An experimental realization of

a universal computer

Nicolas Schabanel
LIP \& IXXI - ÉNS de Lyon
Slides mainly borrowed from Damien Woods et al (Nature 2019)

Single Stranded Tiles Nanotubes

Single stranded Nanotubes

10-helix nanotube schematic, Yin et al. '08

4 domains = 4 glues

Single stranded Nanotubes

10-helix nanotube schematic, Yin et al. '08

4 domains $=\mathbf{4}$ glues

Growing them

Seeded growth: barrier to nucleation at $[$ tile $]=100 \mathrm{nM}$

Seeded growth: barrier to nucleation at [tile]=100nM

Growth from

Scale bars $10 \mu \mathrm{~m} . \sim 24$ hour temperature hold experiments. cy3 label Damien Woods

Growth
from seed

100 nM
Lower concentration => bigger barrier to nucleation! $2.5^{\circ} \mathrm{C}$ gap!

Everything

nelts

Seeded growth only

Imaging the results

Principle of

Atomic Force Microscopy

LASER BEAM
DETECTION

The microscope works by scanning the surface with a sharp probe and gently touching the DNAs that arrange on the mica.

Laser deflection

The forces involved in AFM

They are interaction forces between the atoms of the end of the tip and the atoms on the sample surface.

Tip convolution

High resolution imaging

Science
 \1/AAAS

The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy
Leo Gross, et al.
Science 325, 1110 (2009);
DOI: 10.1126/science. 1176210

Fig. 1. STM and AFM imaging of pentacene on $\mathrm{Cu}(111)$. (A) Ball-and-stick model of the pentacene molecule. (B) Constant-current STM and (C and D) constant-height AFM images of pentacene acquired with a CO-modified tip. Imaging parameters are as follows: (B) set point $I=110 \mathrm{pA}, V=170 \mathrm{mV}$; (C) tip height $z=-0.1 \AA$ [with respect to the STM set point above $\mathrm{Cu}(111)$], oscillation amplitude $A=0.2 \AA$; and (D) $z=0.0 \AA, A=0.8 \AA$. The asymmetry in the molecular imaging in (D) (showing a "shadow" only on the left side of the molecules) is probably caused by asymmetric adsorption geometry of the CO molecule at the tip apex.

About AFM scale

... how to shake the Mont Blanc over little men heads without crushing them

${ }^{\circ}{ }^{\dagger} \mid$ Man: 2 m

웆

expanding to our scale : multiply all by 10^{9}

Marking 0s and 1s

Streptavidin-biotin marker

Streptavidin : a "huge blob"

Biotin can easily be attached

Together they make one of the strongest non-covalent bond to DNA strand at order

Streptavidin-biotin marks

We can order single DNA strand with biotin attached (the tiles encoding a 1!)

When added to the solution while imaging, Streptavidin attaches to biotin, marking the corresponding single stranded tiles

Streptavidin-biotin marks

kTAM model for algorithmic assembly

Algorithmic self-assembly

Erik Winfree had the idea that a growing lattice of DNA tiles could run a computer program, like Wang tiles or a CA

Thermodynamical model

(a)

(b)

Winfree, Bekbolatov DNA9

Attachement rate

Detachment rate

$$
\begin{gathered}
= \\
\boldsymbol{k}_{f} \cdot \mathbf{e}^{-(b \cdot G s e)}
\end{gathered}
$$

where b is the number of bonds and $G_{s e}=\Delta G / R T$ the bonding unit energy in RT units
(mix of entropy and enthalpy)
$m c=$ monomer concentration
$s e=$ sticky end bond strength

Simulations

Simulations

Minimzing errors

Desired

Obtained

Proofreading tiles

(a)

boundary tiles

(d)

- Cut every tile into $k \times k$ tiles
- Now, you need to make an other error to compensate for an error
- The error rate is squared for $k=2$!

Proofreading tiles

$k=\mathbf{2}$

$k=\mathbf{3}$

Proofreading tiles compared to other tiles

(a) DX motif
(b) TX motif
(c) SST
(d) SST proofreading

Implementing boolean circuits

Tile as gates

4 domains $=\mathbf{4}$ glues

Tiles assembly is a rewriting system

DNA nanotube circuit model

input

1

2

layers

DNA nanotube circuit model

DNA nanotube circuit model

The seam which can be unzipped to flatten the assembly for imaging

Example nanotube circuits

- n-bit copying: $n+1$ copy gates

6-bit copying circuit

$\boldsymbol{i}_{\mathbf{1}} \boldsymbol{i}_{2}$	$\boldsymbol{o}_{\boldsymbol{1}}$	\boldsymbol{o}_{2}	
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1
copy gate			
truth table			

- n-bit binary sorting: $n+1$ sort gates

Example nanotube circuits

- Lazy sorting! Take the union of the copy gate set and the sort gate set. Copying fights to slow down the sorting process, but assuming a fair execution, sorting will eventually win.

- Since, in any given circuit, each gate "knows" its row number r, we will also write circuits (programs) that exploit this feature, do something that is interesting and (more importantly) provably impossible without that feature

Circuits

Function computation

Solving a "hard" decision problem

Glider: A common cellular automata primitive
long repeat

Behaviour: 63 layers to see the same thing twice!

Circuits: randomised

Randomised programs may be a useful tool to calculate energetics of tile binding, or groups of tiles binding, from AFM data

A nice method to assess the quality of our sequence design

Circuits

zig-zag

0	11			11			11			11			
0		1	1		1	1		1	1		1	1	
0		1	1		1	1		1	1		1	1	
0	1	1	1	1		1	1		1	1			1
0	1		1	1		1	1			1			1
1	1			1			1			1			

Glider: A common cellular automata primitive

Pattern: Monotone / horizontally connected

Nonmontonic widely-spaced patterns are provably impossible in the deterministic circuit model

Diamonds are forever

Blowing bubbles

Computational power of DNA (DNA = DNA nanotube algorithms)

- What is the computational power of our circuit model?
- With n input bits, depth-2 layer, and poly(n) depth circuit, what can be solved?
- No more than P (proof: simulate poly(n) depth circuit in polynomial time on a Turing machine)
- We've seen already that the model can solve SORTING, PARITY both of which are outside AC^{0}

Rule 110

- Theorem: Rule 110 is an efficient and general purpose computer Neary, Woods. Cook. Complex ICALP 2006 Systems. 15:1-40 2004

Computational power of DNA (DNA = DNA nanotube algorithms)

- What is the computational power of our circuit model?
- With n input bits, depth-2 layer, and poly(n) depth circuit, what can be solved?
- No more than P. Proof: simulate poly(n) depth circuit in polynomial time on a Turing machine
- All of P: Proof: simulate Rule 110

c b a	c b a
$F(0,0,0)=0$	$F(1,0,0)=0$
$F(0,0,1)=1$	$F(1,0,1)=1$
$F(0,1,0)=1$	$F(1,1,0)=1$
$F(0,1,1)=1$	$F(1,1,1)=0$

Computational power of DNA (DNA = DNA nanotube algorithms)

- What is the computational power of our circuit model?
- With n input bits, depth-2 layer, and poly(n) depth circuit, what can be solved?
- Answer: Exactly P, via Rule 110 simulation
T. Neary, D. Woods. P-completeness of cellular automaton Rule 110. ICALP 2006. Springer LNCS 4051(1):132-143 Cook, M.: Universality in elementary cellular automata. Complex Systems 15 (2004) 1-40

From gate abstraction to tile abstraction

1. Compile gates to tiles

$i_{1}, i_{2}, g_{r, 1}\left(i_{1}, i_{2}\right), g_{r, 2}\left(i_{1}, i_{2}\right) \in\{0,1\}$

$$
\begin{array}{cc|cc}
\boldsymbol{i}_{\boldsymbol{1}} \boldsymbol{i}_{2} & \boldsymbol{o}_{\boldsymbol{1}} \boldsymbol{o}_{2} \\
\hline 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}
$$

Each row of a gate's truth table is encoded by a tile
Gate truth table

6-bit universal tileset: overview

Glues encode rows

For each gate we have 4 tiles, 1 or which sticks

6-bit universal tileset: overview

2. Wrap into a tube along boundary/seam ("_" = no bit here)

2.1. U_ does not encode input/output bits. U_encodes "boundary"
2.2. U2,..., U6 have 2 input and 2 output bits. U1 \& U7 have only 1 input and 1 output bit.
3. Asynchronous update semantics: assembly frontier grows asynchronously rather than layer-by-layer (does not change expressivity of circuit versus tile model, roughly speaking)

But can we afford all those tiles?

From gates to tiles: savings

- Let's convert the set of R-bit universal gates into tiles, and examine at the resulting R-bit universal tile set
- Suppose I have two different gates, e.g. copying and sorting. If I convert each into 4 tiles I get 8 tiles, but lets look closer at some tile-savings:

$i_{1}, i_{2} \in\{0,1\}$

$\mathbf{i 1}$	$\mathbf{i 2}$	$\mathbf{0 1}$	$\mathbf{o 2}$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	1	1
sort gate			

sort tiles

$$
i_{1}, i_{2} \in\{0,1\}
$$

From gates to tiles: savings

- Let's convert the set of R-bit universal gates into tiles, and examine at the resulting R-bit universal tile set
- Suppose I have two different gates, e.g. copying and sorting. If I convert each into 4 tiles I get 8 tiles, but lets look closer at some tile-savings:

$i_{1}, i_{2} \in\{0,1\}$

Truth tables: 3 identical row-pairs!

3 identical tile-pairs!

$$
i_{1}, i_{2} \in\{0,1\}
$$

From gates to tiles: savings

- Let's convert the set of R-bit universal gates into tiles, and examine at the resulting R-bit universal tile set
- Suppose I have two different gates, e.g. copying and sorting. If I convert each into 4 tiles I get 8 tiles, but lets look closer at some tile-savings:
 $i_{1}, i_{2} \in\{0,1\}$

Truth tables: 3 identical row-pairs!

3 identical tile-pairs!

6-bit universal tileset: overview

- Intuition from previous slide: Tiles separate the 4 "elementary operations" of a gate into 4 individual tiles, which results in fewer tile types in our universal tile set than gates in the universal gate set
- So how many tiles in the R-bit universal tile set?
E.g. U4: There are 16 U3 tile types that can go here (a tile is defined by its row \& 4 bits), as opposed to 256 gates in the circuit model.

The user may plug and play with these 16 tile types!

4 ${ }^{{ }^{2}}{ }^{2}$.

U2,3,4,5,6 each have 2 input and 2 output bits, hence 16 tile types each

Total: 89 tile types

6-bit

 universal tileset: detailsglues are between even and odd rows: always named after
other possible inputs even row

6-bit

 universal tileset: details
8 rows U1-U8; each

 has disjoint subset of tile types

U3
U2
U1

U7

U6

other possible outputs on input 00
pic by Dave Doty
glues are between even and odd rows: always named after even row

$\cup 4 ; 01 \rightarrow 10$

$\mathrm{U} 4 ; 10 \rightarrow 10$

tiles in rows
U3, U5, U6, U7 selected similarly
each computes a function
$f:\{0,1\}^{2} \rightarrow\{0,1\}^{2}$

6-bit

universal

Special cases for rows near seam

tileset: details

8 rows U1-U8; each has disjoint subset of tile types

pic by Dave Doty

U2 and U8 have no bit on the helix they share with U1, so they compute a function $f:\{0,1\} \rightarrow\{0,1\}$

only 1 tile type on position
U1, computes trivial
function f. (,,_) $\rightarrow($, , $)$

6-bit universal proofreading (PR) tileset

- Linear/polynomial redundancy for exponential error reduction
- 2×2 PR transformation: each tile type t is transformed into a 2×2 block of 4 tiles types that uniquely represent, or hardcode for, t

- Transforms 89 tiles into 356 proofreading tiles
- Caveat: we will use only a single tile type along the seam (hence, the 2×2 " U _" block at the seam is not a proofreading block). => 4*89-1=355 unique strands

Key property: 1 error forces a $2^{\text {nd }}$ error in the same block, squaring the error rate

3-bit proofreading copying tileset

- To give an idea of what a 2×2 proof-reading transformation is here is a 3 -bit proofreading copying applied to the 3 -bit copying tile set (i.e. for a different tile set)
pre-proofreading tile set (for 8-helix tube)

Sequence design

Random sequences will not work

Random sequences over 3-letter code with 1 base exception, and domain-pairs ending with AT stack

What do we want?

1. No "self-folding"
2. Clean lattice boundary
3. Minimize interactions between strand pairs
4. Uniform correct binding: in a tight range
5. Incorrect binding should have a much higher energy

An iterative process

Evaluate

Designed sequences

correct and algorithmic error attachments to a valid lattice

The experiments

The seed: a DNA origami

Classic
rectangle

Barrel

 correction
tiles: idealized crosssection of 16 -helix nanotube of singlestranded tiles with crossover between all adjacent helices: regular 16-gon

seed: idealized
cross-section of 16helix DNA origami barrel without
crossover from top
to bottom helix:
irregular 16-gon

Barcode

Seed barcodes allow to image many circuits/inputs at the same time

Preparing the tiles

- Mix of the tile strands for each of the circuits in an individual properly labelled tube

1. Origami

1.1. Mix scaffold and staples and adapters
1.2. Heat at $90^{\circ} \mathrm{C}$ and let it cold down to $58.1^{\circ} \mathrm{C}$ slowly (1h)
2. Growth
2.1. Add tiles
2.2. Let it grow at $58.1^{\circ} \mathrm{C}$ for 1 day
3. Guards
3.1. Add Guard staples
3.2. Let it attach for 4 h
4. Unzip
4.1. Add the unzipers
4.2. Let it rest for 1 night

The result

Influence of

Temperature

Rule 110: Turing complete!

Simulation of a cellular automaton

Tile-attachment error rate $0.03 \% \pm 0.009$ Number of tiles attached 48,789

Lazy sorting

Parity

Is the number of 1 s odd?

Fens	Forsk	128:m
ब13.	3015	120
281:	296.	131
mara	2817	
2an.	F3\%	
[ex	26.7	
191.	1103 :	21
19.	10:	213
112.	सटल	6
1113	M31:	Chz
21:	$32 \times \mathrm{no}$	2 Cl
190.	$32 \times$ yes	Co
MMa	12al	
139.	स11	उe
2exa	22aram	91e
201	Caxa	928
[erce:	441	31320
212	12\%)	मea
2814	102\%	4¢3
223\%	1 Ca …	411
2asy	111 mm	ME1
[993:	TM.	433
$2^{6}=64$ inputs		

Multiple of 3?

Is the input binary number a multiple of 3 ?

Unbiasing a biaised coin

Unbiasing a biased coin

Probability(result = yes)

Distance to yes/no result (nm)

Bias P and barcode

Conclusion

- A 6-bits universal "efficient" DNA computer based on CA rule 110
- 3-5 years of hard work
- Beautiful results
- OPEN: interface computation for other circuits? reduce errors? have the circuits react to something?

