denotes the chain of random bits.
Assume that algorithm A(I, ω) is Monte-Carlo and that its computation time on every instance I
is (uniformly) bounded by a polynomial p(|I|) (independently of the chain of random bits).

Let I be a fixed instance. Let X be the random variable for the value of the (random) solution
computed by algorithm A on instance I .

Assume that, for all q and all binary sequences b1 . . . bq , one can compute exactly in polynomial
time the conditional expectation:

E(X |ωq = bq, . . . , ω1 = b1)

i.e. the conditional expectation of the value of the solution returned by algorithm A, given that
the values of the first q random bits are b1, . . . , bq.

Given b1, . . . , bq ∈ {0, 1} constant, let bq+1 ∈ {0, 1} be the bit that maximizes:

E(X |ωq+1 = bq+1, ωq = bq, . . . , ω1 = b1).

Note that, given b1, . . . , bq fixed, one can compute bq+1 in polynomial time.

Question 10. Show that:

E(X|ωq+1 = bq+1, ωq = bq, . . . , ω1 = b1) ≥ E(X).

Hint: proceed by induction.

The main idea of the method of conditional expectation is to execute the algorithm and build
greedily the random bits one after the other when the algorithm requests them. When the algo-
rithm requests the qth bit, we make greedily the “best random possible choice” for bq, given the
choices already made for b1, . . . , bq−1.
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Question 11. Describe precisely the determistic greedy algorithm obtained by this method. Show that
the obtained greedy algorithm is a (determistic) α-approximation if A is a (randomized) α-approximation
for Π.

We now apply the method of conditional expectation to MAX-CUT.

Given a graph G with a non-negative weight function of edges, we consider the following
randomized approximation for MAX-CUT (seen in the lectures):

S0 ← ∅
Let V = {v1, . . . , vn}
For i = 1 to n do

If ωi = 1 then Si ← Si−1 ∪ {vi} else Si ← Si−1

EndFor
Return the cut (Sn, Sn)

We use the same notation as above, applied to this particular algorithm.

Question 12. Given b1, . . . , bq ∈ {0, 1} constant, show that one can compute in polynomial time:

E(X |ωq = bq, . . . , ω1 = b1).

Hint: Rewrite E(X |ωq = bq, . . . , ω1 = b1) as a function of the relationships of the edges with the two
sides of the cut already built.

Question 13. Deduce (and analyze) a greedy deterministic 1/2-approximation for MAX-CUT. Rephrase
this algorithm in a natural way.

♣
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