An experimental realization of a universal computer

Nicolas Schabanel

CNRS LIP & IXXI - ÉNS de Lyon

Slides mainly borrowed from Damien Woods et al (Nature 2019)

Single Stranded Tiles Nanotubes

Single stranded Nanotubes

10-helix nanotube schematic, Yin et al. '08

Single stranded Nanotubes

10-helix nanotube schematic, Yin et al. '08

Growing them

Seeded growth: barrier to nucleation at [tile]=100nM

Experiments give a (narrow) temperature range at

which we make good-guality, long, nanotubes! T8 1uM Nuc T8 100nM Nuc 100 100 100nM T8 1uM Melt 1μM T8 100nM Melt T12 100nM Nuc T10 1uM Nuc • 🗖 T10 1uM Melt T12 100nM Melt Lower concentration Higher concentration Nanotubes per image (% max) Nanotubes per image (% max) T14 100nM Nuc T12 1uM Nuc · · ×· => bigger barrier to nucleation! => longer nanotubes! 80 80 T14 100nM Melt T12 1uM Melt 2.5°C gap! T16 100nM Nuc T14 1uM Nuc • 🛧 T16 100nM Melt T14 1uM Melt • 🛧 T16 1uM Nuc 60 60 ··+· T16 1uM Melt ļ ~2.5°C 40 40 8-helix. 1µM. 90 -> 56, hold for 1 day. Then room temp to 58.9 C, and hold for 1 more day. 10µM scale bar 20 20 8 Helix. 53.3C (Too cold: nanotubes & blobs) 0 48 50 52 54 56 58 60 62 48 50 52 54 56 58 60 62 Temperature (C) - 0.2C binning Temperature (C) - 0.2C binning Just right: Just right: Too cold: nanotubes along with Too hot: free tiles do not Too cold: nanotubes along with Too hot: free tiles do not long long blobs & nanotube tangles bind to each other blobs & nanotube tangles bind to each other nanotubes nanotubes 8-helix. 100nM. 53.0 C 12-helix. 100nM. 52.2 C 14-helix. 100nM. 52.2 C 16-helix. 100nM. 52.2 C 8-helix. 1µM. 57.0 C 10-helix. 1µM. 57.0 C 12-helix. 1µM. 56.2 C 14-helix. 1µM. 56.2 C 16-helix. 1µM. 56.2 C All scale bars 10µm Each datapoint is a separate ~24 hour temperature hold experiment Fluorescence microscopy images: cy3 label

Error bars show SEM for *n*=5 experiments for blue, and *n*=2 for red

Seeded growth: barrier to nucleation at [tile]=100nM

Damien Woods

6

Seeded growth only

Imaging the results

Principle of Atomic Force Microscopy

The microscope works by scanning the surface with a sharp probe and gently touching the DNAs that arrange on the mica.

(Artwork: Ebbe Andersen- Slide by Cody Geary)

Laser deflection

The forces involved in AFM

They are interaction forces between the atoms of the end of the tip and the atoms on the sample surface.

Tip convolution

Tip radius 2-20 nm

Moskalenko

High resolution imaging

The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy Leo Gross, *et al. Science* **325**, 1110 (2009); DOI: 10.1126/science.1176210

Fig. 1. STM and AFM imaging of pentacene on Cu(111). (**A**) Ball-and-stick model of the pentacene molecule. (**B**) Constant-current STM and (**C** and **D**) constant-height AFM images of pentacene acquired with a CO-modified tip. Imaging parameters are as follows: (B) set point I = 110 pA, V = 170 mV; (C) tip height z = -0.1 Å [with respect to the STM set point above Cu(111)], oscillation amplitude A = 0.2 Å; and (D) z = 0.0 Å, A = 0.8 Å. The asymmetry in the molecular imaging in (D) (showing a "shadow" only on the left side of the molecules) is probably caused by asymmetric adsorption geometry of the CO molecule at the tip apex.

About AFM scale

Marking Os and 1s

Streptavidin-biotin marker

Streptavidin : a "huge blob"

Biotin can easily be attached to DNA strand at order

Together they make one of the <u>strongest</u> non-covalent bond

Streptavidin-biotin marks

We can order single DNA strand with biotin attached (the tiles encoding a 1!)

When added to the solution while imaging, Streptavidin attaches to biotin, marking the corresponding single stranded tiles

Streptavidin-biotin marks

kTAM model for algorithmic assembly

Algorithmic self-assembly

Erik Winfree had the idea that a growing lattice of DNA tiles could run a computer program, like Wang tiles or a CA

Rothemund, Papadakis, Winfree 2004

Thermodynamical model

Attachement rate

 $k_f \cdot [Strand]$

 $k_f \cdot \mathrm{e}^{-Gmc}$

(mainly entropy)

Detachment rate = $k_f \cdot e^{-(b \cdot Gse)}$

where *b* is the number of bonds and $G_{se} = \Delta G/RT$ the bonding unit energy in RT units (mix of entropy and enthalpy) mc = monomer concentration

se = sticky end bond strength

Simulations

Simulations

Minimzing errors

Desired

Obtained

Proofreading tiles

- Cut every tile into k x k tiles
- Now, you need to make an other
 error to
 compensate for
 an error
- The error rate is squared for k = 2!

Proofreading tiles

me = 749.6555274287 / He	eap size: 589258					
BbBeBhBbBeBhBbBeBh <mark>AbAeAl</mark>	DbDeDhDbDeDhDbDeDl	CbCeCh <mark>BbBeBhB</mark> l	bBeBhBbBeBh <mark>AbAe</mark> A	hDbDeDhDbDeDhDbDe	DhDbDeDh	DbDeDh DhDb
BcBfBiBcBfBiBcBfBi <mark>AcAfA</mark>	DcDfDiDcDfDiDcDfD	CcCfCi <mark>BcBfBiB</mark>	cBfBiBcBfBi <mark>AcAf</mark> A	DcDfDiDcDfDiDcDf	DiDcDfDi	DcDfDiDcDfDiDc
A A A A A DADADADADADA			aDdDaDaDdDa <mark>DaDdDa</mark>		DaDaDdDa	
AbA a Ab Db Do Db Db Do Db Cb Ca Cl			bDoDbDbDoDbCbCoC	h AbAoAb DbDoDbDbDo	DhDhDaDh	
ACATALDEDITDIDEDITDICECTU:	ACATAIDEDIDIDEDID			1ACATALDCDTD1DCDT	υιυςυτυι	
BaBdBgAaAdAgDaDdDgCaCdC	gBaBdBg <mark>AaAdAg</mark> DaDdDg	gCaCdCg <mark>BaBdBg</mark> A	aAdAg <mark>DaDdDg</mark> CaCdC	ig BaBdBg AaAdAg DaDd	DgDaDdDg	DaDdDgDaDdDgDaDdDgDaD
1 <mark>BbBeBh</mark> AbAeAh <mark>DbDeDh</mark> CbCeCl	nBbBeBh <mark>AbAeAh</mark> DbDeDh	nCbCeCh <mark>BbBeBh</mark> Al	bAeAh <mark>DbDeDh</mark> CbCeC	Dh <mark>BbBeBh</mark> AbAeAh <mark>DbDe</mark>	DhDbDeDh	IDbDeDhDbDeDhDbDeDhDbD
BcBfBi <mark>AcAfAiDcDfDi</mark> CcCfC:	<mark>BcBfBi</mark> AcAfAi <mark>DcDfD</mark>	CcCfCi <mark>BcBfBi</mark> A	cAfAi <mark>DcDfDi</mark> CcCfC	Di <mark>BcBfBi</mark> AcAfAi <mark>DcDf</mark>	DiDcDfDi	DcDfDiDcDfDiDcDfDiDcD
AaAdAgCaCdCgAaAdAgCaCdCo	a <mark>AaAdAq</mark> CaCdCq <mark>AaAdA</mark> q	CaCdCgAaAdAgC	aCdCg <mark>AaAdAg</mark> CaCdC	Cq <mark>AaAdAq</mark> CaCdCq <mark>AaAd</mark>	AgDaDdDg	DaDdDgDaDdDgDaDdDgDaD
AbAeAbCbCeChAbAeAbCbCeCl	AbAeAbCbCeCbAbAeAl	ChCeChAbAeAhC	bCeChAbAeAhCbCeC	ChAbAeAbCbCeChAbAe	AhDbDeDh	
AcAfAiCcCfCiAcAfAiCcCfC	AcataiCoCfCiAcAtA	CoOfCiAcAfAiC	cCfCiAcAfAiCcCfC			
	aBaBdBaBaBdBaBaBdB		oBdBaBoBdBaBoBdB	a Ba	Relation	
вревиврвевиврвевиврвев					BNADACAN	
BCBTB1BCBTB1BCBTB1BCBTB	1BcBfB1BcBfB1BcBfB	LBCB†B1BCB†B1B	CBfB1BcBfB1BcBfB	BiBcBfBiBcBfBiBcBf	B1ACATA1	DcDfD1DcDfD1DcDfD1DcD
I <mark>AaAdAg</mark> DaDdDgDaDdDgDaDdDg	gDaDdDgDaDdDgDaDdDo	gDaDdDgDaDdDgD	aDdDgDaDdDgDaDdD	DgDaDdDgDaDdDgDaDd	Dg <mark>CaCdC</mark> g	AaAdAgDaDdDgDaDdDgDaD
<mark>AbAeAh</mark> DbDeDhDbDeDhDbDeDl	nDbDeDhDbDeDhDbDeDl	nDbDeDhDbDeDhDl	bDeDhDbDeDhDbDeD	DhDbDeDhDbDeDhDbDe	Dh <mark>CbCeC</mark> h	AbAeAh <mark>DbDeDhDbDeDhDbD</mark>
AcAfAiDcDfDiDcDfDiDcDfD:	iDcDfDiDcDfDiDcDfD;	iDcDfDiDcDfDiD	cDfDiDcDfDiDcDfD	DiDcDfDiDcDfDiDcDf	Di <mark>CcCfCi</mark>	AcAfAi <mark>DcDfDiDcDfDiDcD</mark>
BaBdBg <mark>AaAdAg</mark> DaDdDgDaDdDg	gDaDdDgDaDdDgDaDdD		aDdDqDaDdDqDaDdD	DgDaDdDgDaDdDgDaDd	Dg <mark>CaCdCo</mark>	BaBdBg <mark>AaAdAg</mark> DaDdDgDaD
BbBeBhAhAeAhDbDeDbDbDeDi	DhDeDhDhDeDhDhDeD	DhDeDhDhDeDhD	hDeDhDhDeDhDhDeD	hDhDeDhDhDeDhDhDe	DhChCeCh	BbBeBbAbAeAb DbDeDbDbD
BcBfBiAcAfAiDcDfDiDcDfD	inchfninchfninchfn					BeBfBiAcAfAiDeDfDiDeD
Adaeancocechadaeanudueur						ADAEAnCOCECNADAEAnDDD
ACATA1CCCTC1ACATA1DCDfD	IDcD†DiDcD†DiDcD†D:	LDCDTD1DCDTD1D	CD†DiDcD†DiDcD†L	DiDcDfDiDcDfDiDcDf	DI <mark>CeCtC</mark> I	ACATA1CCCTC1ACATA1DCD
BaBdBgBaBdBgBaBdBg <mark>AaAdA</mark> g	DaDdDgDaDdDgDaDdDo	gDaDdDgDaDdDgD	aDdDgDaDdDgDaDdD	DgDaDdDgDaDdDgDaDd	Dg <mark>CaCdCg</mark>	BaBdBgBaBdBgBaBdBg <mark>AaA</mark>
BbBeBhBbBeBhBbBeBh <mark>AbAeAl</mark>	DbDeDhDbDeDhDbDeDh	DbDeDhDbDeDhD	bDeDhDbDeDhDbDeD	DhDbDeDhDbDeDhDbDe	D <mark>h</mark> CbCeCh	BbBeBhBbBeBhBbBeBh <mark>AbA</mark>
BcBfBiBcBfBiBcBfBi <mark>AcAfA</mark> :	DcDfDiDcDfDiDcDfD	iDcDfDiDcDfDiD	cDfDiDcDfDiDcDfD	DiDcDfDiDcDfDiDcDf	Di <mark>CcCfCi</mark>	BcBfBiBcBfBiBcBfBi <mark>AcA</mark>
AaAdA <mark>q</mark> DaDdDqDaDdDqCaCdCo	AaAdAqDaDdDqDaDdDr	DaDdDaDaDdDaD	aDdDaDaDdDaDaDdD	DaDaDdDaDaDdDaDaDd	Do <mark>CaCdCo</mark>	AaAdAq <mark>DaDdDqDaDdDq</mark> CaC
AbAcAbDbDeDbDbDeDbCbCeCi	AbAeAbDbDeDbDbDeD	DbDeDhDbDeDhD	bDeDbDbDeDbDbDeD)hDbDeDhDbDeDhDbDe	DhCbCeCh	AbAeAbDbDeDbDbDeDbCbC
	AcAfAi DeDfDiDeDfD			ipopfpipopfpipopf		AcAfAi DeDfDiDeDfDiCcC
Randha Adda Dandha Calde	Render Andre De DeD) aDoDdDaDoDdDaDoDd		RoRdRo And A Chandra Cold Cold
IBBBEBNADAEANDBDEDNCBCECI	BBBeBNADAEANDODEDI				Unubueur	BBBeBNADAeAnDBDeDnCBC
BCBfB1AcAtA1DCDfD1CcCfC:	BCBTB1ACATA1DCDTD	LDCDTD1DCDTD1D	CD†DiDcD†DiDcD†D	DiDcDfDiDcDfDiDcDf	DI <mark>CcC†C</mark> I	BCBfB1AcAfA1DcDfD1CcC
AaAdAgCaCdCgAaAdAgCaCdCg	gAaAdAg <mark>CaCdCg</mark> AaAdAq	DaDdDgDaDdDgD	aDdDgDaDdDgDaDdD	DgDaDdDgDaDdDgDaDd	Dg <mark>CaCdC</mark> g	J <mark>AaAdAg</mark> CaCdCg <mark>AaAdAg</mark> CaC
AbAeAh <mark>CbCeCh</mark> AbAeAh <mark>CbCeCl</mark>	h <mark>AbAeAh</mark> CbCeCh <mark>AbAeA</mark> i	DbDeDhDbDeDhDi	bDeDhDbDeDhDbDeD	DhDbDeDhDbDeDhDbDe	Dh <mark>CbCeC</mark> h	I <mark>AbAeAh</mark> CbCeCh <mark>AbAeAh</mark> CbC
AcAfAi <mark>CcCfCiAcAfAi</mark> CcCfC:	<mark>i</mark> AcAfAi <mark>CcCfCi</mark> AcAfA	DcDfDiDcDfDiD	cDfDiDcDfDiDcDfD	DiDcDfDiDcDfDiDcDf	Di <mark>CcCfCi</mark>	AcAfAi <mark>CcCfCi</mark> AcAfAi <mark>CcC</mark>
		AaAdAgDaDdDgD	aDdDaDaDdDaDaDdD	DaDaDdDaDaDdDaDaDd	Do <mark>CaCdCo</mark>	BaBdBqBaBdBqBaBdBqBaB
		AbAeAbDbDeDbD	bDeDbDbDeDbDbDeD	hDhDeDhDhDeDhDhDe	DhChCeCh	BbBeBbBbBeBbBbBeBbBbB
RestRisesfRisesfRisesfRisesfRi	iBoBfBiBoBfBiBoBfB					BoRfRiBoRfRiBoRfRiBoR
a A dág Do Dd Do Dd Do Dd Do Dd Do						
ADAeAnDbDeDhDbDeDhDbDeDi	hubbeenbeenbeenbeen	CBCeChAbAeAnD			Dhubueur	AbaeanDbDeDhDbDeDhDbD
ACATA1DCDfD1DcDfD1DcDfD:	IDCDTD1DcDTD1DcDfD:	CCCTC1ACATA1D	CDTD1DcDfD1DcDfD	DIDCDfDIDcDfDIDcDf	DICcCfCi	ACATAIDCDTD1DCDTD1DcD
BaBdBg <mark>AaAdAg</mark> DaDdDgDaDdDg	gDaDdDgDaDdDgDaDdDg	CaCdCg <mark>BaBdBg</mark> A	aAdAgDaDdDgDaDdD	DgDaDdDgDaDdDgDaDd	Dg <mark>CaCdC</mark> g	BaBdBg <mark>AaAdAgDaDdDgDaD</mark>
BbBeBh <mark>AbAeAh</mark> DbDeDhDbDeDl	nDbDeDhDbDeDhDbDeDl	n <mark>CbCeCh<mark>BbBeBh</mark>Al</mark>	bAeAh <mark>DbDeDhDbDe</mark> D	DhDbDeDhDbDeDhDbDe	Dh <mark>CbCeC</mark> h	BbBeBh <mark>AbAeAh</mark> DbDeDhDbD
BcBfBiAcAfAiDcDfDiDcDfD:	iDcDfDiDcDfDiDcDfD;	CcCfCi <mark>BcBfBi</mark> A	cAfAi <mark>DcDfDiDcDfD</mark>	DiDcDfDiDcDfDiDcDf	Di <mark>CcCfCi</mark>	BcBfBi <mark>AcAfAiDcDfDiDcD</mark>
AaAdAgCaCdCgAaAdAg <mark>DaDdD</mark> g	aDaDdDaDaDdDaDdDaDdD		aCdCq <mark>AaAdAq</mark> DaDdD	DaDaDdDaDaDdDaDaDd	Do <mark>CaCdCo</mark>	AaAdAq <mark>CaCdCq</mark> AaAdAq <mark>DaD</mark>
AbAeAbCbCeCbAbAeAbDbDeD	nDbDeDhDbDeDhDbDeDl	CbCeChAbAeAbC	bCeChAbAeAhDbDeD	DhDbDeDhDbDeDbDbDe	DhChCeCh	AbAcAbCbCcCbAbAcAbDbD
	incofpipeofpipeof	CoOfCiAcAfAiC				AcAfAiCcCfCiAcAfAiDcD
RaRdRaRaRdRaRaRdRaRdRa	DaDdDaDaDdDaDaDdD		aRdRaRaRdRa			RoRdRoRoRdRoRoRdRo
BOBEBIBBBEBIBBBEBIADAEAI		COCECHEDBEBHB	ревивревичение		Dhubuech	BOBEBNBDBEBNBDBEBNADA
BCBTB1BCBTB1BCBfB1ACAfA:	DCDTD1DcDfDiDcDfD:	LCCTC1BcBfBiB	CBTB1BCBFB1ACAFA	DCDTD1DcDfD1DcDf	DiCcCfCi	BCBTB1BCBTB1BCBTB1ACA
AaAdAg <mark>DaDdDgDaDdDg</mark> CaCdCo	AaAdAgDaDdDgDaDdDg	gCaCdCg <mark>AaAdAg</mark> D	aDdDgDaDdDg <mark>CaCdC</mark>	ig <mark>AaAdAg</mark> DaDdDgDaDd	DgCaCdCg	<mark>AaAdAgDaDdDgDaDdDg</mark> CaC
AbAeAh <mark>DbDeDhDbDeDh</mark> CbCeCi	nAbAeAh <mark>DbDeDhDbDeD</mark> b	<mark>CbCeChAbAeAh</mark> D	bDeDhDbDeDh <mark>CbCeC</mark>	Ch <mark>AbAeAh</mark> DbDeDhDbDe	Dh <mark>CbCeC</mark> h	AbAeAh <mark>DbDeDhDbDeDh</mark> CbC
AcAfAi <mark>DcDfDiDcDfDi</mark> CcCfC:	AcAfAiDcDfDiDcDfD	CcCfCiAcAfAiD	cDfDiDcDfDi <mark>CcCf</mark> C	i <mark>AcAfAi</mark> DcDfDiDcDf	DiCcCfCi	AcAfAi <mark>DcDfDiDcDfDi</mark> CcC
BaBdBg <mark>AaAdAgDaDdDg</mark> CaCdCo	BaBdBgAaAdAgDaDdDr	CaCdCg <mark>BaBdBg</mark> A	aAdAq <mark>DaDdDq</mark> CaCdO	g BaBdBg AaAdAg DaDd		BaBdBgAaAdAgDaDdDgCaC
BbBeBhAbAeAbDhDeDhCbCeCi	BbBeBhAbAeAb	CbCeChBbBeBb	bAeAh <mark>DbDeDb</mark> CbCeC	hBbBeBhAhAeAhDhDe	DhCbCeCh	BbBeBhAbAeAbDbDeDbCbC
BeBfBiAcAfAiDeDfDiCoof						BCBfBiAcAfAiDcDfDiCoc
	ADAEANCDUEUNADAEAN		o cechabaean coce			

k = 2

k = 3

Proofreading tiles compared to other tiles

Implementing boolean circuits

Tile as gates

4 domains = 4 glues

Tiles assembly is a rewriting system

DNA nanotube circuit model

DNA nanotube circuit model

DNA nanotube circuit model

The seam which can be unzipped to flatten the assembly for imaging

Example nanotube circuits

• *n*-bit copying: *n*+1 copy gates

• *n*-bit binary sorting: *n*+1 sort gates

Damien Woods

Example nanotube circuits

 Lazy sorting! Take the union of the copy gate set and the sort gate set. Copying fights to slow down the sorting process, but assuming a fair execution, sorting will eventually win.

 Since, in any given circuit, each gate "knows" its row number r, we will also write circuits (programs) that exploit this feature, do something that is interesting and (more importantly) provably impossible without that feature

Circuits

Behaviour: 63 layers to see the same thing twice!

Rule 110 Damien Woods
Circuits: randomised

Randomised programs may be a useful tool to calculate energetics of tile binding, or groups of tiles binding, from AFM data

Damien Woods

A nice method to assess the quality of our sequence design

Circuits

11

Glider: A common cellular automata primitive

Pattern: Monotone / horizontally connected

onmontonic widely-spaced patterns are provably impossible in the deterministic circuit model

Diamonds are forever

0	11	11	11	
0	1 1	1 1	1 1	
0	1 1	1 1	1 1	
0	1 1	1 1	1 1	
0	1 1	1 1	1 1	
0	11	11	11	

Blowing bubbles

0	11	11	11	11 11 11 11
0	11	1 1	1 1	1 1 1 1 1 1 1
0	1 1	1 1	1 1	1 1 1 1 1 1 1 1
0	1 1	1 1	1 1	1 1 1 1 1 1 1 1
0	11	1 1	1 1	1 1 1 1 1 1 1 1 1
0	11	11	11	11 11 11 11

Computational power of DNA (DNA = DNA nanotube algorithms)

- What is the computational power of our circuit model?
- With *n* input bits, depth-2 layer, and poly(n) depth circuit, what can be solved?
 - No more than P (proof: simulate poly(n) depth circuit in polynomial time on a Turing machine)
 - We've seen already that the model can solve SORTING, PARITY both of which are outside AC⁰

Rule 110

• Theorem: Rule 110 is an efficient and general purpose computer

Neary, Woods.Cook. ComplexICALP 2006Systems. 15:1-40 2004

Damien Woods

Computational power of DNA (DNA = DNA nanotube algorithms)

- What is the computational power of our circuit model?
- With *n* input bits, depth-2 layer, and poly(n) depth circuit, what can be solved?
 - No more than P. Proof: simulate poly(n) depth circuit in polynomial time on a Turing machine
 - All of P: Proof: simulate Rule 110

c b ac b a
$$F(0,0,0) = 0$$
 $F(1,0,0) = 0$ $F(0,0,1) = 1$ $F(1,0,1) = 1$ $F(0,1,0) = 1$ $F(1,1,0) = 1$ $F(0,1,1) = 1$ $F(1,1,1) = 0$

Computational power of DNA (DNA = DNA nanotube algorithms)

- What is the computational power of our circuit model?
- With *n* input bits, depth-2 layer, and poly(n) depth circuit, what can be solved?
 - Answer: Exactly P, via Rule 110 simulation

T. Neary, D. Woods. P-completeness of cellular automaton Rule 110. ICALP 2006. Springer LNCS 4051(1):132-143 Cook, M.: Universality in elementary cellular automata. Complex Systems 15 (2004) 1–40

From gate abstraction to tile abstraction

Damien Woods

6-bit universal tileset: overview

For each gate we have 4 tiles, 1 or which sticks

Glues encode rows

6-bit universal tileset: overview

2.1. U_ does not encode input/output bits. U_ encodes "boundary"

2.2. U2,...,U6 have 2input and 2 output bits.U1 & U7 have only 1input and 1 output bit.

3. Asynchronous update semantics: assembly frontier grows asynchronously rather than layer-by-layer (does not change expressivity of circuit versus tile model, roughly speaking)

But can we afford all those tiles?

From gates to tiles: savings

- Let's convert the set of *R*-bit universal gates into tiles, and examine at the resulting *R*-bit universal tile set
- Suppose I have two different gates, e.g. copying and sorting. If I convert each into 4 tiles I get 8 tiles, but lets look closer at some tile-savings:

From gates to tiles: savings

- Let's convert the set of *R*-bit universal gates into tiles, and examine at the resulting *R*-bit universal tile set
- Suppose I have two different gates, e.g. copying and sorting. If I convert each into 4 tiles I get 8 tiles, but lets look closer at some tile-savings:

From gates to tiles: savings

- Let's convert the set of *R*-bit universal gates into tiles, and examine at the resulting *R*-bit universal tile set
- Suppose I have two different gates, e.g. copying and sorting. If I convert each into 4 tiles I get 8 tiles, but lets look closer at some tile-savings:

6-bit universal tileset: overview

from previous slide: Tiles separate the 4 "elementary operations" of to 4 individual tiles, which results in **fewer tile types** in our I tile set than gates in the universal gate set

nany tiles in the *R*-bit universal tile set?

E.g. U4: There are **16 U3 tile types** that can go here (a tile is defined by its row & 4 bits), as opposed to 256 gates in the circuit model.

The user may plug and play with these 16 tile types!

Total: 89 tile types

Damien Woods

6-bit universal Special cases for rows near seam tileset: U2;_0→_0 U2;_1→_0 U8;1 →0 U8;0_→0_ details U2 and U8 have no bit 8 rows U1-U8; each on the helix they share has disjoint subset of with U1, so they tile types U2;_0→_1 U8;1_→1_ U2;_1→_1 U8;0_→1_ compute a function $f: \{0,1\} \to \{0,1\}$ U6 U5 U4 U3 U1;__->__ U2 only 1 tile type on position U1 U1, computes trivial U8 function $f:(_,_) \rightarrow (_,_)$ U7 U6

Damien Woods

pic by Dave Doty

6-bit universal proofreading (PR) tileset

- Linear/polynomial redundancy for exponential error reduction

- 3-bit copying experiments show that 2x2 PR significantly reduces errors
- Transforms 89 tiles into 356 proofreading tiles
- Caveat: we will use only a single tile type along the seam (hence, the 2x2 "U_" block at the seam is not a proofreading block). => 4*89-1=355 unique strands

Key property: 1 error forces a 2nd error in the same block, squaring the error rate

Ľ

Damien Woods

3-bit proofreading copying tileset

 To give an idea of what a 2x2 proof-reading transformation is here is a 3-bit proofreading copying applied to the 3-bit copying tile set (i.e. for a different tile set)

Sequence design

Random sequences will not work

Random sequences over 3-letter code with 1 base exception, and domain-pairs ending with AT stack

What do we want?

- 1. No "self-folding"
- 2. Clean lattice boundary
- 3. Minimize interactions between strand pairs
- 4. Uniform correct binding: in a tight range
- 5. Incorrect binding should have a much higher energy

An iterative process

Designed sequences

correct and algorithmic error attachments to a valid lattice

The experiments

The seed: a DNA origami

tiles: idealized crosssection of 16-helix nanotube of singlestranded tiles with crossover between all adjacent helices: regular 16-gon

Barcode

Seed barcodes allow to image many circuits/inputs at the same time

Preparing the tiles

 Mix of the tile strands for each of the circuits in an individual properly labelled tube

Proto

1. Origami

- 1.1. Mix sca
- 1.2. Heat at 58.1°C

2. Growth

2.1. Add tile2.2. Let it gi

3. Guards

3.1. Add Guard staples3.2. Let it attach for 4h

4. Unzip

- 4.1. Add the unzipers
- 4.2. Let it rest for 1 night
- 5. Cool down to room temperature and Image!

The result

Influence of Temperature

Rule 110: Turing complete!

C RULE110

Simulation of a cellular automaton

Lazy sorting

LAZYSORTING

Sort 1s to the top

Tile-attachment error rate 0.03%±0.005

Parity

 $2^6 = 64$ inputs

15 11 16	number of is odd?	
	Yes	
881	(1) C.	
	No	
992		
	Yes	1
803	And the second second	
	No	
ØØY		
	Yes	
	Yes	i
	Yes No	i
	Yes	i

Tile-attachment error rate 0.03%±0.001 Number of tiles attached 1,3186163

REA	308 :	188:000
0131	301 *	183
031.	383 .	131
928	2813	1.35
624 .	333 -	134
030	004 ÷	210
101.	11 604 2	S.11
1100.	410:	2131
1121	H-20 P	003 ****
113.	4315	532 mm
121	32 x no	231 10.00
1301	32 x ves	S.35
442	881	8 34 Comm
133.	6911	SBC
200.	828	3101000
201		920
982 :	441	330
2125	1 6363 -	4001
2214	182	NET Sum
2237	1000	14 1 1 Dames v
2 363 4	111	427 Jam
2334	1 14 marrie	4 367 36
~ 6		A Particular
20 =	: 64 INC	DUTS

Multiple of 3?

Is the input binary number a multiple of 3?

Tile-attachment error rate 0.03%±0.002 Number of tiles attached 354,355

Conclusion

- A 6-bits universal "efficient" DNA computer based on CA rule 110
- 3-5 years of hard work
- Beautiful results
- OPEN: interface computation for other circuits? reduce errors? have the circuits react to something?