

You are asked to complete the exercise marked with a [★] and to send me your solutions to: nicolas.schabanel@ens-lyon.fr as a PDF file named **HW3-Lastname.pdf** on **Fri. 10.20 before 13:30**.

Exercise 1 (Oritatami). Let first us recall the definition of an Oritatami system:

Triangular lattice. Consider the triangular lattice defined as $\mathbb{T} = (\mathbb{Z}^2, \sim)$, where $(x, y) \sim (u, v)$ if and only if $(u, v) \in \bigcup_{\varepsilon = \pm 1} \{(x + \varepsilon, y), (x, y + \varepsilon), (x + \varepsilon, y + \varepsilon)\}$. Every position (x, y) in \mathbb{T} is mapped in the euclidean plane to $x \cdot X + y \cdot Y$ using the vector basis $X = (1, 0) = \longrightarrow$ and $Y = \text{RotateClockwise}(X, 120^\circ) = (-\frac{1}{2}, -\frac{\sqrt{3}}{2}) = \checkmark$.

Oritatami systems. Let *B* denote a finite set of *bead types*. Recall that an *Oritatami system* (OS) $\mathcal{O} = (p, \Psi, \delta)$ is composed of:

- 1. a bead type sequence $p \in B^*$, called the *transcript*;
- 2. an *attraction rule*, which is a symmetric relation $\Psi \subseteq B^2$;
- 3. a parameter δ called the *delay*.

Given a bead type sequence $p \in B^*$, a configuration c of p is a self-avoiding path in \mathbb{T} where each vertex c_i is labelled by the bead type p_i .

We say that two bead types a and $b \in B$ attract each other when $a \ b$. Furthermore, given a partial configuration c of a bead type sequence q, we say that there is a bond between two adjacent positions c_i and c_j of c in \mathbb{T} if $q_i \ product q_j$ and |i - j| > 1.

Notations. We denote by $c^{\triangleright\delta}$ the set of all configurations extending configuration c by δ beads. We call *nascent* the δ last beads of an extension $c' \in c^{\triangleright\delta}$. We denote by h(c) the number of bonds made in a configuration c. We denote by $h_i(c)$ the number of bonds made with the bead indexed i in c. Given an extension $c' \in c^{\triangleright\delta}$ we denote by n(c') the number of bonds made by the nascent beads in c': n(c') = h(c') - h(c).

Oritatami growth dynamics. Given an OS $\mathcal{O} = (p, \clubsuit, \delta)$ and a seed configuration σ of a seed bead type sequence s, the configuration at time 0 is $c^0 = \sigma$. We index negatively the beads of $\sigma = \sigma_{-|\sigma|+1} \dots \sigma_0$ so that the non-seed beads are indexed from 1 to t in configuration c^t at time t. The configuration c^{t+1} at time t + 1 is obtained by extending the configuration c^t at time t by placing the next bead, of type p_{t+1} , at the position(s) that maximize(s) the number of bonds over all the possible extensions of configuration c^t by δ beads. We call favorable extension any such extension by δ beads which maximizes the number of bonds. We denote by $F(c) = \arg \max_{\gamma \in c^{\triangleright \delta}} h(\gamma)$ the set of all favorable extensions of c by δ beads. When the maximize

ing position is always unique (i.e. if all favorable extension always place the next bead p^{t+1} at the same location), we say that the OS is *deterministic*. We will only consider deterministic OS in this exercise.

We say that an OS is *non-blocking* if at all step, all favorable extensions can be extended by at least one bead.

Example. The OS $\mathcal{O} = (p, \mathbf{P}, \delta = 2)$ with bead types $\mathcal{B} = \{0, \dots, 8\}$, transcript $p = \langle 3, 4, 5, 6, 7, 8 \rangle$, rule $\mathbf{P} = \{0 \mathbf{P}, 3, 0 \mathbf{P}, 6, 1 \mathbf{P}, 8, 2 \mathbf{P}, 4, 2 \mathbf{P}, 6, 2 \mathbf{P}, 8, 4 \mathbf{P}, 6, 5 \mathbf{P}, 7\}$ and seed configuration $\sigma = \langle 0 \otimes (0, 0); 1 \otimes (1, 1); 2 \otimes (1, 0) \rangle$, folds deterministically as follows:

The seed configuration σ is drawn in orange. The folded transcript is represented by a black line. The bonds made are represented by dotted black lines. The $\delta = 2$ nascent beads are represented in bold. If there are several favorable extensions, the freely moving nascent part is represented translucently. Observe two remarkable steps:

- t = 2 and 3: the position of 5 is not determined when 4 is placed (indeed, there are several favorable extensions placing 5 at different locations), but will be fixed when 5 and 6 are folded together.
- t = 4 and 5: 7 is initially placed next to 5 when 6 and 7 are folded together but will be finally placed to the right of 8 when 7 and 8 are folded together (because two bonds can be made there instead of only one) and 7 will thus remain there.

Crucial step. Consider a deterministic OS. Let us denote by c^{∞} its final configuration. We say that step t is *crucial* for the nascent bead indexed by k if all favorable extensions of c^{t-1} agree to place bead indexed by k at its final location in c^{∞} whereas it was not the case for all the favorable extensions of c^{t-2} . For instance, there are exactly two crucial steps in the example above: steps 3 and 5 which are crucial for beads 5 and 7 respectively.

We now consider a non-blocking deterministic OS.

▶ Question 1.1) Prove that for all configuration $c' \in c^{t^{\triangleright \delta}}$, $n(c') \leq 4\delta + 1$. $\vdash \underline{Hint}$. how many bonds can make a nascent bead?

▶ Question 1.2) Prove that: if for some $1 \le i < \delta$, there is $c' \in F(c^{t-1})$ such that c' and c^{∞} disagree on the position of the bead indexed by t + i (i.e., $c'_{t+i} \neq c^{\infty}_{t+i}$), then there is a crucial step t' with $t < t' < t + \delta$.

Let us denote by N(c) the maximum number of bonds made by nascent beads in an extension of $c: N(c) = \max_{\gamma \in c^{\triangleright \delta}} n(\gamma) = \max_{\gamma \in c^{\triangleright \delta}} h(\gamma) - h(c)$.

▶ Question 1.3) Prove that at all time t, for a non-blocking OS:

1.
$$N(c^{t-1}) \leq N(c^t) + h_t(c^t)$$

2. furthermore, if step t is crucial, then: $N(c^{t-1}) \leq N(c^t) + h_t(c^t) - 1$

We want to prove that there is no non-blocking OS that can fold a long enough straight line. By contradiction, let's consider a deterministic OS \mathcal{O} with delay δ and a seed σ whose terminal configuration is a straight line of length L.

▶ Question 1.4) Show that at all step t, there is always a favorable extension of c^{t-1} that does not place the last nascent bead, indexed by $t + \delta - 1$, at its final position.

- ▶ Question 1.5) Show that there are at least $|(L |\sigma|)/\delta|$ crucial steps in the folding of \mathcal{O} .
- ▶ Question 1.6) Conclude that $L \leq |\sigma| + O(\delta^2)$.

It follows that there is no non-blocking deterministic OS that can fold into a long enough straight line. Surprisingly enough, there is a blocking deterministic delay-6 OS that can fold into arbitrary long straight line!

[★] Exercise 2 (Oritatami – Impossible triangle path). We want to prove that no deterministic oritatami system with delay $\delta \leq 2$ can fold according to the infinite triangular spiral below. Recall that the transcript t of an oritatami system (t is the sequence of bead types) is *ultimately periodic*, i.e. there is an i_0 and a period T such that for all $i \geq 0$, $t_{i_0+i} = t_{i_0+T+i}$.

▶ **Question 2.1)** Prove than no deterministic delay-1 oritatami system can fold according to this spiral.

Let us consider now a deterministic delay-2 oritatami system that would fold according to the infinite triangular spiral.

▶ Question 2.2) Prove that 2 bonds are required to place the bead correctly at each corner.

▶ Question 2.3) Show that there are 4 consecutive bead types a, b, c, d in the transcript that get placed as follows:

- ▶ Question 2.4) Show that in order to stabilize c in the lower left corner, c must bind with a.
- ▶ Question 2.5) Conclude that c cannot be placed deterministically at the top corner.
- ▶ Question 2.6 ($\pm \pm \pm$)) What about deterministic oritatami systems with larger delays?

