Theory & Practice of DNA strand displacement circuits

October 8, 2018 @ DNA 24

Chris Thachuk Winfree Lab, California Institute of Technology

Today's tutorial in a nutshell

Molecular Circuits Built upon DNA strand displacement cascades

Molecular Circuits Built upon DNA strand displacement cascades

Tutorial Outline

Review of strand displacement

Tools for designing and verifying circuits

Review of DNA Strand Displacement (DSD)

B. Yurke, A. J. Turberfield, A. P. Mills Jr., F. C. Simmel, J. L. Neumann, Nature 406, 605 (2000). A. J. Turberfield et al., Phys. Rev. Lett. 90, 118102

Rule 1: Bind

Example

domains

Rule 1: Bind

Two single-stranded complementary domains can bind

Rule 2: Release

Rule 2: Release

Any strand bound by only a short domain can **release**

Rule 3: Displace

Rule 3: Displace

Rule 3: Displace

A domain can **displace** an identical domain of another strand, *if neighboring domains are already bound*

Why do we use toeholds?

Adapted from Zhang & Seelig 2011

Toehold-mediated DNA strand displacement

S: branch migration domain (typically 15-20 nucleotides)

Zhang and Seelig, Nature Chemistry 2011

T: toehold domain (typically 3-7 nucleotides)

Kinetics of toehold-mediated strand displacement

$$A + B \leftrightarrow AB \rightarrow C + D$$

$$T_{1} \qquad S_{1} \qquad + \qquad S_{1} \qquad S_{1} \qquad T_{1} \qquad S_{1} \qquad + \qquad S_{1} \qquad$$

This approximation is valid for low concentrations of A and B (e.g. [A]=[B]=100nM) such that the unimolecular reaction is sufficiently faster than the bimolecular reaction.

Strand displacement in the lab

molecular logic circuits

 Large autonomous biochemical networks built from scratch

Qian, Winfree, Science 2011

controlling assembly of nanoscale structures

• Prescribed nanoscale structures seen under atomic force microscope

Yin, Choi, Calvert, Yurke, Pierce Nature 2008

molecular artificial neural networks

• Biochemical system doing inference

Qian, Winfree, Bruck Nature 2011

strand displacement in vivo

• Logic on biological signals

Hemphill, Deiters J Am Chem Soc 2013

Tutorial Outline

Building and composing logic gates

Tools for designing and verifying circuits

Robustness of strand displacement

AND gate

Composing AND gates

We need a "wire"

Sequence Independence

Translator (a "wire"): X→Y

input X

.....

....

Different coloring scheme to emphasize sequence (in)dependence!
Sequence Independence

Translator (a "wire"): X→Y

input X

Sequence Independence

Translator (a "wire"): X→Y

F₂

Sequence Independence

Translator (a "wire"): X→Y

Reading Output

A reaction gate

$A_1 + B_1 \rightarrow X_1 + Y_1$

This *universal component* can realize a number of logic gates

We start with large excess of DNA complexes (fuels) that mediate the reaction:

adopted from Srinivas et al, Science, 2017

AND gate

Signal Fanout Gates

Handling OR gates

Dual rail logic

Handling NOT gates S Х Т **Dual-rail input Dual-rail input, Dual-rail output** 5'-CCCCCC-3' S S S н ¬S ¬S Х Х 5'-Т Т ٦S ¬Χ $\neg T$ $\neg T$ Х ¬S Х 1..... ¬Χ

Handling NOT gates S Х Т **Dual-rail input Dual-rail input, Dual-rail output** 5'-CCCCCC-3' S S S н ¬S ¬S Х Х 5'-Т Т ٦S ¬Χ $\neg T$ $\neg T$ Х 5R1 ¬S 6R1) Х 1..... ¬Χ

With reaction gates, wires, and dual-rail encoding, we can build any combinatorial circuit

Tutorial Outline

Review of strand displacement

Building and composing logic gates

Tools for designing and verifying circuits

Robustness of strand displacement

Compile from Verilog, or truth table, into AND-OR-NOT circuit

Inputs			Outputs	
A	В	Cin	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

✓ Find minimized AND-OR-NOT circuit using ABC

✓ "Tree-ify" circuit

✓ Find minimized AND-OR-NOT circuit using ABC

✓ "Tree-ify" circuit

Push negations to literal level (dual-rail inputs)

- Find minimized AND-OR-NOT circuit using ABC
- "Tree-ify" circuit
- Push negations to literal level (dual-rail inputs)
- Compress circuit

From circuit to DSD system

DSD: formal language for describing and modeling strand displacement cascades

http://lepton.research.microsoft.com/webdna/

<1>[2]:<6>[3^ 4]:5^*

From circuit to DSD system

DSD: formal language for describing and modeling strand displacement cascades

http://lepton.research.microsoft.com/webdna/

From circuit to DSD system

Chen et al. (2012), Cardelli (2013), Srinivas (2015), Lakin et al. (2016), ...

Images drawn using VisualDSD, Lakin et al. (2012)

The Nuskell compiler framework

Badelt et al. (2017) - Nuskell Grun et al. (2014) - Peppercorn Shin et al. (2017) - CRN pathway decomposition equivalence Johnson et al. (2018) - CRN bisimulation equivalence Berleant et al. (submitted) - KinDA

The Nuskell compiler framework

Badelt et al. (2017) - Nuskell Grun et al. (2014) - Peppercorn Shin et al. (2017) - CRN pathway decomposition equivalence Johnson et al. (2018) - CRN bisimulation equivalence Berleant et al. (submitted) - KinDA

Reaction Enumeration

http://www.github.com/DNA-and-Natural-Algorithms-Group/peppercornenumerator Grun et al. 2014

Designing Sequences

Designing Sequences

News: Constrained multistate test tube design for reaction pathway engineering is now published! (pdf, supp info, source code, user guide)

Mulitstrand.org to determine reaction rates

Multistrand is a software package for simulating the kinetics of multiple interacting nucleic acid strands. It is developed at the Winfree lab at the California Institute of Technology.

> DNA and Natural Algorithms Group @ Caltech

state j: k_{ji} k_{jq} k_{qj} state q: k_{jq} k_{qj} k_{q

Live demo

Key Features

- Kinetic simulations of nucleic acids as random walk on thermodynamic energy model
- Supports multiple interacting strands
- Equilibrium consistent with <u>NUPACK</u>
- Various usage modes to study kinetic trajectories
- Distributed as a Python package
- MIT License

Tutorial Outline

Building and composing logic gates

Tools for designing and verifying circuits

Robustness of strand displacement

Why is this circuit not *robust*?

What causes signal leak?

Problem 1: Molecules are not perfect

Imperfect strands from imperfect synthesis

Problem 1: Molecules are not perfect

Imperfect strands from imperfect synthesis

Problem 1: Molecules are not perfect

translator cascade with perfect molecules

Problem 2: Spurious reactions occur (even with perfect molecules)

X→Y

Y has been spuriously "produced"

Some rough energy accounting

Some rough energy accounting

A Motivating Question

Can we rationally design *composable*, *leakless* DSD gates?

A Motivating Question

Can we rationally design *composable*, *leakless* DSD gates?

A Motivating Question

Can we rationally design *composable*, *leakless* DSD gates?

What do we mean by *leakless?*

"Golf funnel with deep groove" pathway

K. Dill & Bromberg (2002). Molecular Driving Forces.

For a redundancy parameter **N**, there exist translator and AND gates using **N** long domains that have the following property:

even at thermodynamic equilibrium,

the net leak decreases exponentially with N.

Thachuk, Winfree, David Soloveichik. (2015) Leakless DNA strand displacement. DNA 21.

Typical translator using "Single Long Domain" (SLD)

- Designed pathways: bimolecular
- Leak pathways: bimolecular

DLD translator using "Double Long Domain" (DLD)

- Designed pathways: bimolecular
- Leak pathways: trimolecular

Typical translator using "Single Long Domain" (SLD)

- Designed pathways: bimolecular
- Leak pathways: bimolecular

DLD translator using "Double Long Domain" (DLD)

- Designed pathways: bimolecular
- Leak pathways: trimolecular

Typical translator using "Single Long Domain" (SLD)

- Designed pathways: bimolecular
- Leak pathways: bimolecular

Lengthening recognition domains does not help

DLD translator using "Double Long Domain" (DLD)

- Designed pathways: bimolecular
- Leak pathways: trimolecular

DLD translators are intrinsically less "leaky"

DLD translators are intrinsically less "leaky"

DLD translators are intrinsically less "leaky"

Can we generalize the DLD motif?

Translator using Triple Long Domain (TLD) motif

Three fuel complexes must combine to activate output signal.

△Energy
0 bound long domains
-2 units of entropy

Translator using N Long Domain (NLD) motif

N fuel complexes must combine to activate output signal. △Energy to leak state
0 bound long domains
–(N-1) units of entropy

[fuel]=[input]=1000nM [reporter]=500nM

Boya Wang, Thachuk, Ellington, Winfree, **David Soloveichik**. (In Review) Effective Design Principles for Leakless Strand Displacement Systems

Boya Wang, Thachuk, Ellington, Winfree, **David Soloveichik**. (In Review) Effective Design Principles for Leakless Strand Displacement Systems

Tutorial Outline

- Review of strand displacement
- Building and composing logic gates
- Tools for designing and verifying circuits
- Robustness of strand displacement

(Bonus) DSD circuits the easy way

Does it need to be this difficult to build a circuit?

reporters RI RI Built using leakiess motion

Testing breadboard components

Typical DSD circuits are 50nM - 200nM concentration (our circuits can operate at these concentrations)

To demonstrate robustness, all experiments will be at 2uM (~20x higher than typical concentrations)

AND gate

[fuel]=[input]=2uM, [reporter]=1uM

[fuel]=[input]=2uM, [reporter]=1uM

[fuel]=[input]=2uM, [reporter]=2.5uM

[fuel]=[input]=2uM, [reporter]=2.5uM

fluorescence (a.u.)

B 4 7 B 2 7 R 2 7 A 3 7 S 3 7 R 2 7 R

Large circuits that are fast

Y2

x2

~^

x4

First measurement 6 minutes after mixing start time

Molecular Circuit Breadboard

Roadmap

More components

input sigr	nals	reaction gates	wires	reporters
A1 I	B1	$\sum_{1} \sum_{2} \sum_{7} \sum_{7$	X1A3	
A2 I	B2		X1B4	R1 R5
A3 I	B3	333343	Y1A4	R2 R6
A4 I	B4	$\overline{\Sigma_{5}}$ $\overline{\Sigma_{6}}$	Y1A/	R3 (R7)
A5 I	B5		ΙΙ DΙΖ ■	R4) R8
			•	
A25 B	825	3 24 3 3 25 3	X24 ······ R7 Y25 ······ R1	
A5 - - A25	B5 325	<u>555565</u> <u>524</u> <u>5</u> 255	Y1B12 • X24R7 Y25R1	R4 R

More circuits

input signals		reaction gates	wires	reporters
A1	B1	$\Sigma_1 \Sigma_2 \Sigma_2$	X1A3	
A2	B2		X1B4	R1 R5
A3	B3	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Y1A4	R2 R6
A4	B4	Σ_{5} Σ_{6}	Υ1Α/ 	R3 (R7)
A5 .	B5		Υ Ι ······· DΙΖ • •	R4 R8
A25	B25	3 24 3 3 25 3	X24 R7 Y25 R1	

Breadboard 2.0 can realize > 130 K circuits

Molecular Breadboard 2.0: Larger circuits

Building circuits with feedback loops

Chemical Reaction Networks

Asynchronous Sequential Logic Circuits

Finite state machines

Providing input amplifiers & output signal restoration

Linear input amplifier

Exponential input amplifier

Output signal restoration

http://DSDbreadboard.org

time (minutes)

Related talks & posters @ DNA 24

Dominic Scalise, Nisita Dutta and <u>Rebecca Schulman</u> DNA strand-displacement buffers

Si-Ping Han, Lisa Scherer, Matt Gethers, Marwa Ben Hadj Salah, Rebecca Mancusi, Sahil Sagar, Robin Hu, Julia Derogatis, Ya-Huei Kuo, Guido Marcucci, John Rossi and William A. Goddard Iii Development and optimization of strand displacement based conditional small interfering RNAs for operation inside mammalian cells

Eyal Nir, Yaron Berger and Miran Liber Computer Controlled DNA Bipedal Walker that Perform Several Steps a Minute

Abhinav Singh and <u>Manoj Gopalkrishnan</u> EM Algorithm with DNA Molecules

Wooli Bae, <u>Thomas Ouldridge</u> and <u>Guy-Bart Stan</u> Autonomous generation of multi-stranded RNA complexes for synthetic molecular circuits

Yan Shan Ang and Lin-Yue Lanry Yung Design of Split Proximity Circuit as a Plug-and-Play Translator for Discriminating Single Nucleotide Mutation

Yan Shan Ang and Lin-Yue Lanry Yung Dynamically Elongated Association Toehold for Tuning Circuit Kinetics and Thermodynamics

Patrick Irmisch and Ralf Seidel Modelling DNA-strand displacement reactions in the presence of base-pair mismatches

Boya Wang and <u>David Soloveichik</u> Experimentally characterizing the design space of strand displacement translators with toehold-size clamps

Allison Tai and Anne Condon Error-free stable computation with stack-supplemented chemical reaction networks

Kevin Cherry, Gokul Gowri and Lulu Qian DNA-based neural networks that learn from their molecular environment

Robert F. Johnson and <u>Erik Winfree</u> Using Bisimulation for Verification of Polymer Reaction Networks

Acknowledgments

- Winfree lab (Caltech)
- Soloveichik lab (University of Texas at Austin)
- Qian lab (Caltech)
- Murray lab (Caltech)
- Thanks to DNA 24 organizers for the invitation

thachuk@caltech.edu

Tools discussed in tutorial

ABC: logic synthesis and verification

https://people.eecs.berkeley.edu/~alanmi/abc

VisualDSD https://lepton.research.microsoft.com/webdna

Nuskell compiler framework

https://github.com/DNA-and-Natural-Algorithms-Group

DSD breadboard http://dsdbreadboard.org (online later this year)