
Theory & Practice
of DNA strand displacement circuits

October 8, 2018 @ DNA 24

Chris Thachuk
Winfree Lab, California Institute of Technology

Engineering dynamics

Today’s tutorial in a nutshell

Molecular Circuits
Built upon DNA strand displacement cascades

DNA strand displacement cascades

Input Output

5’-ACCACGATCACATTAC-3’

5’-GCAACATACAT-3’

5’-CCCATACATCACCAG-3’

5’-TACCACATGAGCAGCA-3’

Computation

5’-GAGCTACATCAC-3’

5’-TAAATCATGATCAG-3’

Molecular Circuits
Built upon DNA strand displacement cascades

DNA strand displacement cascades

Input Output

5’-ACCACGATCACATTAC-3’

5’-GCAACATACAT-3’

5’-CCCATACATCACCAG-3’

5’-TACCACATGAGCAGCA-3’

Computation

5’-GAGCTACATCAC-3’

5’-TAAATCATGATCAG-3’

 Review of strand displacement

 Building and composing logic gates

 Tools for designing and verifying circuits

 Robustness of strand displacement

Tutorial Outline

Review of DNA Strand Displacement (DSD)

Video Courtesy of Biocomputation Group @ Microsoft Research

B. Yurke, A. J. Turberfield, A. P. Mills Jr., F. C. Simmel, J. L. Neumann, Nature 406, 605 (2000).  
A. J. Turberfield et al., Phys. Rev. Lett. 90, 118102

≡ ≡ACATGGACAGCTATAC
TGTACCTGTCGA

1*

1

2* 1*
1

2*
toeholdlong domain

fr
ee

 e
ne

rg
y

(a
rb

itr
ar

y
un

its
)

− 15

− 10

− 5

global energy barrier
()

a b c d e

1*
1

2*

1 2

1*
1

2*1*
1

2* 1*
1

2*1*
1

2* 1* 2*1*

1

2* 1* 2*
1 2

a b c d e

1

folding pathway events

local energy barrier
()cb

ba

CCCTCATTCAATACCCTACG
AGAGGTA

c
2. Domain 2 undergoes
branch migration

3. Strand displacement
completes

ns

Complex Y

Output B

old)

old)

0 10 155

0

2

4

6

8

2* 3*
3

1
2
2

3*2*

2* 3*
2 3

21

Toehold length (nt)

lo
g 1
0
k
(M

-1

Adapted from Zhang & Seelig 2011

(simplified energy model)

Strand Displacement Cascades

=

 Three Rules

Compiling CRNs into DNA
CRN program:

Initial conditions:

5 A’s
3 B’s
10 C’s

Soloveichik, Seelig, Winfree, PNAS, 2010

I Bind

II Release

III Displace

Rule 1: Bind

Example

1*

1

single-stranded
complementary

domains

Domain level rules for DSD

Rule 1: Bind

Example

1*

1

Two single-stranded complementary domains can bind

Domain level rules for DSD

Rule 2: Release

Example

1

1*

blue strand bound by only
a short domain

Domain level rules for DSD

Rule 2: Release

Example

Any strand bound by only a short domain can release

1

1*

Domain level rules for DSD

Rule 3: Displace

Example

1

1*

2

2

2*

identical domains,
one bound, one free

Domain level rules for DSD

Rule 3: Displace

Example

1

1*

2

2

2*

already bound

Domain level rules for DSD

Rule 3: Displace

Example

1

1*

A domain can displace an identical domain of another strand,
if neighboring domains are already bound

2

2

2*

Domain level rules for DSD

≡ ≡ACATGGACAGCTATAC
TGTACCTGTCGA

1*

1

2* 1*
1

2*
toeholdlong domain

fr
ee

 e
ne

rg
y

(a
rb

itr
ar

y
un

its
)

− 15

− 10

− 5

global energy barrier
()

a b c d e

1*
1

2*

1 2

1*
1

2*1*
1

2* 1*
1

2*1*
1

2* 1* 2*1*

1

2* 1* 2*
1 2

a b c d e

1

folding pathway events

local energy barrier
()cb

ba

CCCTCATTCAATACCCTACG
AGAGGTA

c
2. Domain 2 undergoes
branch migration

3. Strand displacement
completes

ns

Complex Y

Output B

old)

old)

0 10 155

0

2

4

6

8

2* 3*
3

1
2
2

3*2*

2* 3*
2 3

21

Toehold length (nt)

lo
g 1
0
k
(M

-1

Adapted from Zhang & Seelig 2011

(simplified energy model)

Why do we use toeholds?

Toeholds introduce
energy barriers

Toehold-mediated DNA strand displacement

S

S*T*

ST

T: toehold domain (typically 3-7 nucleotides)
S: branch migration domain (typically 15-20 nucleotides)

S

S*T*

ST

⋯

Zhang and Seelig, Nature Chemistry 2011

𝑘 ≈ 10𝐿/M/s when 𝐿 ≤ 6

𝑘 ≈ 106/M/s otherwise

𝐿: toehold length

The rate of strand displacement grows
exponentially with toehold length for
short toeholds.

𝐴 + 𝐵՜
𝑘
𝐶 + 𝐷

Kinetics of toehold-mediated strand displacement

T1

S1*T1*

S1

S1

1/s

T1* S1*

S1T1 S1+S1T1

S1*T1*

S1+
106/M/s

106−𝐿/s

𝐴 + 𝐵 𝐴𝐵 𝐶 + 𝐷

simplify: 𝐴 + 𝐵
𝑘𝑒𝑓𝑓

𝐶 + 𝐷 𝑘𝑒𝑓𝑓 = ?

collision rate: 106 𝐴 [𝐵]

collision success probability:
1/s

1/s+ 106−𝐿/s

net rate of success: 106 ∙
1

1 + 106−𝐿 [𝐴][𝐵]

𝑘𝑒𝑓𝑓

This approximation is valid for low concentrations of A and B (e.g. [A]=[B]=100nM) such that
the unimolecular reaction is sufficiently faster than the bimolecular reaction.

𝑘𝑒𝑓𝑓 ≈ 10𝐿/M/s when 𝐿 ≤ 6

otherwise 𝑘𝑒𝑓𝑓 ≈ 106/M/s

𝐿: toehold length |T1|

Zhang et al, JACS 2009

Srinivas et al, NAR 2013

(fig. S5). In all tested cases, the output went to
the correct ON or OFF state. A three-OR cascade
(fig. S6, A and B) and a four-OR cascade (fig. S6,
C and D) also worked. The delay time required
for circuit computation increased linearly with
the number of layers (Fig. 3A). However, once
the threshold for the output gate was exceeded,
the signal increased at roughly the same rate as
in the smaller circuit (Fig. 3B). In a circuit with
four layers, two AND gates, and three OR gates,
with 12 different combinations of inputs, the
output went to clear and correct ON or OFF
states in 8 hours (Fig. 3C).

Because integrating gates support multiple
inputs and amplifying gates support multiple
outputs, logic gates built from a pair of them can
easily support fan-in and fan-out. In a circuit with
a four-input OR gate, only when all inputs from
the upstream OR gates were OFF did the output

stay OFF (Fig. 3D). In a circuit with a four-output
OR gate, each output copied the correct logic
from the upstream OR gate (Fig. 3E). Circuits
with a four-input AND gate and a four-output
AND gate are shown in fig. S8C and fig. S9C,
respectively.

To demonstrate a digital circuit with an inter-
esting function, we built a circuit that computes
the floor of the square root of a four-bit binary
number (Fig. 4A). It is not an optimized digital
logic circuit; it is designed to showcaseAND,OR,
NOT, NAND, NOR, fan-in, and fan-out of logic
gates, aswell as fan-out of input signals. NOTgates
are difficult to implement directly using represen-
tations where the ON or OFF state of an input is
determined by the presence or absence of a single
DNA species: A circuit might compute a false
output before all input strands are added, because
NOT gates already produce ON signals in the

absence of their inputs, and for use-once circuits
(such as seesaw circuits), computations cannot
be undone. Therefore, we use dual-rail logic (fig.
S10B). Each input is replaced by a pair of inputs,
representing logic ON and OFF separately. Each
logic gate is replaced by a pair of AND or OR
gates. (Taking the NOR gate as an example, out-
put being OFF is the OR of both inputs being
ON; output being ON is the AND of both inputs
being OFF.) Initially, the pair of inputs is absent,
indicating that the logic value of this signal is un-
known. At the beginning of computation, one in-
put of the pair will be added, indicating either
logic ON orOFF. In this way, no computationwill
take place before the input signals arrive. With
dual-rail logic, any AND-OR-NOTcircuit can be
transformed into an equivalent circuit with AND
or OR gates only. Then, anyAND-OR circuit can
be further transformed into an equivalent seesaw

Fig. 4. A square-root circuit implemented with the seesaw DNA motif. (A)
A digital logic circuit that computes the floor of the square root of four-bit
binary numbers. (B) Abstract diagram of the seesaw circuit that is equiv-
alent to the square-root digital logic circuit. x0i and x1i are dual-rail inputs
of xi, and they represent logic OFF and ON, respectively (the same rule
applies to the outputs). Each pair of seesaw gates implements an AND (∧)
or OR (∨) gate. Each pair of dual-rail AND or OR gates implements one
ANDNOT, OR, NAND, or NOR gate. Red dots indicate positive red numbers,
specifying initial relative concentrations of free or bound signals; red cir-
cles indicate negative red numbers, specifying initial relative concentra-

tions of thresholds or reporters. An example of a two-input, two-output OR
gate is highlighted; full details are provided in fig. S10. (C) Kinetics
experiments of the square-root circuit with all combinations of inputs from
0000 to 1111. All 16 plots are shown separately in fig. S11. (D) Kinetics
experiments that compute the square roots of 0, 1, 4, and 9. Trajectories
and their corresponding outputs have matching colors. Dotted and solid
lines indicate dual-rail outputs that represent logic OFF and ON, respec-
tively. Sequences of strands are listed in tables S4 to S7. Experiments were
performed at 25°C, 1× = 50 nM, and 0.1× was used for OFF and 0.9× for
ON inputs.

3 JUNE 2011 VOL 332 SCIENCE www.sciencemag.org1200

REPORTS

 o
n

Se
pt

em
be

r 1
4,

 2
01

1
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d

fro
m

strand
displacement

cascades

molecular
logic circuits

controlling assembly of
nanoscale structures

10nM

strand displacement
in vivo

of an integrating gate and an amplifying gate, in order to suppress leak
(Fig. 3c). The values of weights and thresholds determined by in silico
training were used to determine the concentrations of the 72 DNA
species that comprise the memory (Fig. 3b, c). In principle, the same
set of DNA molecules could be retrained to remember any of 500
distinct sets of patterns by adjusting weight and threshold concentra-
tions (Supplementary Information section 5).
In the tradition of using game-playing automata as a benchmark for

new computing technologies, we demonstrated the Hopfield network
in the context of a game called ‘read your mind’, which is played
between a human and the DNA associative memory in a cuvette
(Fig. 3d). The game consists of three steps. First, the human thinks
of a scientist, choosing from the listed four options (each scientist
corresponds to one of the four patterns; for example, Franklin is
0110) or someone else. Second, the human ‘tells’ the DNA associative
memory some of the answers to questionsQ1 toQ4 (Fig. 3d) by adding
corresponding DNA strands to the cuvette. Finally, after 8 h of ‘think-
ing’, the DNA associative memory will guess who is in the human’s
mind and ‘tell’ the human the rest of the answers by fluorescence
signals. In doing so, the four-neuron DNA associative memory exhi-
bits a brain-like behaviour: associative recall of memories based on
incomplete information.
Weplayed the game 27 timeswith theDNAassociativememory, out

of 81 possible ways of answering questions Q1 to Q4. Six examples are

shown in Fig. 3e; the rest are shown in Supplementary Figs 15–18. The
top left data in Fig. 3e can be interpreted as following: when the human
‘said’ that the scientist was born in the twentieth century (inputx35 1)
but was not a mathematician (input x45 0), the DNA associative
memory ‘guessed’ that the scientist did not study neural networks (out-
put x1 was updated to 0) but was British (output x2 was updated to 1),
which indicated that the scientist was Rosalind Franklin (pattern 0110).
Similarly, the DNA associative memory was able to work out the other
three scientists correctly—in the best case, only one answer was given by
thehuman (themiddle right data). Thebottomleft data shows thatwhen
the informationprovided by the humanmatchedmultiple patterns (that
is, inputx45 1 indicates that the scientist was amathematician, which is
true for both Alan Turing and Claude Shannon), the DNA associative
memory was able to identify that they were both born in the twentieth
century (outputx3 was updated to 1), while the other outputs remained
unknown. The bottom right data show that the DNA associative
memory was also able to recognize information that was incompatible
with all memorized patterns by producing invalid output.
All experiments reported here were semiquantitatively reproduced

bymass action simulations using the exact model developed previously
for seesaw digital logic circuits17 with no changes to any rate constants
(see Supplementary Information section 7 and Supplementary Figs 19–
24 for comparisons to experiments, and Supplementary Figs 25–27 for
simulation predictions for the remaining 54 games).

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Time (h)

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

ba

c

x1

x2

x3

x4

1
0.5–2

1

1
–1.52

–1

–1
0.51

1

1
–1.5–1

2

5

f

1

8

1
1

1

53

5

1834

5

110

5

2740

5

1326

5

2841

5

820

5

2942

5

f
8

11
1

1
–2.2

f

1

8

1
1

1
–2.3

f

1

8

1
1

1
–1.5

f
14

12
2

2
–0.7

f
14

12
2

2
–2.2

f
8

11
1

1
–2.3

f

1

8

1
1

1
–1.5

–1.5

0 2 4 6 8
Time (h)

? 1 0 ? x x x x

Wrong
information

? ? ? 1 ? ? 1 1

Not enough
information

? ? 0 ? 1 0 0 0

Ramon y Cajal

d

36

1

39

1

43

1

44

f

21

2

1–0.4

f

22

2

1–0.4

f

30

2

1–0.4

f

31

2

1–0.4

6
ROX

–1.5

23
FAM

–1.5

24
TYE563

–1.5

25

TYE665
–1.51

0 ? ? 1 0 0 1 1

Shannon

Answers: Yes (1), No (0), or I don’t know (?)

Q1: Did the scientist study neural networks?

Q2: Was the scientist British?

Q3: Was the scientist born in the 20th century?

Q4: Was the scientist a mathematician?

? ? 1 0 0 1 1 0

Franklin

? 1 ? 1 1 1 1 1

Turing

0 1 1 0 Rosalind Franklin

1 1 1 1 Alan Turing

0 0 1 1 Claude Shannon

1 0 0 0 Santiago Ramon y Cajal

e

x1
0

x1
0

x1
0

x2
0

x2
0

x2
0

x3
0

x3
0

x3
0

x3
1

x3
1

x3
1

x4
0

x4
0

x4
0

x4
1

x4
1

x4
1

x2
1

x2
1

x2
1

x1
1

x1
1

x1
1

Figure 3 | A four-neuron Hopfield associative memory. a, The recurrent
linear threshold circuit. b, The resulting seesaw circuit using the dual-rail
implementation.Dashed lines indicate the connections to reporters. c, Four sets
of reporters with signal restoration that are connected to either x0i or x

1
i at any

given time. d, A ‘read your mind’ game between a human and the four-neuron
DNA associative memory that ‘remembers’ four scientists according to the
answers of four questions. e, Kinetics experiments of the ‘read yourmind’ game.
A total of 112 DNA strands assembled to form 72 initial DNA species (as
indicated by the red numbers in b, c) were mixed in solution at their respective
concentrations. The standard concentration was 135 25 nM. Selected inputs
corresponding to the human’s answers were then added with relative

concentrations of 53 (to set the initial states, inputs triggering the update of
multiple neurons are used, for example, w53,5 for x11 and w34,18 for x01). Dotted
and solid lines indicate dual-rail outputsx0i andx

1
i , respectively. For each signal,

if both dotted and solid lines stay ‘off’ (less than 0.2), the logic value is unknown,
‘?’; if the dotted (solid) line goes ‘on’ (greater than 0.65) and the solid (dotted)
line stays ‘off’, the logic value is ‘0’ (‘1’); if both dotted and solid lines go ‘on’, the
logic value is invalid, ‘x’. Arrows connect initial states of the four neurons
(inputs) to the final states (outputs at 8 h). The eight trajectories in each plot
were from two separate experiments (connecting either x0i or x

1
i to the

reporters) because we only have four distinct fluorophores. Sequences of strands
are listed in Supplementary Tables 5–7. Experiments were performed at 25 uC.

LETTER RESEARCH

2 1 J U LY 2 0 1 1 | V O L 4 7 5 | N A T U R E | 3 7 1

Macmillan Publishers Limited. All rights reserved©2011

molecular artificial
neural networks

• Large autonomous biochemical
networks built from scratch • Biochemical system doing inference

• Logic on biological signals
• Prescribed nanoscale structures seen

under atomic force microscope

Qian, Winfree, Science 2011 Qian, Winfree, Bruck Nature 2011

Hemphill, Deiters J Am Chem Soc 2013Yin, Choi, Calvert, Yurke, Pierce Nature 2008

Strand displacement in the lab

 Review of strand displacement

 Building and composing logic gates

 Tools for designing and verifying circuits

 Robustness of strand displacement

Tutorial Outline

AND gate
release Z if and only if X and Y are present

X

Y Z

X

Y Z

voltages

strands

gate=complex

gates get consumed!
(need to have many copies)

5 64

1 2

input X

8632

1* 2* 3* 6*

0

input Y

5

3

7

7

5* 7*

9

release Z if and only if X and Y are present

Strand Displacement Cascades Example: AND gate

AND gate

bind

5 64

1

2

8632

1* 2* 3* 6*

0

input Y

5

3

7

7

5* 7*

9

release Z if and only if X and Y are present

Strand Displacement Cascades Example: AND gate

5 64

1

2

8632

1* 2* 3* 6*

0

input Y

5

3

7

7

5* 7*

9

release Z if and only if X and Y are present

Strand Displacement Cascades Example: AND gate

displace

5 64

1 2 863

2

1* 2* 3* 6*

0

input Y

53

7

7

5* 7*

9

release Z if and only if X and Y are present

Strand Displacement Cascades Example: AND gate

1 2 3

2
0 53

5 64

input Y
7

86

6*

7

7*

9

1* 2* 3* 5*

release Z if and only if X and Y are present

Strand Displacement Cascades Example: AND gate

displace

1 2 3

2

0 3

5 64

input Y
7

86

6*

7

7*

95

1* 2* 3* 5*

release Z if and only if X and Y are present

Strand Displacement Cascades Example: AND gate

1 2 3

2

0 3

5 64

input Y
7

86

6*

7

7*

95

1* 2* 3* 5*

release Z if and only if X and Y are present

Strand Displacement Cascades Example: AND gate

release

1 20

5 64

input Y
7

86

6*

7

7*

9

1* 2* 3* 5*

3

32 5

waste

release Z if and only if X and Y are present

Strand Displacement Cascades Example: AND gate

1 20 86

6*

7

7*

9

1* 2* 3* 5*

5

64

7

32 5

waste

3

release Z if and only if X and Y are present

Strand Displacement Cascades Example: AND gate

8

6

6*

7

7*

96
7

32 5

waste

1 20

1* 2* 3* 5*

5

4

3

release Z if and only if X and Y are present

Strand Displacement Cascades Example: AND gate

Strand Displacement Cascades Example: AND gate

6 7

7*

8 9

7

32 5

waste

1 20

1* 2* 3* 5*

5

4

3

6*

6

output Z

release Z if and only if X and Y are present

waste

before after

Strand Displacement Cascades Example: AND gate
release Z if and only if X and Y are present

32 5

waste

6 7 8 9

5 64

1 2

input X

0

input Y

3

7

Composable

gate is “used up”

waste
AND gate

output Z

Composing AND gates

A

B X

Y

W Z

We need a “wire”

Sequence Independence
Translator (a “wire”): X→Y

output Y

input X

Different coloring scheme to emphasize sequence (in)dependence!

Sequence Independence

F2

input X

bind

F1

Translator (a “wire”): X→Y

Sequence Independence

F2

Translator (a “wire”): X→Y

Sequence Independence

output Y

Translator (a “wire”): X→Y

Reading Output

A

B X

Y

W Z

R R

N+ NCy3

hνex hνem

displace

1

2

2

2*1*

1 2

2

2*1*

quencher

flourophore

read many
different samples

A reaction gate

A1 + B1 →X1 + Y1

This universal component
can realize a number of logic gates

We start with large excess of DNA complexes (fuels)
that mediate the reaction:

adopted from Srinivas et al, Science, 2017

AND gate

C
D

Signal Fanout Gates

Fanout 2

Fanout 3 Fanout 4

5’-GCACTTTTACATTTACATTACATTTAC-3’
fuel (always present)

5’-ACAGATCACCAGATCATTATCAGAG-3’
strand representing signal S

Handling OR gates

Reaction gates
function as

“AND of OR” gates

AND(A1, OR(B1, AND(A2, B2))

Handling NOT gates

Dual-rail input, Dual-rail output5’-CCCCCCC-3’
s

5’-TTTTTTTT-3’
⌝s

Dual rail logic

NOT

OR

AND

Handling NOT gates

Dual-rail inputDual-rail input, Dual-rail output5’-CCCCCCC-3’
s

5’-TTTTTTTT-3’
⌝s

Handling NOT gates

Dual-rail inputDual-rail input, Dual-rail output5’-CCCCCCC-3’
s

5’-TTTTTTTT-3’
⌝s

With reaction gates, wires,
and dual-rail encoding, we can
build any combinatorial circuit

 Review of strand displacement

 Building and composing logic gates

 Tools for designing and verifying circuits

 Robustness of strand displacement

Tutorial Outline

module FullAdder(a,b,cin,cout,sum); input a, b, cin; // inputs
 output cout, sum; // output
 wire w1, w2, w3, w4; // internal nets

 xor #(10) (w1, a, b);
 and #(8) (w2, a, b);
 and #(8) (w3, a, cin);
 and #(8) (w4, b, cin);
 or #(10, 8)(cout, w2, w3, w4);
endmodule

Compile from Verilog, or truth table,
into AND-OR-NOT circuit

How do you design the circuit?

How do you design the circuit?

Inputs Outputs

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Brayton, R., & Mishchenko, A. (2010, July). ABC: An academic industrial-
strength verification tool. In International Conference on Computer Aided
Verification (pp. 24-40). Springer, Berlin, Heidelberg.

 Find minimized AND-OR-NOT circuit using ABC

a

∧∧

∨

b

∧

¬

cin

¬

∨

∨

∧

¬

cout

∨

¬

s

How do you design the circuit?

Need to remove
explicit NOT gates

Brayton, R., & Mishchenko, A. (2010, July). ABC: An academic industrial-
strength verification tool. In International Conference on Computer Aided
Verification (pp. 24-40). Springer, Berlin, Heidelberg.

 Find minimized AND-OR-NOT circuit using ABC

How do you design the circuit?

a

∧

b

∧

cin

∨

¬

∧

¬

¬

cout

∨

∧

∨

∨

¬

s

cinb

∧

¬

b

¬

cin

∧

¬

b

¬

cin

∧

b cin

∧

b cin

a

a

 “Tree-ify” circuit

Brayton, R., & Mishchenko, A. (2010, July). ABC: An academic industrial-
strength verification tool. In International Conference on Computer Aided
Verification (pp. 24-40). Springer, Berlin, Heidelberg.

 Find minimized AND-OR-NOT circuit using ABC

How do you design the circuit?

 “Tree-ify” circuit

a

∧

b

∧

cin

∨

∨

cout

∨

∧

∨

∧

s

cin b

∨

b cin ∧

¬b ¬cin

∨

¬b ¬cin ∧

b cin

¬a a

 Push negations to literal level (dual-rail inputs)

Brayton, R., & Mishchenko, A. (2010, July). ABC: An academic industrial-
strength verification tool. In International Conference on Computer Aided
Verification (pp. 24-40). Springer, Berlin, Heidelberg.

 Find minimized AND-OR-NOT circuit using ABC

How do you design the circuit?

 “Tree-ify” circuit

 Push negations to literal level (dual-rail inputs)

∧

∨

∨∧

cout

∧

∨

∧

s

∨ ∧ ∨

¬b ¬cinb cin

¬aa

 Compress circuit

Circuit now using
dual-rail input

From circuit to DSD system
DSD: formal language for describing and modeling strand displacement cascades

 <1>[2]:<6>[3^ 4]:5^*
=

http://lepton.research.microsoft.com/webdna/

Phillips, Cardelli, Journal of Royal Society Interface, 2009

From circuit to DSD system
DSD: formal language for describing and modeling strand displacement cascades

 <1>[2]:<6>[3^ 4]:5^*
=

http://lepton.research.microsoft.com/webdna/

Phillips, Cardelli, Journal of Royal Society Interface, 2009

formal semantics

8

FROM CRN TO DSD SYSTEMS

Cardelli (2011)Soloveichik

et al. (2010)

Qian et al. (2011)Lakin

et al. (2012)

Chen et al. (2012), Cardelli (2013), Srinivas (2015), Lakin et al. (2016), ...

Images drawn using VisualDSD, Lakin et al. (2012)

From circuit to DSD system
From circuit to DSD system

11

THE COMPILER FRAMEWORK

a t
xA

x
btB

x t b

x* t*t* F1

x

t*t* x*

ta
F2

a t
x

x t b

x* t*t*

x
btx

t*t* x*

ta

A B
F1 F2+ +

CRN trajectory
equivalence

CRN condensation

CRN enumeration

1

2

3

nucleotide
sequences

4

x

t*t* x*

ta
x

btx t b

x* t*t*

a t
x

x t b

x* t*t*

a t x

bind

3-way branch migration

unbind

a t
x

x t b

x* t*t*

x
btx

t*t* x*

ta

A B
F1 F2+ +

i1

i2

i3

KinDA project

nucleotide-level reaction rates

a t
x

x t b

x* t*t*

x
btx

t*t* x*

ta

A B
F1 F2+ +

Nuskell project Peppercorn project

a t
xA

+
x

t*t* x*

ta
F2

x

t*t* x*

ta
a

xt

condensed reaction rates

domain-level reaction rates

Badelt et al. (2017) - Nuskell

Grun et al. (2014) - Peppercorn

Shin et al. (2017) - CRN pathway decomposition equivalence

Johnson et al. (2018) - CRN bisimulation equivalence

Berleant et al. (submitted) - KinDA

The Nuskell compiler framework

11

THE COMPILER FRAMEWORK

a t
xA

x
btB

x t b

x* t*t* F1

x

t*t* x*

ta
F2

a t
x

x t b

x* t*t*

x
btx

t*t* x*

ta

A B
F1 F2+ +

CRN trajectory
equivalence

CRN condensation

CRN enumeration

1

2

3

nucleotide
sequences

4

x

t*t* x*

ta
x

btx t b

x* t*t*

a t
x

x t b

x* t*t*

a t x

bind

3-way branch migration

unbind

a t
x

x t b

x* t*t*

x
btx

t*t* x*

ta

A B
F1 F2+ +

i1

i2

i3

KinDA project

nucleotide-level reaction rates

a t
x

x t b

x* t*t*

x
btx

t*t* x*

ta

A B
F1 F2+ +

Nuskell project Peppercorn project

a t
xA

+
x

t*t* x*

ta
F2

x

t*t* x*

ta
a

xt

condensed reaction rates

domain-level reaction rates

Badelt et al. (2017) - Nuskell

Grun et al. (2014) - Peppercorn

Shin et al. (2017) - CRN pathway decomposition equivalence

Johnson et al. (2018) - CRN bisimulation equivalence

Berleant et al. (submitted) - KinDA

The Nuskell compiler framework

17

REACTION ENUMERATION

b

b* a

a*
c*

d* d

a

a* b

b*
c b

b*

a

a*

c c*

d* d

a

a*

b

b*

4-way branch migration

b
a

a* b*

ba

a* b*

b
c

c*c*

c

3-way branch migration

b

c*a*

cc

c*a*

c
c

remote toehold branch migration

a b a*
a*

a
b

a*

a a

a*

binding / unbinding

c
c* c*a*a*

toehold occlusion
c

c*a*

c

c*

c

0-toehold branch migration
detailed vs. condensed ignored reactions

Grun et al. 2014

http://www.github.com/DNA-and-Natural-Algorithms-Group/peppercornenumerator

Reaction Enumeration

≡ ≡ACATGGACAGCTATAC
TGTACCTGTCGA

1*

1

2* 1*
1

2*
toeholdlong domain

fr
ee

 e
ne

rg
y

(a
rb

itr
ar

y
un

its
)

− 15

− 10

− 5

global energy barrier
()

a b c d e

1*
1

2*

1 2

1*
1

2*1*
1

2* 1*
1

2*1*
1

2* 1* 2*1*

1

2* 1* 2*
1 2

a b c d e

1

folding pathway events

local energy barrier
()cb

ba

Designing Sequences

Designing Sequences

Designing Sequences
1 2

input X

0 3

poor sequence
for a signal strand

good sequence
for a signal strand

Mulitstrand.org to determine reaction rates

 Review of strand displacement

 Building and composing logic gates

 Tools for designing and verifying circuits

 Robustness of strand displacement

Tutorial Outline

Why is this circuit not robust?

ON cases

OFF cases

What causes signal leak?

1 20 3

1 20 3

1 20 3

1 20 3
1 20 3

1 2 3

1 20 3

x

1 20

x

Problem 1: Molecules are not perfect

Imperfect strands from imperfect synthesis

1 20 3

1 20 3

1 20 3

1 20 3
1 20 3

1 2 3

1 20 3

x

1 20

x

Problem 1: Molecules are not perfect

Imperfect strands from imperfect synthesis

Problem 1: Molecules are not perfect

x1* x2*

x2* y1*
y1

x2 y1

y2

x1

x2

x1* x2*

x2* y1*
y1

x2 y1

y2

x1

x2

x1* x2*

x2* y1*
y1

x2 y1

y2

x1

x2

x1* x2*

x2* y1*
y1

x2 y1

y2

x1

x2

x1* x2*
x2 y1

y1*
y1 y2

!

x2*!

x1* x2*
x2 y1

y1*
y1 y2

!

x2*!

x1* x2*
x2 y1

y1*
y1 y2

!

x2*!

x1* x2*
x2 y1

y1*
y1 y2

!

x2*!

SLD Truncated SLD.F1

Truncated SLD.F2 Truncated SLD.F2

DLD Truncated DLD.F1

Truncated DLD.F2 Truncated DLD.F2

F1

F2

F1

F2

F1

F2

F1

F2

F1

F2

F1

F2

F1

F2

F1

F2

translator cascade
with perfect molecules

translator cascade
with imperfect molecules

displacement
now possible

(Partial) solution to Problem 1

(Partial) solution to Problem 1

1 20 3

2 31

(Partial) solution to Problem 1

1 20 3

2 31

Complexes can also
be purified by gel

Y Y2Y1

X2

Y1

X2
*X1b

* F1

Y1

Y2

Y1
*X2b

* F2

Problem 2: Spurious reactions occur
(even with perfect molecules)

X→Y

X2X1X!

Y has been spuriously “produced”

Y1
*X2b

*

Y1

X2

X2
*

X1b
*

Y Y2Y1

X2
Y1

X2
*X1b

*

F1

Y1

Y2

Y1
*X2b

*

F2

Some rough energy accounting

X→Y State 1: before leak
• 2 bound long domains
• 2 complexes

State 2: after leak
• 2 bound long domains
• 2 complexes

Y1
*X2b

*

Y1

X2

X2
*

X1b
*

Y Y2Y1

X2
Y1

X2
*X1b

*

F1

Y1

Y2

Y1
*X2b

*

F2

Some rough energy accounting

X→Y

̗Energy
0 bound long domains
0 units of entropy

State 1: before leak
• 2 bound long domains
• 2 complexes

State 2: after leak
• 2 bound long domains
• 2 complexes

Can we rationally design
composable, leakless

DSD gates?

A Motivating Question

Can we rationally design
composable, leakless

DSD gates?

A Motivating Question

Y Y2Y1

Gate
X→Y

X2X1X

Can we rationally design
composable, leakless

DSD gates?

A Motivating Question

Y Y2Y1

Gate
X→Y

Z Z2Z1

Gate
Y→Z

X2X1X

“Golf funnel with deep groove” pathway
K. Dill & Bromberg (2002). Molecular Driving Forces.

Leak

Designed

What do we mean by leakless?

For a redundancy parameter N, there exist translator and
AND gates using N long domains that have the following
property:

even at thermodynamic equilibrium,

the net leak decreases exponentially with N.

Thachuk, Winfree, David Soloveichik. (2015)
Leakless DNA strand displacement. DNA 21.

(Partial) solution to Problem 2

X2 Y1

X2
*X1b

*
F1

Y1 Y2

Y1
*X2b

*
F2

X1bc X2 Y1

X1
* X2

*

F1

X2
* Y1

*

X2bc Y1 Y2F2

• Designed pathways: bimolecular
• Leak pathways: trimolecular

• Designed pathways: bimolecular
• Leak pathways: bimolecular

Typical translator using “Single Long Domain” (SLD)

DLD translator using “Double Long Domain” (DLD)

X2 Y1

X2
*X1b

*
F1

Y1 Y2

Y1
*X2b

*
F2

X1bc X2 Y1

X1
* X2

*

F1

X2
* Y1

*

X2bc Y1 Y2F2

• Designed pathways: bimolecular
• Leak pathways: trimolecular

• Designed pathways: bimolecular
• Leak pathways: bimolecular

Typical translator using “Single Long Domain” (SLD)

DLD translator using “Double Long Domain” (DLD)

X1bc X2 Y1

X1
* X2

*

F1

X2
* Y1

*

X2bc Y1 Y2F2

• Designed pathways: bimolecular
• Leak pathways: trimolecular

X2 Y1

X2
*X1b

*
F1

Y1 Y2

Y1
*X2b

*
F2

• Designed pathways: bimolecular
• Leak pathways: bimolecular

Lengthening recognition domains
does not help

Typical translator using “Single Long Domain” (SLD)

DLD translator using “Double Long Domain” (DLD)

DLD translators are intrinsically less “leaky”
X1 X2

?

X !

X2
* Y1

*

X2 Y1

Y1 Y2

X2bcX2
*

Y12

X1bc

X1
*

f

e

S1 S2

S3
S4S5

d

c

ba

X1bc X2

Y1

X1
* X2

*

F1

X2
* Y1

*

X2bc Y1

Y2F2

DLD translators are intrinsically less “leaky”
X1 X2

?

X !

X2
* Y1

*

X2 Y1

Y1 Y2

X2bcX2
*

Y12

X1bc

X1
*

f

e

S1 S2

S3
S4S5

d

c

ba

X1bc X2

Y1

X1
* X2

*

F1

X2
* Y1

*

X2bc Y1

Y2F2

DLD translators are intrinsically less “leaky”
X1 X2

?

X !

X2
* Y1

*

X2 Y1

Y1 Y2

X2bcX2
*

Y12

X1bc

X1
*

f

e

S1 S2

S3
S4S5

d

c

ba

X1bc X2

Y1

X1
* X2

*

F1

X2
* Y1

*

X2bc Y1

Y2F2

F
Q

R
Y1
* Y2

*

Y1bc Y2

Can we generalize the
DLD motif?

Translator using
Triple Long Domain (TLD) motif

F1
X2X1bc X3 Y1

X1
*

X3X2bc Y1 Y2

X2
*

F2

Y1X3bc Y2

X3
*

Y3F3

X2
* X3

*

X3
* Y1

*

Y1
* Y2

*

X2bc X3

Y2

X2
* X3

* Y1
*

F2
Y1

a

X3
* Y1

* Y2
*

X3bc Y1

Y3F3
Y2

X1bc X2

Y1

X1
* X2

* X3
*

F1
X3 X3

* Y1
*

X3 Y1

X1
bc

Y1 Y2

X2bc

X
2 *

X
1 * Y12

X2
*

X2

X3

X3
*

b

F
Q

R
Y1
* Y2

* Y3
*

Y1bc Y2 Y3

X3
* Y1

*

X3 Y1

X
1bc

Y1 Y2

X2bc

X
2 *

X
1 * Y123

X2
*

X2

X3
*

X3
* Y1

* Y2
*

X3

X3bc Y1 Y3Y2

Three fuel complexes must
combine to activate output
signal.

̗Energy
 0 bound long domains
-2 units of entropy

Translator using
N Long Domain (NLD) motif

F1
X2X1bc ... Xn

X1
*

Y1

X3X2bc ... Y1

X2
*

Y2

.......

F2

Y1Xnbc ... Yn-1

Xn
*

YnFn

X2
* Xn

*

X3
* Y1

*

Y1
* Yn-1

*

N fuel complexes must
combine to activate output
signal.

̗Energy to leak state
 0 bound long domains
-(N-1) units of entropy

x12*
x12x11

x11*

x12*
x12

y11

y11*

y11

y11

y11*

y11

y12

y12

y11

y11*

y12

y12*
z11

y12

y12*
z11

z11*
z12x21

x21*
x22

x22*x22

x22*

x31

x31*
x32

x32*
x32

x32*

x41

x41*
x42

x42*
x42

x41*

y21

y21*

y21

y21

y21*

y21

y22

y22

y21

y21*
y22

y22*

y22

y22*
z11

z11

z11*
z12

z11

z11*
z12

z12*

z12*
z12

w1

w2w1

w1*

x51

x51*
x52

x52*
x52

x51*

z21

z21*
z21 z22

x61

x61*
x62

x62*
x62

x61*

z21

z21*
z21 z22

z21

z21*
z22

z22*

z22

z22*
w1

w2w1

w1*

w2

w1* w2*
w1

OR

OR

OR

OR

OR

X1
X2

X3
X4

X5
X6

leak: reporter+fuels

leak: reporter+fuels

OR

OR

OR

OR

OR

x1

x2

x3

x4

x5

x6

x6
x5
x1 x2
x3x4

input X1

input X2

input X3

input X4

input X5

input X6

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F16

F17

F18

reporter

F19

F20

desired triggering:
reporter+fuels+input

(a) (b)

Building OR circuits from DLD translators

[fuel]=[input]=1000nM
[reporter]=500nM

Boya Wang, Thachuk, Ellington, Winfree, David Soloveichik. (In Review)
Effective Design Principles for Leakless Strand Displacement Systems

x12*
x12x11

x11*

x12*
x12

y11

y11*

y11

y11

y11*

y11

y12

y12

y11

y11*

y12

y12*
z11

y12

y12*
z11

z11*
z12x21

x21*
x22

x22*x22

x22*

x31

x31*
x32

x32*
x32

x32*

x41

x41*
x42

x42*
x42

x41*

y21

y21*

y21

y21

y21*

y21

y22

y22

y21

y21*
y22

y22*

y22

y22*
z11

z11

z11*
z12

z11

z11*
z12

z12*

z12*
z12

w1

w2w1

w1*

x51

x51*
x52

x52*
x52

x51*

z21

z21*
z21 z22

x61

x61*
x62

x62*
x62

x61*

z21

z21*
z21 z22

z21

z21*
z22

z22*

z22

z22*
w1

w2w1

w1*

w2

w1* w2*
w1

OR

OR

OR

OR

OR

X1
X2

X3
X4

X5
X6

leak: reporter+fuels

leak: reporter+fuels

OR

OR

OR

OR

OR

x1

x2

x3

x4

x5

x6

x6
x5
x1 x2
x3x4

input X1

input X2

input X3

input X4

input X5

input X6

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F16

F17

F18

reporter

F19

F20

desired triggering:
reporter+fuels+input

(a) (b)

Building OR circuits from DLD translators

[fuel]=[input]=1000nM
[reporter]=500nM

Boya Wang, Thachuk, Ellington, Winfree, David Soloveichik. (In Review)
Effective Design Principles for Leakless Strand Displacement Systems

Half-time completion ~6 minutes
No signal restoration used.

 Review of strand displacement

 Building and composing logic gates

 Tools for designing and verifying circuits

 Robustness of strand displacement

 (Bonus) DSD circuits the easy way

Tutorial Outline

Does it need to be this
difficult to build a circuit?

Molecular breadboard 1.0

Built using leakless motif

Molecular breadboard 1.0

Breadboard plate

Load breadboard components
onto 384-well plate

Built using leakless motif

Molecular breadboard 1.0

Breadboard plate

Load breadboard components
onto 384-well plate

circuit 1

Built using leakless motif

Molecular breadboard 1.0

Breadboard plate

Load breadboard components
onto 384-well plate

circuit 1

circuit 2

Built using leakless motif

Testing breadboard
components

 Typical DSD circuits are 50nM - 200nM concentration  
 (our circuits can operate at these concentrations)

To demonstrate robustness, all experiments will be at 2uM  
 (~20x higher than typical concentrations)

AND gate

flu
or

es
ce

nc
e

(a
.u

.)

0

1

time (minutes)0 480

Ideal AND gate simulation @ 2 µM

flu
or

es
ce

nc
e

(a
.u

.)

0

1

time (minutes)0 480

Designed reaction half-life
on order of seconds

Ideal AND gate simulation @ 2 µM

✓

flu
or

es
ce

nc
e

(a
.u

.)

0

1

time (minutes)0 480

Designed reaction half-life
on order of seconds

Ideal AND gate simulation @ 2 µM

✓
✓

flu
or

es
ce

nc
e

(a
.u

.)

0

1

time (minutes)0 480

Designed reaction half-life
on order of seconds

Ideal AND gate simulation @ 2 µM

✓✓
✓

flu
or

es
ce

nc
e

(a
.u

.)

0

1

time (minutes)0 480

Designed reaction half-life
on order of seconds

Spurious reactions not observable
on order of hours

Ideal AND gate simulation @ 2 µM

✓✓
✓
✓

[fuel]=[input]=2uM, [reporter]=1uM

AND gate @ 2 µM

[fuel]=[input]=2uM, [reporter]=1uM

AND gate @ 2 µM

Half-time completion
on order of tens of seconds

[fuel]=[input]=2uM, [reporter]=2.5uM

AND gate @ 2 µM (12 hours)

[fuel]=[input]=2uM, [reporter]=2.5uM

AND gate @ 2 µM (12 hours)

Multiplexer-Demultiplexer

X

Multiplexer-Demultiplexer

X

Multiplexer-Demultiplexer

X

Multiplexer-Demultiplexer

X

Multiplexer-Demultiplexer

X

Multiplexer-Demultiplexer

X Y

Large circuits that are fast

Y2 Y1

∧

∧

∧

∧∧

y2y1

1 11 x4¬x3x2 x3x1

43

2

1

7

R2R1

A7 B7

7X

A1

X1

B1

Y2

Y4

A2

Y3 X4X3

A3 B3 B4A4

(fig. S5). In all tested cases, the output went to
the correct ON or OFF state. A three-OR cascade
(fig. S6, A and B) and a four-OR cascade (fig. S6,
C and D) also worked. The delay time required
for circuit computation increased linearly with
the number of layers (Fig. 3A). However, once
the threshold for the output gate was exceeded,
the signal increased at roughly the same rate as
in the smaller circuit (Fig. 3B). In a circuit with
four layers, two AND gates, and three OR gates,
with 12 different combinations of inputs, the
output went to clear and correct ON or OFF
states in 8 hours (Fig. 3C).

Because integrating gates support multiple
inputs and amplifying gates support multiple
outputs, logic gates built from a pair of them can
easily support fan-in and fan-out. In a circuit with
a four-input OR gate, only when all inputs from
the upstream OR gates were OFF did the output

stay OFF (Fig. 3D). In a circuit with a four-output
OR gate, each output copied the correct logic
from the upstream OR gate (Fig. 3E). Circuits
with a four-input AND gate and a four-output
AND gate are shown in fig. S8C and fig. S9C,
respectively.

To demonstrate a digital circuit with an inter-
esting function, we built a circuit that computes
the floor of the square root of a four-bit binary
number (Fig. 4A). It is not an optimized digital
logic circuit; it is designed to showcaseAND,OR,
NOT, NAND, NOR, fan-in, and fan-out of logic
gates, aswell as fan-out of input signals. NOTgates
are difficult to implement directly using represen-
tations where the ON or OFF state of an input is
determined by the presence or absence of a single
DNA species: A circuit might compute a false
output before all input strands are added, because
NOT gates already produce ON signals in the

absence of their inputs, and for use-once circuits
(such as seesaw circuits), computations cannot
be undone. Therefore, we use dual-rail logic (fig.
S10B). Each input is replaced by a pair of inputs,
representing logic ON and OFF separately. Each
logic gate is replaced by a pair of AND or OR
gates. (Taking the NOR gate as an example, out-
put being OFF is the OR of both inputs being
ON; output being ON is the AND of both inputs
being OFF.) Initially, the pair of inputs is absent,
indicating that the logic value of this signal is un-
known. At the beginning of computation, one in-
put of the pair will be added, indicating either
logic ON orOFF. In this way, no computationwill
take place before the input signals arrive. With
dual-rail logic, any AND-OR-NOTcircuit can be
transformed into an equivalent circuit with AND
or OR gates only. Then, anyAND-OR circuit can
be further transformed into an equivalent seesaw

Fig. 4. A square-root circuit implemented with the seesaw DNA motif. (A)
A digital logic circuit that computes the floor of the square root of four-bit
binary numbers. (B) Abstract diagram of the seesaw circuit that is equiv-
alent to the square-root digital logic circuit. x0i and x1i are dual-rail inputs
of xi, and they represent logic OFF and ON, respectively (the same rule
applies to the outputs). Each pair of seesaw gates implements an AND (∧)
or OR (∨) gate. Each pair of dual-rail AND or OR gates implements one
ANDNOT, OR, NAND, or NOR gate. Red dots indicate positive red numbers,
specifying initial relative concentrations of free or bound signals; red cir-
cles indicate negative red numbers, specifying initial relative concentra-

tions of thresholds or reporters. An example of a two-input, two-output OR
gate is highlighted; full details are provided in fig. S10. (C) Kinetics
experiments of the square-root circuit with all combinations of inputs from
0000 to 1111. All 16 plots are shown separately in fig. S11. (D) Kinetics
experiments that compute the square roots of 0, 1, 4, and 9. Trajectories
and their corresponding outputs have matching colors. Dotted and solid
lines indicate dual-rail outputs that represent logic OFF and ON, respec-
tively. Sequences of strands are listed in tables S4 to S7. Experiments were
performed at 25°C, 1× = 50 nM, and 0.1× was used for OFF and 0.9× for
ON inputs.

3 JUNE 2011 VOL 332 SCIENCE www.sciencemag.org1200

REPORTS

on M
arch 27, 2018

http://science.sciencem

ag.org/
D

ow
nloaded from

Qian & Winfree 2011

hours

Reaction half-time improved
from ~6 hours to < 6 minutes

Breadboard compiler
produces

a mixing protocol

Acoustic
Liquid

Handler

Breadboard plate

0x1 0x3 0xE

∧

X

¬C ¬BC AB
11 1

B7A7

X7

A3

B3

X3 X4

A4
B4

A1
B1

X1

R1

^ ^ ^
∧

∧

∧ ∧

X

11¬B ¬C ¬A

A3
B3 B4

A4

Y3 X3 Y4 X4

B2 A2

Y2

B1 A1

X1

R1

∧

∧

∧

X

A ¬B¬C B C

B4

A4

X4

A1

X1

B1

B2

A2

Y2

R1

0x41

∧

∧∧

X

¬C ¬B¬A A CB

1

A3

B3 Y3

A2

B2

Y2

A1 B1

X1

R1

B4 A4

X4

^

0xC9

∧

∧

∧

X

¬B A ¬C¬A C B

Y3

^

B3

B2

A2

Y2

R1

A1B1

X1

X4

B4A4

A3

1 B

Rule 30

∧

∧

X

∧

¬C BA C¬B

A3 B3

Y3

A4 B4

Y4

B2 A2

Y2

R1

All 8 input combinations for 6 circuits

Destination plate

First measurement 6 minutes
after mixing start time

Molecular Circuit Breadboard

Roadmap

Molecular Breadboard 2.0:
More components

Molecular Breadboard 2.0:
More circuits

Breadboard 2.0 can
realize > 130 K circuits

Molecular Breadboard 2.0:
Larger circuits

a
1
b

x y

1

a
2
b

x y

46 7

a
3
b

x y

2

a
4
b

x y
a
5
b

x y

a
6
b

x y

a
7
b

x y

a
8
b

x y

a
14
b

x y
a
9
b

x y

a
10
b

x y

3

a
11
b

x y

a
12
b

x y

a
16
b

x y

a
13
b

x y

5

a
15
b

x y
a
17
b

x y

a
18
b

x y

a
19
b

x y

abc d ef g

x1x0x2 x3¬x1 ¬x2¬x0

1 1

111

1 1

1

11

Building circuits with feedback loops

Chemical Reaction Networks

Asynchronous Sequential Logic Circuits

Finite state machines

Providing input amplifiers
& output signal restoration

Linear input amplifier Exponential input amplifier Output signal restoration

New component

http://DSDbreadboard.org
Increased speed Robustness to error Automation

Dominic Scalise, Nisita Dutta and Rebecca Schulman
DNA strand-displacement bu$ers

Si-Ping Han, Lisa Scherer, Matt Gethers, Marwa Ben Hadj Salah, Rebecca Mancusi, Sahil Sagar, Robin Hu, Julia Derogatis, Ya-Huei Kuo, Guido Marcucci, John
Rossi and William A. Goddard Iii
Development and optimization of strand displacement based conditional small interfering RNAs for operation inside mammalian cells

Eyal Nir, Yaron Berger and Miran Liber
Computer Controlled DNA Bipedal Walker that Perform Several Steps a Minute

Abhinav Singh and Manoj Gopalkrishnan
EM Algorithm with DNA Molecules

Wooli Bae, Thomas Ouldridge and Guy-Bart Stan
Autonomous generation of multi-stranded RNA complexes for synthetic molecular circuits

Yan Shan Ang and Lin-Yue Lanry Yung
Design of Split Proximity Circuit as a Plug-and-Play Translator for Discriminating Single Nucleotide Mutation

Yan Shan Ang and Lin-Yue Lanry Yung
Dynamically Elongated Association Toehold for Tuning Circuit Kinetics and Thermodynamics

Patrick Irmisch and Ralf Seidel
Modelling DNA-strand displacement reactions in the presence of base-pair mismatches

Boya Wang and David Soloveichik
Experimentally characterizing the design space of strand displacement translators with toehold-size clamps

Allison Tai and Anne Condon
Error-free stable computation with stack-supplemented chemical reaction networks

Kevin Cherry, Gokul Gowri and Lulu Qian
DNA-based neural networks that learn from their molecular environment

Robert F. Johnson and Erik Winfree
Using Bisimulation for Verification of Polymer Reaction Networks

Related talks & posters @ DNA 24

http://schulmanlab.jhu.edu/
http://www.bgu.ac.il/~eyalnir/
https://www.ee.iitb.ac.in/~manojg/
https://www.imperial.ac.uk/people/t.ouldridge
http://www.imperial.ac.uk/people/g.stan
http://users.ece.utexas.edu/~soloveichik/
http://www.dna.caltech.edu/~winfree

• Winfree lab (Caltech)

• Soloveichik lab (University of Texas at Austin)

• Qian lab (Caltech)

• Murray lab (Caltech)

• Thanks to DNA 24 organizers for the invitation

Acknowledgments

thachuk@caltech.edu

ABC: logic synthesis and verification
https://people.eecs.berkeley.edu/~alanmi/abc

VisualDSD
https://lepton.research.microsoft.com/webdna

Nuskell compiler framework
https://github.com/DNA-and-Natural-Algorithms-Group

DSD breadboard
http://dsdbreadboard.org (online later this year)

Tools discussed in tutorial

https://lepton.research
http://microsoft.com/webdna
http://dsdbreadboard.org

