

You are asked to complete the exercise marked with a [\star] and to send me your solutions to:
nicolas.schabanel@ens-lyon.fr as a PDF file named HW3-Lastname.pdf on Fri. $\mathbf{1 0 . 2 0}$ before 13:30.

Exercise $\mathbf{1}$ (Oritatami). Let first us recall the definition of an Oritatami system:

Triangular lattice. Consider the triangular lattice defined as $\mathbb{T}=\left(\mathbb{Z}^{2}, \sim\right)$, where $(x, y) \sim(u, v)$ if and only if $(u, v) \in \cup_{\varepsilon= \pm 1}\{(x+\varepsilon, y),(x, y+\varepsilon),(x+\varepsilon, y+\varepsilon)\}$. Every position (x, y) in \mathbb{T} is mapped in the euclidean plane to $x \cdot X+y \cdot Y$ using the vector basis $X=(1,0)=\longrightarrow$ and $Y=$ RotateClockwise $\left(X, 120^{\circ}\right)=\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}\right)=\swarrow$.

Oritatami systems. Let B denote a finite set of bead types. Recall that an Oritatami system (OS) $\mathcal{O}=(p, \phi, \delta)$ is composed of:

1. a bead type sequence $p \in B^{*}$, called the transcript;
2. an attraction rule, which is a symmetric relation $\subseteq B^{2}$;
3. a parameter δ called the delay.

Given a bead type sequence $p \in B^{*}$, a configuration c of p is a self-avoiding path in \mathbb{T} where each vertex c_{i} is labelled by the bead type p_{i}.

We say that two bead types a and $b \in B$ attract each other when $a b$. Furthermore, given a partial configuration c of a bead type sequence q, we say that there is a bond between two adjacent positions c_{i} and c_{j} of c in \mathbb{T} if $q_{i} q_{j}$ and $|i-j|>1$.

Notations. We denote by $c^{\triangleright \delta}$ the set of all configurations extending configuration c by δ beads. We call nascent the δ last beads of an extension $c^{\prime} \in c^{\triangleright \delta}$. We denote by $h(c)$ the number of bonds made in a configuration c. We denote by $h_{i}(c)$ the number of bonds made with the bead indexed i in c. Given an extension $c^{\prime} \in c^{\triangleright \delta}$ we denote by $n\left(c^{\prime}\right)$ the number of bonds made by the nascent beads in $c^{\prime}: n\left(c^{\prime}\right)=h\left(c^{\prime}\right)-h(c)$.

Oritatami growth dynamics. Given an $\operatorname{OS} \mathcal{O}=(p, \phi, \delta)$ and a seed configuration σ of a seed bead type sequence s, the configuration at time 0 is $c^{0}=\sigma$. We index negatively the beads of $\sigma=\sigma_{-|\sigma|+1} \ldots \sigma_{0}$ so that the non-seed beads are indexed from 1 to t in configuration c^{t} at time t. The configuration c^{t+1} at time $t+1$ is obtained by extending the configuration c^{t} at time t by placing the next bead, of type p_{t+1}, at the position(s) that maximize(s) the number of bonds over all the possible extensions of configuration c^{t} by δ beads. We call favorable extension any such extension by δ beads which maximizes the number of bonds. We denote by $F(c)=\arg \max _{\gamma \in c^{\triangleright \delta}} h(\gamma)$ the set of all favorable extensions of c by δ beads. When the maximizing position is always unique (i.e. if all favorable extension always place the next bead p^{t+1} at the same location), we say that the OS is deterministic. We will only consider deterministic OS in this exercise.

We say that an OS is non-blocking if at all step, all favorable extensions can be extended by at least one bead.

Example. The OS $\mathcal{O}=(p, \phi=2)$ with bead types $\mathcal{B}=\{0, \ldots, 8\}$, transcript $p=$ $\langle 3,4,5,6,7,8\rangle$, rule $\%=\{0 \% 3,0 \% 6,1 \% 8,2 \% 4,2 \% 6,2 \% 8,4 \% 6,5 \% 7\}$ and seed configuration $\sigma=\langle 0 @(0,0) ; 1 @(1,1) ; 2 @(1,0)\rangle$, folds deterministically as follows:

The seed configuration σ is drawn in orange. The folded transcript is represented by a black line. The bonds made are represented by dotted black lines. The $\delta=2$ nascent beads are represented in bold. If there are several favorable extensions, the freely moving nascent part is represented translucently. Observe two remarkable steps:

- $t=2$ and 3 : the position of 5 is not determined when 4 is placed (indeed, there are several favorable extensions placing 5 at different locations), but will be fixed when 5 and 6 are folded together.
- $t=4$ and 5: 7 is initially placed next to 5 when 6 and 7 are folded together but will be finally placed to the right of 8 when 7 and 8 are folded together (because two bonds can be made there instead of only one) and 7 will thus remain there.

Crucial step. Consider a deterministic OS. Let us denote by c^{∞} its final configuration. We say that step t is crucial for the nascent bead indexed by k if all favorable extensions of c^{t-1} agree to place bead indexed by k at its final location in c^{∞} whereas it was not the case for all the favorable extensions of c^{t-2}. For instance, there are exactly two crucial steps in the example above: steps 3 and 5 which are crucial for beads 5 and 7 respectively.

We now consider a non-blocking deterministic OS.

- Question 1.1) Prove that for all configuration $c^{\prime} \in c^{t \triangleright \delta}, n\left(c^{\prime}\right) \leqslant 4 \delta+1$.
\triangleright Hint. how many bonds can make a nascent bead?
- Question 1.2) Prove that: if for some $1 \leqslant i<\delta$, there is $c^{\prime} \in F\left(c^{t-1}\right)$ such that c^{\prime} and c^{∞} disagree on the position of the bead indexed by $t+i$ (i.e., $c_{t+i}^{\prime} \neq c_{t+i}^{\infty}$), then there is a crucial step t^{\prime} with $t<t^{\prime}<t+\delta$.

Let us denote by $N(c)$ the maximum number of bonds made by nascent beads in an extension of $c: N(c)=\max _{\gamma \in c^{\triangleright \delta}} n(\gamma)=\max _{\gamma \in c^{\triangleright \delta}} h(\gamma)-h(c)$.

- Question 1.3) Prove that at all time t, for a non-blocking OS:

1. $N\left(c^{t-1}\right) \leqslant N\left(c^{t}\right)+h_{t}\left(c^{t}\right)$
2. furthermore, if step t is crucial, then: $N\left(c^{t-1}\right) \leqslant N\left(c^{t}\right)+h_{t}\left(c^{t}\right)-1$

We want to prove that there is no non-blocking OS that can fold a long enough straight line. By contradiction, let's consider a deterministic $\operatorname{OS} \mathcal{O}$ with delay δ and a seed σ whose terminal configuration is a straight line of length L.

- Question 1.4) Show that at all stept, there is always a favorable extension of c^{t-1} that does not place the last nascent bead, indexed by $t+\delta-1$, at its final position.
- Question 1.5) Show that there are at least $\lfloor(L-|\sigma|) / \delta\rfloor$ crucial steps in the folding of \mathcal{O}.
- Question 1.6) Conclude that $L \leqslant|\sigma|+O\left(\delta^{2}\right)$.

It follows that there is no non-blocking deterministic OS that can fold into a long enough straight line. Surprisingly enough, there is a blocking deterministic delay-6 OS that can fold into arbitrary long straight line!
[\star] Exercise 2 (Oritatami - Impossible triangle path). We want to prove that no deterministic oritatami system with delay $\delta \leqslant 2$ can fold according to the infinite triangular spiral below. Recall that the transcript t of an oritatami system (t is the sequence of bead types) is ultimately periodic, i.e. there is an i_{0} and a period T such that for all $i \geqslant 0, t_{i_{0}+i}=t_{i_{0}+T+i}$.

Question 2.1) Prove than no deterministic delay-1 oritatami system can fold according to this spiral.

Let us consider now a deterministic delay-2 oritatami system that would fold according to the infinite triangular spiral.

- Question 2.2) Prove that 2 bonds are required to place the bead correctly at each corner.
- Question 2.3) Show that there are 4 consecutive bead types a, b, c, d in the transcript that get placed as follows:

Question 2.4) Show that in order to stabilize c in the lower left corner, c must bind with a.
Question 2.5) Conclude that c cannot be placed deterministically at the top corner.

- Question $2.6(\star \star \star)$) What about deterministic oritatami systems with larger delays?

