# HW? 



You are asked to complete the exercise marked with $a[\star]$ and to send me your solutions to:
nicolas.schabanel@ens-lyon.fr as a PDF file named HWZ-Lastname.pdf on Fri. $\mathbf{1 0 . 1 3}$ before 13:30.
[ $\star$ ] Exercise $\mathbf{1}$ (Scale the wall). Recall that a tile assembly system $\mathcal{T}=(T, \sigma, \tau)$ consists of a tile set $T$, a seed tile $\sigma \in T$ and a temperature $\tau \in \mathbb{N}$. Consider the situation in Fig. 1 consisting of a wall of height $h$.


Figure 1: A wall of height $h$.

- Question 1.1) Can you find a tile assembly system $\mathcal{T}$ for the abstract Tile Assembly Model (aTAM) where the rules are as follows?
- The seed tile is placed at position $S=(0,0)$
- For all $h \in \mathbb{N}$, every terminal assembly of $\mathcal{T}$ should place a tile at the target position $T=(10, h)$ and be of finite size
- $\mathcal{T}$ may not place tiles to the right and below the cut of the plane shown in Figure 1
- You may give an infinite sequence of glues such that the $h$-prefix of that sequence will appear on the wall, to help the tiles 'climb up.'

Answer. $\triangleright$ First notice that there is a simple probabilistic solution to this problem that will always place the tile at position $T$ but will be finite only almost surely (if the concentrations of $B$ and $C$ tiles are at least as large as the concentration of $A$ ), see Fig. 2

However, there is no solution for the deterministic case. Indeed, let us assume that there is a deterministic tileset that solves the problem for all $h>0$. Then, let us show that it can assemble an infinite shape. We will proceed incrementally by building a sequence of shapes of strictly increasing heights as illustrated in Fig 3 The key is consider the assembly just before a tile is attached to the right of the vertical line $L$ of the wall. Let


Figure 2: A probabilistic solution.
$A_{1}$ be the assembly just before that time. Let $h_{1}$ be the height of the highest tile just to the left of $L$ in $A_{1} . A_{1}$ is also a valid assembly for the case where $h=h 1$. Thus, as the tileset is a solution for $h=h_{1}$, any extension of $A_{1}$ must ultimately solve the problem for $h=h_{1}$. It must then indeed at some point place a tile to the right of $L$, strictly above $h_{1}$. Let us consider $A_{2}$ the assembly just before that and $h_{2}>h_{1}$ the height of the highest tile just to the left of $L$ in $A_{2}$. Repeating the process we conclude that the tileset necessarily contains an infinite assembly that never crosses $L$ and thus does not solve the problem.


Figure 3: No deterministic solution.

