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Today’s tutorial in a nutshell 



Molecular Circuits 
Built upon DNA strand displacement cascades

DNA strand displacement cascades

Input Output

5’-ACCACGATCACATTAC-3’

5’-GCAACATACAT-3’

5’-CCCATACATCACCAG-3’

5’-TACCACATGAGCAGCA-3’

Computation

5’-GAGCTACATCAC-3’

5’-TAAATCATGATCAG-3’



Molecular Circuits 
Built upon DNA strand displacement cascades

DNA strand displacement cascades

Input Output

5’-ACCACGATCACATTAC-3’

5’-GCAACATACAT-3’

5’-CCCATACATCACCAG-3’

5’-TACCACATGAGCAGCA-3’

Computation

5’-GAGCTACATCAC-3’

5’-TAAATCATGATCAG-3’



 Review of strand displacement 

 Building and composing logic gates 

 Tools for designing and verifying circuits 

 Robustness of strand displacement

Tutorial Outline 



Review of DNA Strand Displacement (DSD)

Video Courtesy of Biocomputation Group @ Microsoft Research

B. Yurke, A. J. Turberfield, A. P. Mills Jr., F. C. Simmel, J. L. Neumann, Nature 406, 605 (2000).  
A. J. Turberfield et al., Phys. Rev. Lett. 90, 118102 
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Strand Displacement Cascades 

=


 Three Rules

Compiling CRNs into DNA
CRN program:

Initial conditions:

5 A’s
3 B’s
10 C’s

Soloveichik, Seelig, Winfree, PNAS, 2010

I Bind

II Release

III Displace



Rule 1: Bind

Example

1*

1

single-stranded 
complementary 

domains

Domain level rules for DSD



Rule 1: Bind

Example

1*

1

Two single-stranded complementary domains can bind

Domain level rules for DSD



Rule 2: Release

Example

1

1*

blue strand bound by only
a short domain

Domain level rules for DSD



Rule 2: Release

Example

Any strand bound by only a short domain can release

1

1*

Domain level rules for DSD



Rule 3: Displace

Example

1

1*

2

2

2*

identical domains, 
one bound, one free

Domain level rules for DSD



Rule 3: Displace

Example

1

1*

2

2

2*

already bound

Domain level rules for DSD



Rule 3: Displace

Example

1

1*

A domain can displace an identical domain of another strand, 
if neighboring domains are already bound

2

2

2*

Domain level rules for DSD
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Why do we use toeholds?

Toeholds introduce  
energy barriers



Toehold-mediated DNA strand displacement

S

S*T*

ST

T: toehold domain (typically 3-7 nucleotides)
S: branch migration domain (typically 15-20 nucleotides)

S

S*T*

ST

⋯

Zhang and Seelig, Nature Chemistry 2011

𝑘 ≈ 10𝐿/M/s when 𝐿 ≤ 6

𝑘 ≈ 106/M/s otherwise

𝐿: toehold length

The rate of strand displacement grows 
exponentially with toehold length for 
short toeholds.

𝐴 + 𝐵՜
𝑘
𝐶 + 𝐷



Kinetics of toehold-mediated strand displacement

T1

S1*T1*

S1

S1

1/s

T1* S1*

S1T1 S1+S1T1

S1*T1*

S1+
106/M/s

106−𝐿/s

𝐴 + 𝐵 𝐴𝐵 𝐶 + 𝐷

simplify: 𝐴 + 𝐵
𝑘𝑒𝑓𝑓

𝐶 + 𝐷 𝑘𝑒𝑓𝑓 = ?

collision rate: 106 𝐴 [𝐵]

collision success probability:
1/s

1/s+ 106−𝐿/s

net rate of success: 106 ∙
1

1 + 106−𝐿 [𝐴][𝐵]

𝑘𝑒𝑓𝑓

This approximation is valid for low concentrations of A and B (e.g. [A]=[B]=100nM) such that 
the unimolecular reaction is sufficiently faster than the bimolecular reaction.

𝑘𝑒𝑓𝑓 ≈ 10𝐿/M/s when 𝐿 ≤ 6

otherwise 𝑘𝑒𝑓𝑓 ≈ 106/M/s

𝐿: toehold length |T1|

Zhang et al, JACS 2009

Srinivas et al, NAR 2013



(fig. S5). In all tested cases, the output went to
the correct ON or OFF state. A three-OR cascade
(fig. S6, A and B) and a four-OR cascade (fig. S6,
C and D) also worked. The delay time required
for circuit computation increased linearly with
the number of layers (Fig. 3A). However, once
the threshold for the output gate was exceeded,
the signal increased at roughly the same rate as
in the smaller circuit (Fig. 3B). In a circuit with
four layers, two AND gates, and three OR gates,
with 12 different combinations of inputs, the
output went to clear and correct ON or OFF
states in 8 hours (Fig. 3C).

Because integrating gates support multiple
inputs and amplifying gates support multiple
outputs, logic gates built from a pair of them can
easily support fan-in and fan-out. In a circuit with
a four-input OR gate, only when all inputs from
the upstream OR gates were OFF did the output

stay OFF (Fig. 3D). In a circuit with a four-output
OR gate, each output copied the correct logic
from the upstream OR gate (Fig. 3E). Circuits
with a four-input AND gate and a four-output
AND gate are shown in fig. S8C and fig. S9C,
respectively.

To demonstrate a digital circuit with an inter-
esting function, we built a circuit that computes
the floor of the square root of a four-bit binary
number (Fig. 4A). It is not an optimized digital
logic circuit; it is designed to showcaseAND,OR,
NOT, NAND, NOR, fan-in, and fan-out of logic
gates, aswell as fan-out of input signals. NOTgates
are difficult to implement directly using represen-
tations where the ON or OFF state of an input is
determined by the presence or absence of a single
DNA species: A circuit might compute a false
output before all input strands are added, because
NOT gates already produce ON signals in the

absence of their inputs, and for use-once circuits
(such as seesaw circuits), computations cannot
be undone. Therefore, we use dual-rail logic (fig.
S10B). Each input is replaced by a pair of inputs,
representing logic ON and OFF separately. Each
logic gate is replaced by a pair of AND or OR
gates. (Taking the NOR gate as an example, out-
put being OFF is the OR of both inputs being
ON; output being ON is the AND of both inputs
being OFF.) Initially, the pair of inputs is absent,
indicating that the logic value of this signal is un-
known. At the beginning of computation, one in-
put of the pair will be added, indicating either
logic ON orOFF. In this way, no computationwill
take place before the input signals arrive. With
dual-rail logic, any AND-OR-NOTcircuit can be
transformed into an equivalent circuit with AND
or OR gates only. Then, anyAND-OR circuit can
be further transformed into an equivalent seesaw

Fig. 4. A square-root circuit implemented with the seesaw DNA motif. (A)
A digital logic circuit that computes the floor of the square root of four-bit
binary numbers. (B) Abstract diagram of the seesaw circuit that is equiv-
alent to the square-root digital logic circuit. x0i and x1i are dual-rail inputs
of xi, and they represent logic OFF and ON, respectively (the same rule
applies to the outputs). Each pair of seesaw gates implements an AND (∧)
or OR (∨) gate. Each pair of dual-rail AND or OR gates implements one
ANDNOT, OR, NAND, or NOR gate. Red dots indicate positive red numbers,
specifying initial relative concentrations of free or bound signals; red cir-
cles indicate negative red numbers, specifying initial relative concentra-

tions of thresholds or reporters. An example of a two-input, two-output OR
gate is highlighted; full details are provided in fig. S10. (C) Kinetics
experiments of the square-root circuit with all combinations of inputs from
0000 to 1111. All 16 plots are shown separately in fig. S11. (D) Kinetics
experiments that compute the square roots of 0, 1, 4, and 9. Trajectories
and their corresponding outputs have matching colors. Dotted and solid
lines indicate dual-rail outputs that represent logic OFF and ON, respec-
tively. Sequences of strands are listed in tables S4 to S7. Experiments were
performed at 25°C, 1× = 50 nM, and 0.1× was used for OFF and 0.9× for
ON inputs.
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controlling assembly of 
nanoscale structures

10nM

strand displacement
in vivo

of an integrating gate and an amplifying gate, in order to suppress leak
(Fig. 3c). The values of weights and thresholds determined by in silico
training were used to determine the concentrations of the 72 DNA
species that comprise the memory (Fig. 3b, c). In principle, the same
set of DNA molecules could be retrained to remember any of 500
distinct sets of patterns by adjusting weight and threshold concentra-
tions (Supplementary Information section 5).
In the tradition of using game-playing automata as a benchmark for

new computing technologies, we demonstrated the Hopfield network
in the context of a game called ‘read your mind’, which is played
between a human and the DNA associative memory in a cuvette
(Fig. 3d). The game consists of three steps. First, the human thinks
of a scientist, choosing from the listed four options (each scientist
corresponds to one of the four patterns; for example, Franklin is
0110) or someone else. Second, the human ‘tells’ the DNA associative
memory some of the answers to questionsQ1 toQ4 (Fig. 3d) by adding
corresponding DNA strands to the cuvette. Finally, after 8 h of ‘think-
ing’, the DNA associative memory will guess who is in the human’s
mind and ‘tell’ the human the rest of the answers by fluorescence
signals. In doing so, the four-neuron DNA associative memory exhi-
bits a brain-like behaviour: associative recall of memories based on
incomplete information.
Weplayed the game 27 timeswith theDNAassociativememory, out

of 81 possible ways of answering questions Q1 to Q4. Six examples are

shown in Fig. 3e; the rest are shown in Supplementary Figs 15–18. The
top left data in Fig. 3e can be interpreted as following: when the human
‘said’ that the scientist was born in the twentieth century (inputx35 1)
but was not a mathematician (input x45 0), the DNA associative
memory ‘guessed’ that the scientist did not study neural networks (out-
put x1 was updated to 0) but was British (output x2 was updated to 1),
which indicated that the scientist was Rosalind Franklin (pattern 0110).
Similarly, the DNA associative memory was able to work out the other
three scientists correctly—in the best case, only one answer was given by
thehuman (themiddle right data). Thebottomleft data shows thatwhen
the informationprovided by the humanmatchedmultiple patterns (that
is, inputx45 1 indicates that the scientist was amathematician, which is
true for both Alan Turing and Claude Shannon), the DNA associative
memory was able to identify that they were both born in the twentieth
century (outputx3 was updated to 1), while the other outputs remained
unknown. The bottom right data show that the DNA associative
memory was also able to recognize information that was incompatible
with all memorized patterns by producing invalid output.
All experiments reported here were semiquantitatively reproduced

bymass action simulations using the exact model developed previously
for seesaw digital logic circuits17 with no changes to any rate constants
(see Supplementary Information section 7 and Supplementary Figs 19–
24 for comparisons to experiments, and Supplementary Figs 25–27 for
simulation predictions for the remaining 54 games).

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Time (h)

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

O
ut

pu
t

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

ba

c

x1

x2

x3

x4

1
0.5–2

1

1
–1.52

–1

–1
0.51

1

1
–1.5–1

2

5

f

1

8

1
1

1

53

5

1834

5

110

5

2740

5

1326

5

2841

5

820

5

2942

5

f
8

11
1

1
–2.2

f

1

8

1
1

1
–2.3

f

1

8

1
1

1
–1.5

f
14

12
2

2
–0.7

f
14

12
2

2
–2.2

f
8

11
1

1
–2.3

f

1

8

1
1

1
–1.5

–1.5

0 2 4 6 8
Time (h)

? 1 0 ? x x x x

Wrong
information

? ? ? 1 ? ? 1 1

Not enough
information

? ? 0 ? 1 0 0 0

Ramon y Cajal

d

36

1

39

1

43

1

44

f

21

2

1–0.4

f

22

2

1–0.4

f

30

2

1–0.4

f

31

2

1–0.4

6
ROX

–1.5

23
FAM

–1.5

24
TYE563

–1.5

25

TYE665
–1.51

0 ? ? 1 0 0 1 1

Shannon

Answers: Yes (1), No (0), or I don’t know (?)

Q1: Did the scientist study neural networks?

Q2: Was the scientist British?

Q3: Was the scientist born in the 20th century?

Q4: Was the scientist a mathematician?

? ? 1 0 0 1 1 0

Franklin

? 1 ? 1 1 1 1 1

Turing

0 1 1 0 Rosalind Franklin

1 1 1 1 Alan Turing

0 0 1 1 Claude Shannon

1 0 0 0 Santiago Ramon y Cajal

e

x1
0

x1
0

x1
0

x2
0

x2
0

x2
0

x3
0

x3
0

x3
0

x3
1

x3
1

x3
1

x4
0

x4
0

x4
0

x4
1

x4
1

x4
1

x2
1

x2
1

x2
1

x1
1

x1
1

x1
1

Figure 3 | A four-neuron Hopfield associative memory. a, The recurrent
linear threshold circuit. b, The resulting seesaw circuit using the dual-rail
implementation.Dashed lines indicate the connections to reporters. c, Four sets
of reporters with signal restoration that are connected to either x0i or x

1
i at any

given time. d, A ‘read your mind’ game between a human and the four-neuron
DNA associative memory that ‘remembers’ four scientists according to the
answers of four questions. e, Kinetics experiments of the ‘read yourmind’ game.
A total of 112 DNA strands assembled to form 72 initial DNA species (as
indicated by the red numbers in b, c) were mixed in solution at their respective
concentrations. The standard concentration was 135 25 nM. Selected inputs
corresponding to the human’s answers were then added with relative

concentrations of 53 (to set the initial states, inputs triggering the update of
multiple neurons are used, for example, w53,5 for x11 and w34,18 for x01). Dotted
and solid lines indicate dual-rail outputsx0i andx

1
i , respectively. For each signal,

if both dotted and solid lines stay ‘off’ (less than 0.2), the logic value is unknown,
‘?’; if the dotted (solid) line goes ‘on’ (greater than 0.65) and the solid (dotted)
line stays ‘off’, the logic value is ‘0’ (‘1’); if both dotted and solid lines go ‘on’, the
logic value is invalid, ‘x’. Arrows connect initial states of the four neurons
(inputs) to the final states (outputs at 8 h). The eight trajectories in each plot
were from two separate experiments (connecting either x0i or x

1
i to the

reporters) because we only have four distinct fluorophores. Sequences of strands
are listed in Supplementary Tables 5–7. Experiments were performed at 25 uC.
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molecular artificial 
neural networks

• Large autonomous biochemical 
networks built from scratch • Biochemical system doing inference

• Logic on biological signals
• Prescribed nanoscale structures seen 

under atomic force microscope

Qian, Winfree, Science 2011 Qian, Winfree, Bruck Nature 2011

Hemphill, Deiters J Am Chem Soc 2013Yin, Choi, Calvert, Yurke, Pierce Nature 2008

Strand displacement in the lab



 Review of strand displacement 

 Building and composing logic gates 

 Tools for designing and verifying circuits 

 Robustness of strand displacement

Tutorial Outline 



AND gate
release Z if and only if X and Y are present

X

Y Z

X

Y Z

voltages

strands

gate=complex

gates get consumed! 
(need to have many copies)
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Strand Displacement Cascades Example:  AND gate

AND gate

bind
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displace
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Strand Displacement Cascades Example:  AND gate
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Strand Displacement Cascades Example:  AND gate
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before after

Strand Displacement Cascades Example:  AND gate
release Z if and only if X and Y are present
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Composing AND gates

A

B X

Y

W Z



We need a “wire”



Sequence Independence
Translator (a “wire”): X→Y

output Y

input X

Different coloring scheme to emphasize sequence (in)dependence! 



Sequence Independence

F2

input X

bind

F1

Translator (a “wire”): X→Y



Sequence Independence

F2

Translator (a “wire”): X→Y



Sequence Independence

output Y

Translator (a “wire”): X→Y



Reading Output

A

B X

Y

W Z
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N+ NCy3

hνex hνem
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quencher

flourophore

read many  
different samples



A reaction gate 

A1 + B1 →X1 + Y1

This universal component  
can realize a number of logic gates



We start with large excess of DNA complexes (fuels) 
that mediate the reaction:

adopted from Srinivas et al, Science, 2017 



AND gate 

C
D



Signal Fanout Gates 

Fanout 2

Fanout 3 Fanout 4

5’-GCACTTTTACATTTACATTACATTTAC-3’
fuel (always present)

5’-ACAGATCACCAGATCATTATCAGAG-3’
strand representing signal S



Handling OR gates 

Reaction gates  
function as  

“AND of OR” gates

AND( A1, OR( B1, AND( A2, B2 ) )



Handling NOT gates 

Dual-rail input, Dual-rail output5’-CCCCCCC-3’
s

5’-TTTTTTTT-3’
⌝s



Dual rail logic

NOT

OR

AND



Handling NOT gates 

Dual-rail inputDual-rail input, Dual-rail output5’-CCCCCCC-3’
s

5’-TTTTTTTT-3’
⌝s



Handling NOT gates 

Dual-rail inputDual-rail input, Dual-rail output5’-CCCCCCC-3’
s

5’-TTTTTTTT-3’
⌝s



With reaction gates, wires, 
and dual-rail encoding, we can 
build any combinatorial circuit



 Review of strand displacement 

 Building and composing logic gates 

 Tools for designing and verifying circuits 

 Robustness of strand displacement

Tutorial Outline 



module FullAdder(a,b,cin,cout,sum); input a, b, cin; // inputs 
  output cout, sum;    // output 
  wire w1, w2, w3, w4; // internal nets 
        
  xor #(10) (w1, a, b);  
  and #(8) (w2, a, b); 
  and #(8) (w3, a, cin); 
  and #(8) (w4, b, cin); 
  or #(10, 8)(cout, w2, w3, w4); 
endmodule

Compile from Verilog, or truth table,  
into AND-OR-NOT circuit

How do you design the circuit? 



How do you design the circuit? 

Inputs Outputs

A B Cin Cout S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1



Brayton, R., & Mishchenko, A. (2010, July). ABC: An academic industrial-
strength verification tool. In International Conference on Computer Aided 
Verification (pp. 24-40). Springer, Berlin, Heidelberg.

 Find minimized AND-OR-NOT circuit using ABC

a

∧∧

∨

b

∧

¬

cin

¬

∨

∨

∧

¬

cout

∨

¬

s

How do you design the circuit? 

Need to remove  
explicit NOT gates



Brayton, R., & Mishchenko, A. (2010, July). ABC: An academic industrial-
strength verification tool. In International Conference on Computer Aided 
Verification (pp. 24-40). Springer, Berlin, Heidelberg.

 Find minimized AND-OR-NOT circuit using ABC

How do you design the circuit? 

a

∧

b

∧

cin

∨

¬

∧

¬

¬

cout

∨

∧

∨

∨

¬

s

cinb

∧

¬

b

¬

cin

∧

¬

b

¬

cin

∧

b cin

∧

b cin

a

a

 “Tree-ify” circuit



Brayton, R., & Mishchenko, A. (2010, July). ABC: An academic industrial-
strength verification tool. In International Conference on Computer Aided 
Verification (pp. 24-40). Springer, Berlin, Heidelberg.

 Find minimized AND-OR-NOT circuit using ABC

How do you design the circuit? 

 “Tree-ify” circuit
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Brayton, R., & Mishchenko, A. (2010, July). ABC: An academic industrial-
strength verification tool. In International Conference on Computer Aided 
Verification (pp. 24-40). Springer, Berlin, Heidelberg.

 Find minimized AND-OR-NOT circuit using ABC

How do you design the circuit? 

 “Tree-ify” circuit

 Push negations to literal level (dual-rail inputs)

∧

∨

∨∧

cout

∧

∨

∧

s

∨ ∧ ∨

¬b ¬cinb cin
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 Compress circuit

Circuit now using  
dual-rail input



From circuit to DSD system 
DSD: formal language for describing and modeling strand displacement cascades

 <1>[2]:<6>[3^ 4]:5^*    
=  

http://lepton.research.microsoft.com/webdna/

Phillips, Cardelli, Journal of Royal Society Interface, 2009



From circuit to DSD system 
DSD: formal language for describing and modeling strand displacement cascades

 <1>[2]:<6>[3^ 4]:5^*    
=  

http://lepton.research.microsoft.com/webdna/

Phillips, Cardelli, Journal of Royal Society Interface, 2009

formal semantics
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FROM CRN TO DSD SYSTEMS

Cardelli (2011)Soloveichik 

et al. (2010)

Qian et al. (2011)Lakin 

et al. (2012)

Chen et al. (2012), Cardelli (2013), Srinivas (2015), Lakin et al. (2016),  ...

Images drawn using VisualDSD, Lakin et al. (2012)

From circuit to DSD system 
From circuit to DSD system 
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THE COMPILER FRAMEWORK
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Johnson et al. (2018) - CRN bisimulation equivalence 

Berleant et al. (submitted) - KinDA

The Nuskell compiler framework 
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REACTION ENUMERATION
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Grun et al. 2014

http://www.github.com/DNA-and-Natural-Algorithms-Group/peppercornenumerator

Reaction Enumeration 
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Designing Sequences 



Designing Sequences 
1 2

input X

0 3

poor sequence  
for a signal strand

good sequence  
for a signal strand



Mulitstrand.org to determine reaction rates 



 Review of strand displacement 

 Building and composing logic gates 

 Tools for designing and verifying circuits 

 Robustness of strand displacement

Tutorial Outline 



Why is this circuit not robust? 

ON cases

OFF cases



What causes signal leak?
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Problem 1: Molecules are not perfect 

Imperfect strands from imperfect synthesis
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Problem 1: Molecules are not perfect 
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translator cascade 
with perfect molecules

translator cascade 
with imperfect molecules

displacement  
now possible



(Partial) solution to Problem 1 
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(Partial) solution to Problem 1 

1 20 3

2 31

Complexes can also  
be purified by gel



Y Y2Y1
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X2
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* F1

Y1

Y2

Y1
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* F2

Problem 2: Spurious reactions occur 
(even with perfect molecules)

X→Y

X2X1X!

Y has been spuriously “produced”
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Some rough energy accounting

X→Y State 1: before leak
• 2 bound long domains 
• 2 complexes

State 2: after leak
• 2 bound long domains 
• 2 complexes
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X1b
*

Y Y2Y1

X2
Y1

X2
*X1b

*

F1

Y1

Y2

Y1
*X2b

*

F2

Some rough energy accounting

X→Y

̗Energy
0 bound long domains 
0 units of entropy

State 1: before leak
• 2 bound long domains 
• 2 complexes

State 2: after leak
• 2 bound long domains 
• 2 complexes



Can we rationally design 
composable, leakless 

DSD gates?

A Motivating Question
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Can we rationally design 
composable, leakless 

DSD gates?

A Motivating Question

Y Y2Y1

Gate 
X→Y

Z Z2Z1

Gate 
Y→Z

X2X1X



“Golf funnel with deep groove” pathway
K. Dill & Bromberg (2002). Molecular Driving Forces.

Leak

Designed

What do we mean by leakless?



For a redundancy parameter N, there exist translator and 
AND gates using N long domains that have the following 
property: 

even at thermodynamic equilibrium,  

the net leak decreases exponentially with N. 

Thachuk, Winfree, David Soloveichik. (2015) 
Leakless DNA strand displacement.  DNA 21.

(Partial) solution to Problem 2 
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DLD translator using “Double Long Domain” (DLD) 
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• Designed pathways:  bimolecular 
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• Designed pathways:  bimolecular 
• Leak pathways: bimolecular

Lengthening recognition domains  
does not help

Typical translator using “Single Long Domain” (SLD)

DLD translator using “Double Long Domain” (DLD) 



DLD translators are intrinsically less “leaky”
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Can we generalize the 
DLD motif?



Translator using 
Triple Long Domain (TLD) motif
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Three fuel complexes must 
combine to activate output 
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 0 bound long domains 
-2 units of entropy



Translator using 
N Long Domain (NLD) motif
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Building OR circuits from DLD translators

[fuel]=[input]=1000nM
[reporter]=500nM

Boya Wang, Thachuk, Ellington, Winfree, David Soloveichik. (In Review) 
Effective Design Principles for Leakless Strand Displacement Systems
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Boya Wang, Thachuk, Ellington, Winfree, David Soloveichik. (In Review) 
Effective Design Principles for Leakless Strand Displacement Systems

Half-time completion ~6 minutes 
No signal restoration used.



 Review of strand displacement 

 Building and composing logic gates 

 Tools for designing and verifying circuits 

 Robustness of strand displacement 

 (Bonus) DSD circuits the easy way

Tutorial Outline 



Does it need to be this 
difficult to build a circuit?









Molecular breadboard 1.0

Built using leakless motif



Molecular breadboard 1.0

Breadboard plate

Load breadboard components 
onto 384-well plate

Built using leakless motif



Molecular breadboard 1.0
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Molecular breadboard 1.0

Breadboard plate

Load breadboard components 
onto 384-well plate

circuit 1

circuit 2

Built using leakless motif



Testing breadboard 
components 

 Typical DSD circuits are 50nM - 200nM concentration  
 (our circuits can operate at these concentrations) 

To demonstrate robustness, all experiments will be at 2uM  
 (~20x higher than typical concentrations)



AND gate 
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[fuel]=[input]=2uM,   [reporter]=1uM

AND gate @ 2 µM



[fuel]=[input]=2uM,   [reporter]=1uM

AND gate @ 2 µM

Half-time completion 
on order of tens of seconds



[fuel]=[input]=2uM,   [reporter]=2.5uM

AND gate @ 2 µM (12 hours)



[fuel]=[input]=2uM,   [reporter]=2.5uM

AND gate @ 2 µM (12 hours)
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Large circuits that are fast 

Y2 Y1
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Y2

Y4

A2

Y3 X4X3

A3 B3 B4A4

(fig. S5). In all tested cases, the output went to
the correct ON or OFF state. A three-OR cascade
(fig. S6, A and B) and a four-OR cascade (fig. S6,
C and D) also worked. The delay time required
for circuit computation increased linearly with
the number of layers (Fig. 3A). However, once
the threshold for the output gate was exceeded,
the signal increased at roughly the same rate as
in the smaller circuit (Fig. 3B). In a circuit with
four layers, two AND gates, and three OR gates,
with 12 different combinations of inputs, the
output went to clear and correct ON or OFF
states in 8 hours (Fig. 3C).

Because integrating gates support multiple
inputs and amplifying gates support multiple
outputs, logic gates built from a pair of them can
easily support fan-in and fan-out. In a circuit with
a four-input OR gate, only when all inputs from
the upstream OR gates were OFF did the output

stay OFF (Fig. 3D). In a circuit with a four-output
OR gate, each output copied the correct logic
from the upstream OR gate (Fig. 3E). Circuits
with a four-input AND gate and a four-output
AND gate are shown in fig. S8C and fig. S9C,
respectively.

To demonstrate a digital circuit with an inter-
esting function, we built a circuit that computes
the floor of the square root of a four-bit binary
number (Fig. 4A). It is not an optimized digital
logic circuit; it is designed to showcaseAND,OR,
NOT, NAND, NOR, fan-in, and fan-out of logic
gates, aswell as fan-out of input signals. NOTgates
are difficult to implement directly using represen-
tations where the ON or OFF state of an input is
determined by the presence or absence of a single
DNA species: A circuit might compute a false
output before all input strands are added, because
NOT gates already produce ON signals in the

absence of their inputs, and for use-once circuits
(such as seesaw circuits), computations cannot
be undone. Therefore, we use dual-rail logic (fig.
S10B). Each input is replaced by a pair of inputs,
representing logic ON and OFF separately. Each
logic gate is replaced by a pair of AND or OR
gates. (Taking the NOR gate as an example, out-
put being OFF is the OR of both inputs being
ON; output being ON is the AND of both inputs
being OFF.) Initially, the pair of inputs is absent,
indicating that the logic value of this signal is un-
known. At the beginning of computation, one in-
put of the pair will be added, indicating either
logic ON orOFF. In this way, no computationwill
take place before the input signals arrive. With
dual-rail logic, any AND-OR-NOTcircuit can be
transformed into an equivalent circuit with AND
or OR gates only. Then, anyAND-OR circuit can
be further transformed into an equivalent seesaw

Fig. 4. A square-root circuit implemented with the seesaw DNA motif. (A)
A digital logic circuit that computes the floor of the square root of four-bit
binary numbers. (B) Abstract diagram of the seesaw circuit that is equiv-
alent to the square-root digital logic circuit. x0i and x1i are dual-rail inputs
of xi, and they represent logic OFF and ON, respectively (the same rule
applies to the outputs). Each pair of seesaw gates implements an AND (∧)
or OR (∨) gate. Each pair of dual-rail AND or OR gates implements one
ANDNOT, OR, NAND, or NOR gate. Red dots indicate positive red numbers,
specifying initial relative concentrations of free or bound signals; red cir-
cles indicate negative red numbers, specifying initial relative concentra-

tions of thresholds or reporters. An example of a two-input, two-output OR
gate is highlighted; full details are provided in fig. S10. (C) Kinetics
experiments of the square-root circuit with all combinations of inputs from
0000 to 1111. All 16 plots are shown separately in fig. S11. (D) Kinetics
experiments that compute the square roots of 0, 1, 4, and 9. Trajectories
and their corresponding outputs have matching colors. Dotted and solid
lines indicate dual-rail outputs that represent logic OFF and ON, respec-
tively. Sequences of strands are listed in tables S4 to S7. Experiments were
performed at 25°C, 1× = 50 nM, and 0.1× was used for OFF and 0.9× for
ON inputs.
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Reaction half-time improved  
from ~6 hours to < 6 minutes



Breadboard compiler  
produces  

a mixing protocol
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First measurement 6 minutes  
after mixing start time 



Molecular Circuit Breadboard 

Roadmap  



Molecular Breadboard 2.0: 
More components 



Molecular Breadboard 2.0: 
More circuits 

Breadboard 2.0 can 
realize > 130 K circuits



Molecular Breadboard 2.0: 
Larger circuits 
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Building circuits with feedback loops 

Chemical Reaction Networks

Asynchronous Sequential Logic Circuits

Finite state machines



Providing input amplifiers  
& output signal restoration 

Linear input amplifier Exponential input amplifier Output signal restoration

New component



http://DSDbreadboard.org 
Increased speed Robustness to error Automation



Dominic Scalise, Nisita Dutta and Rebecca Schulman
DNA strand-displacement bu$ers

Si-Ping Han, Lisa Scherer, Matt Gethers, Marwa Ben Hadj Salah, Rebecca Mancusi, Sahil Sagar, Robin Hu, Julia Derogatis, Ya-Huei Kuo, Guido Marcucci, John 
Rossi and William A. Goddard Iii
Development and optimization of strand displacement based conditional small interfering RNAs for operation inside mammalian cells

Eyal Nir, Yaron Berger and Miran Liber
Computer Controlled DNA Bipedal Walker that Perform Several Steps a Minute

Abhinav Singh and Manoj Gopalkrishnan
EM Algorithm with DNA Molecules

Wooli Bae, Thomas Ouldridge and Guy-Bart Stan
Autonomous generation of multi-stranded RNA complexes for synthetic molecular circuits

Yan Shan Ang and Lin-Yue Lanry Yung
Design of Split Proximity Circuit as a Plug-and-Play Translator for Discriminating Single Nucleotide Mutation

Yan Shan Ang and Lin-Yue Lanry Yung
Dynamically Elongated Association Toehold for Tuning Circuit Kinetics and Thermodynamics

Patrick Irmisch and Ralf Seidel
Modelling DNA-strand displacement reactions in the presence of base-pair mismatches

Boya Wang and David Soloveichik
Experimentally characterizing the design space of strand displacement translators with toehold-size clamps

Allison Tai and Anne Condon
Error-free stable computation with stack-supplemented chemical reaction networks

Kevin Cherry, Gokul Gowri and Lulu Qian
DNA-based neural networks that learn from their molecular environment

Robert F. Johnson and Erik Winfree
Using Bisimulation for Verification of Polymer Reaction Networks

Related talks & posters @ DNA 24 

http://schulmanlab.jhu.edu/
http://www.bgu.ac.il/~eyalnir/
https://www.ee.iitb.ac.in/~manojg/
https://www.imperial.ac.uk/people/t.ouldridge
http://www.imperial.ac.uk/people/g.stan
http://users.ece.utexas.edu/~soloveichik/
http://www.dna.caltech.edu/~winfree


• Winfree lab (Caltech)

• Soloveichik lab (University of Texas at Austin) 

• Qian lab (Caltech)  

• Murray lab (Caltech) 

• Thanks to DNA 24 organizers for the invitation
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ABC: logic synthesis and verification 
https://people.eecs.berkeley.edu/~alanmi/abc

VisualDSD 
https://lepton.research.microsoft.com/webdna

Nuskell compiler framework 
https://github.com/DNA-and-Natural-Algorithms-Group

DSD breadboard 
http://dsdbreadboard.org  (online later this year)

Tools discussed in tutorial 

https://lepton.research
http://microsoft.com/webdna
http://dsdbreadboard.org

