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Abstract6

This paper is about turedos, which are Turing machine whose head can move in the plane (or in a7

higher-dimensional space) but only in a self-avoiding way, by putting marks (letters) on visited8

positions and moving only to unmarked, therefore unvisited, positions. The key parameter of9

turedos is their lookup radius: the distance up to which the head can look around in order to make10

its decision of where to move to and what mark to write. In this paper we study the hierarchy of11

turedos according to their lookup radius and the dimension of space using notions of simulation up12

to spatio-temporal rescaling (a standard approach in cellular automata or self-assembly systems).13

We establish that there is a rich interplay between the turedo parameters and the notion of14

simulation considered. We show in particular, for the most liberal simulations, the existence of 3D15

turedos of radius 1 that are intrinsically universal for all radii, but that this is impossible in16

dimension 2, where some radius 2 turedo are impossible to simulate at radius 1. Using stricter17

notions of simulation, intrinsic universality becomes impossible, even in dimension 3, and there is a18

strict radius hierarchy. Finally, when restricting to radius 1, universality is again possible in19

dimension 3, but not in dimension 2, where we show however that a radius 3 turedo can simulate all20

radius 1 turedos.21
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1 Introduction27

The field of biomolecular computing has given rise to several theoretical models that28

describe growing process of (molecular) assemblies governed by local interaction or29

gluing rules. One of the most studied one, the abstract Tile Assembly model (aTAM) [19],30

describes a process where the growth can happen anywhere asynchronously. It was31

successfully implemented in vitro as DNA self-assembly [18]. In oritatami systems,32

introduced more recently [9, 8] and inspired from RNA origami [11, 7], the growth33

happens at a unique given point of the assembly and in a sequential manner. Despite their34

obvious differences as models of biomolecular systems, they share common features as35

computational models. Both are limited by the fact that they can only grow shapes (and36

not erase them), but both were shown capable of embedding universal computations in37

different ways [10, 12, 3, 14, 19]. Recently, it was also shown through new results on38

oritatami systems that the infinite limit shapes both models can generate from finite seeds39

have the same computational complexity and the same possible densities of occupied40

position in the plane [17]. The key ingredients of these new results were, on one hand, the41

introduction of a new model, called turedos, which abstracts away low level details of42

oritatami systems and is easier to program, and on the other hand, a proof that oritatami43

systems can simulate a large family of turedos. This underlines the interest of turedos but44

also the surprising capabilities of models of sequential growth process in the plane. The45

present work is entirely focused on the turedo model and aims at better understanding its46

limitations and its expressive power as a growth process and computational model.47

Turedos. Intuitively, a turedo is a Turing machine whose head can move in the plane48

or in the 3-dimensional space but only in a self-avoiding way, i.e. without going back to49

a previously visited position. More precisely, the turedo’s head can only move to empty50

or unmarked positions, and it must put a mark on each visited position when leaving it.51

The key ingredient of a turedo, and what makes its main computational power, is its lookup52

radius: when deciding a move and what mark to put on the visited position, the turedo has53

access to the local configuration of marks around its position, up to some finite distance.54

Like any Turing machine, a turedo also has a set of internal head states. Without entering55

into details, an oritatami system consists of a “molecule” made of “beads” that can attract56

each other. The molecule grows at each step following a periodic bead sequence and folds57

as follows: the δ most recently produced beads are free to move around to look for the58

position that maximizes the number of bonds they can make with each other ; then the first59

(oldest) bead among the δ most recent ones is fixed according to that position, a new free60

bead is added and the process iterates. This behavior can be realized in a turedo of radius61

δ + 1. The main result of [17] is that oritatami of delay 3 can simulate turedos of radius62

1. In fact, turedos also naturally capture variants of oritatami systems: for instance, one63

can imagine negative (repulsive) bonds in the process of maximizing gluing strength, or64

add local rules forbidding two bead type to be neighbor of each other. Therefore negative65

results on turedos become negative results on oritatami systems, but also potential variants66

of them.67

Simulations and universality. The main question we address here is how the68

capabilities of turedos change with their radius and what is the role of the dimension of69

space. We are interested in qualitative differences and don’t compare turedos move by70

move and cell by cell. We rather use a notion of simulation allowing spatio-temporal71

rescaling, similar to the one used in cellular automata [4, 1], in aTAM [6, 5, 16] or in the72

simulation result of turedo by oritatamis [17]. Intuitively a cell can be simulated by a block73
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of cells, and a step by a finite number of steps. We are naturally interested by hierarchy74

results (existence of turedos that can’t be simulated by lower radius ones), or on the75

contrary by universality results (existence of turedos that can simulate all turedos or a76

large class of them). For instance, the existence of intrinsically universal systems in the77

aTAM model was much studied and it was shown that it crucially depends on natural78

parameters of the model [6, 16, 5, 13]. However, as natural as it might seem, a formal79

notion of simulation is never a neutral choice when tackling these questions [1, 4, 2]. Thus,80

in addition to the parameters of the turedo model we also study the influence of the81

notion of simulation itself. For this we identify various ingredients, in particular the82

possibility of fuzz, i.e. the tolerance allowed for the simulating turedo to visit some83

regions of space close to the ongoing assembly that represent empty cells of the simulated84

turedo and are therefore not yet been visited by it. Note that a similar notion of fuzz85

appeared in the intrinsic universality results on aTAM [5]. We end up with three notions86

of simulation: the rigorous, the fuzzless and the liberal ones.87

Our contributions. After formalizing all the concepts mentioned so far (Section 2), we88

establish a surprisingly diverse general picture of the capabilities of turedos of simulating89

each other. Separating the negative results (Section 3) from the positive ones (Section 4),90

our results are the following:91

1. under fuzzless simulation, intrinsic universality is impossible whatever the dimension,92

there is a radius hierarchy, and actually the impossibility strikes at radius 2: no turedo93

can fuzzlessly simulate all radius 2 turedos (Theorem 5);94

2. when restricting to radius 1, rigorous intrinsic universality is possible in dimension 395

(Theorem 11), but not in dimension 2 (Theorem 6);96

3. however, we built a 2D turedo of radius 3 which is able to rigorously simulate all 2D97

turedo of radius 1 (Theorem 10);98

4. for liberal simulations, we establish intrinsic universality in dimension 3 and a complete99

hierarchy collapse at radius 1 (Corollary 13);100

5. finally we show that there is a 2D turedo of radius 2 which is impossible to simulate at101

radius 1, even under liberal simulations (Theorem 9).102

Besides the above results, our contribution also lies in the constructions and proof103

techniques. For instance, the negative result 5 is based on a general lemma for 2D turedos104

of radius 1, which bounds the quantity of information (using Kolmogorov complexity)105

that can be carried from the seed to another connected component of the plane when the106

plane is divided by a 4-connected path. As another example on the constructive side,107

result number 3 above uses a novel construction technique (called heat sink trick) that108

fully exploits the potential of radius 3 and could be used in any place where two109

unbounded streams of information have to be crossed. Finally, in Section 5, we discuss110

various questions left open and present what we believe are promising future research111

directions.112

2 Definitions113

We denote by N the set of natural numbers (including 0), by N+ the positive ones, and by Z114

the set of integers. We consider turedos on Zd for d = 2 or 3 (and in particular, we don’t use115

the hexagonal lattice on the plane, mostly to simplify notations and dimension change). We116

fix a blank symbol⊥used to represent empty positions and common to all turedos. The ball117

of radius r in dimension d, denoted Bd(r), is the set of positions reachable in r elementary118

moves (moves along vector of the canonical based of Zd) from the origin. Bd(1) will always119

CVIT 2016
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be the set of possible head moves in dimension d. We denote by c[z; S] the pattern of shape120

S around position z in configuration c, i.e. the map z′ ∈ S 7→ cz+z′ .121

▶ Definition 1 (Turedo). A turedo of dimension d and radius r is a triple T = (A, Q, δ) where122

A is its finite alphabet with ⊥ ∈ A, Q is its finite set of head states and123

δ : Q×ABd(r) → Q×A \ {⊥} ×Bd(1)124

is its local transition map. A global state of T is a triple (c, z, q) ∈ GT = AZd × Zd ×Q125

specifying a configuration, a position and a head state. The global transition map FT : GT → GT126

associated to T is defined by:127

FT (c, z, q) =

{
(c, z, q) if c(z) 6= ⊥ or c(z + µ) 6= ⊥
(c′, z + µ, q′) else,

128

where (q′, a, µ) = δ(q, c[z; Bd(r)]) and configuration c′ is defined by c′(z) = a and c′(z′) = c(z′)129

for all z′ 6= z.130

The domain of a global state (c, z, q) is the set of non-blank positions of c plus the head131

position, formally: D(c, z, q) = {z} ∪
∪
{z′ : c(z′) 6= ⊥} A global state (c, z, q) is finite if its132

domain is finite. We are interested in orbits starting from finite initial global states, called133

finite seeds.134

▶ Example 2 (The spiral-XOR turedo). Let A = {⊥, 0, 1} and Q = {←, ↑,→, ↓}. The spiral-135

XOR turedo has the following local rule. The head holds a direction d ∈ Q and tries to136

move in that direction and let behind, as letter of A, the sum modulo 2 of the states of137

neighboring (non ⊥) positions. When it can do the d move, it changes its internal state138

(counter-clockwise), when it can’t it takes the first available move (clockwise) and doesn’t139

change its state. Of course if there is no neighbor in state ⊥ then the turedo is blocked. The140

following table shows the local transition map up to rotation of d (the red arrow can be141

rotated and all blue arrows are defined relatively to the red arrow):142

state 1st empty neighbor new state letter move
↑ ↑ (+0) ← (-1)

∑
mod2 ↑ (+0)

↑ → (+1) ↑ (+0)
∑

mod2 → (+1)
↑ ↓ (+2) ↑ (+0)

∑
mod2 ↓ (+2)

↑ ← (+3) ↑ (+0)
∑

mod2 ← (+3)

143

See Figure 1 for an example of orbit.144

The main focus of this paper is to understand the role of radius and dimension in the145

computational complexity of turedos. We will denote by TURd(r) the set of turedos of146

dimension d and radius r, and TURd =
∪

r≥1 TURd(r).147

Before formalizing simulation, we first need to define block encodings which are ways to148

represent global states of a simulated turedo by blocks in the simulator. Any given b ∈ Nd
+149

defines a rectangular block Rb = {z ∈ Nd : 0 ≤ zi < bi for 1 ≤ i ≤ d} and Zd can be tiled by150

translated copies of Rb in a regular way by placing them on the sublattice b⊗ Zd where ⊗151

denotes the component-wise product. Each position z ∈ Zd can be uniquely decomposed152

into z = ρb(z) + µb(z) where ρb(z) ∈ b⊗ Zd is the reference point of a block and µb(z) ∈ Rb153

is an offset inside it.154
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Initial global state Global state after 10 steps Global state after 307 steps

Figure 1 Example of orbit of the spiral-XOR turedo (example 2) starting from a finite seed. Green
represents 0, yellow represents 1 and white represents⊥. The head holds a direction (where the black
triangle is pointing to) and its self-avoiding trajectory since the beginning is drawn as a black path.

▶ Definition 3 (Block encoding). Let us fix a dimension d. Given two pairs of alphabets and155

state sets (A1, Q1) and (A2, Q2) with ⊥ ∈ A1 ∩A2, a block encoding of global states156

G1 = AZd

1 × Zd ×Q1 into G2 = AZd

2 × Zd ×Q2 is given by a block size b ∈ Nd
+ and two partial157

onto maps:158

the headless block decoding map α : Dα ⊆ ARb
2 → A1 verifying ⊥Rb ∈ Dα and159

α(⊥Rb) = ⊥,160

the head block decoding map β : Dβ ⊆ ARb
2 ×Rb ×Q2 → Q1 ×A1.161

A global state (c, z, q) ∈ G2 is valid for the encoding if it is made only of patterns from Dα far from162

the head and Dβ around the head, precisely if: (c[ρb(z); Rb], µb(z), q) ∈ Dβ and c[ρb(z′); Rb] ∈ Dα163

for all z′ ∈ Zd such that ρb(z′) 6= ρb(z).164

Finally, the global decoding map Γ associates to any valid global state (c2, z2, q2) ∈ G2 a165

global state (c1, z1, q1) ∈ G1 defined by application of decoding maps α or β on each block according166

to the presence of the head in the block, i.e. :167

b⊗ z1 = ρb(z2),168

(q1, c1(z1)) = β(c2[ρb(z1); Rb], µb(z2), q2),169

c1(z) = α(c2[ρb(z2); Rb]) for all z 6= z1.170

The map α and β being partial and onto intuitively means that not all global states are171

valid, and that any global state of AZd

1 × Zd ×Q1 can be encoded. Note that the headless172

block decoding map α always decodes blank blocks ⊥Rb as blank state ⊥. Denote by173

Db(c2, z2, q2) the block domain of global state (c2, z2, q2) which is the set of blocks that are174

not entirely blank, i.e. Db(c2, z2, q2) = {z : b⊗ z = ρb(z2) or c2[b⊗ z; Rb] 6= ⊥Rb}.175

We can now define simulations precisely using block encodings. Intuitively, we ask176

for the simulator to be able to reproduce any orbit of the simulated turedo starting from a177

finite seed, and using a (fixed) finite number of steps to simulate one step. Since we want178

the initial seed of the simulator to be neutral and without any pre-computed information179

about the future of the simulated orbit, we ask that its block domain correspond to the180

domain of the simulated seed.181

▶ Definition 4 (Simulation). Let d be a fixed dimension. We say that a d-dimensional turedo T2182

simulates a d-dimensional turedo T1 if there is:183

a block encoding of GT1 into GT2 of bock size b and global decoding map Γ,184

a time scaling factor k ∈ N+,185

such that for each finite global state (c1, z1, q1) ∈ GT1 and each global state (c2, z2, q2) ∈ GT2186

verifying:187

corresponding block domain: D(c1, z1, q1) = Db(c2, z2, q2),188

correct encoding: (c1, z1, q1) = Γ(c2, z2, q2),189

CVIT 2016
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Original Rigorous Fuzzless Liberal

Figure 2 Differences in allowed head movements in rigorous, fuzzless and liberal simulations
with 2× 2 blocks. The colors have the following meaning: in red the positions or blocks which are
not empty initially, in yellow the positions or blocks coding a non-⊥ letter during the orbit; in white
the positions or blocks coding ⊥; in black the movement of the head.

then it holds ∀t ∈ N, F t
T1

(c1, z1, q1) = Γ
(
F kt

T2
(c2, z2, q2)). Such simulations are the base upon190

which we define three variants (two restrictions and one generalization).191

We say that a simulation is fuzzless if the block domain in the simulator orbit remains identical192

to the domain of the simulated orbit, precisely: ∀t ∈ N : Db(F kt
T2

(c2, z2, q2)) = D(F t
T1

(c1, z1, q1)).193

We say that a simulation is rigorous if the movements of the head of T2 in simulating orbits194

strictly remains inside blocks corresponding to the simulated head position of T1, even at195

intermediate steps, precisely: if zt
1 denotes the head position of F t

T1
(c1, z1, q1) and zt

2 that of196

F t
T2

(c2, z2, q2), it holds for all t′ with kt ≤ t′ ≤ k(t + 1) : zt′

2 ∈ (b⊗ zt
1 + Rb) ∪ (b⊗ zt+1

1 + Rb).197

Finally, a liberal simulation is a generalized simulation where we only ask that for each finite198

global state (c1, z1, q1) ∈ GT1 there exists a global state (c2, z2, q2) ∈ GT2 with corresponding block199

domain and correct encoding such that it holds ∀t ∈ N, F t
T1

(c1, z1, q1) = Γ
(
F kt

T2
(c2, z2, q2)).200

Liberal simulations can have fuzz and make non-rigorous head movements. Note that201

fuzzless simulations are equivalent to simulations where the headless block decoding map202

is such that α(u) = ⊥ ⇐⇒ u = ⊥Rb , i.e. that the only block coding ⊥ is ⊥Rb . Note also203

that a rigorous simulation is necessarily fuzzless because the head of the simulator has204

no opportunity, even at intermediate time steps, to visit blocks not corresponding to the205

domain of the simulated configuration. The power of fuzzless simulations compared to206

rigorous ones is to allow the head to go back to blocks that were previously visited. Thus207

the head can potentially retrieve information from non adjacent blocks that were written208

a long time ago. With rigorous simulation on the contrary, the head has only access to209

adjacent blocks during a simulation cycle.210

We denote by ≤ the liberal simulation, by ≤F L the fuzzless simulation and by ≤R the211

rigorous simulation. Among many properties of these simulation relations, we are212

particularly interested in universality: the capacity of a single turedo to simulate a whole213

set of turedos. Given a dimension d and a radius r, we denote by U≤
d (r) the set of turedos214

T ∈ TURd such that for any T ′ ∈ TURd(r) it holds T ′ ≤ T . We denote by U≤
d the set of215

turedos T ∈ TURd such that for any T ′ ∈ TURd it holds T ′ ≤ T . We use similar notations216

for simulation relations ≤R and ≤F L.217

3 Separation Results218

3.1 No Fuzz, no Fun219

The fuzzless condition gives much importance to larger radii, simply because a turedo’s220

head surrounded by blocks coding ⊥ cannot read information far away without moving221

inside these blocks and thus creating fuzz. The following theorem exploits this obvious222
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. a a

.

. . .

. X

.

.

a1

a2

a3

Figure 3 Example of a copy-and-move operation (on the left) and its rigorous simulation by a
turedo of radius 1 with 3× 3 block size (on the right). The color convention is as follows: in red
the letters present in the seed, in dark yellow the initial position of the head, and in light yellow, the
positions visited by the head during the orbit. The only position on the south side of the middle block
that can depend on a is the lower right corner, marked with a X .

limitation to show two immediate consequences: first, there is a radius hierarchy (new223

behaviors appear at radius r + 1 that cannot be simulated at radius r) and thus no general224

fuzzless universality; second, universality is impossible even at radius 2: any turedo225

(whatever its radius) will fail to simulate some radius-2 turedo. The dimension plays no226

role in these results.227

▶ Theorem 5. For any d ≥ 2 and r ≥ 1, we have the following:228

there is Tr+1 ∈ TURd(r + 1) such that for all Tr ∈ TURd(r), Tr+1 6≤F L Tr ; in particular,229

U≤F L

d = ∅.230

for any Tr ∈ TURd(r) there exists T2 ∈ TURd(2) such that T2 6≤F L Tr ; in particular,231

U≤F L

d (r) = ∅ for any r ≥ 2.232

3.2 Dimension 2 and Radius 1: the Jordan Curve Burden233

A turedo’s head in dimension 2 always moves drawing a 4-connected path. When the234

turedo has radius 1, it has no way to read information across such a path (while it could235

with a larger radius). Therefore head movements for turedos of radius 1 turns into236

potential information barriers. The precise way in which this simple observation affects237

the simulation power of such turedos depends on the type of simulation considered.238

Let us first consider rigorous simulations. Any turedo T (whatever its radius) can239

obviously do the following elementary copy-and-move operation (see Figure 3):240

move to the right to some position z;241

read the letter a present at position z + (1, 0);242

then move to position z + (0, 1) and leave behind letter a at position z.243

In particular, if the head continues its way and later arrives at position z − (0, 1) from the244

south, it can read the information a copied at position z.245

However, if we suppose that some T1 ∈ TUR2(1) simulates T under rigorous246

simulations with block size b, the movement of its head inside block b⊗ z to simulate the247

above copy-and-move step must be the following (see Figure 3):248

coming from the left side of the block, it draws some path inside it until it reaches the249

right border (if not it cannot read any information from the adjacent block to the right);250

then it must move north, otherwise it would be trapped in the south part of the blocks251

by the 4-connected path drawn so far that connects the left and right sides of the block;252

it must finally escape through the north side.253

This head movement is such that at most 1 letter of T1 is written on the south side of block254

b⊗ z after having had the opportunity to read some information from the adjacent block255

that encodes letter a. In particular, if T1 has smaller alphabet than T this is not enough to256

completely encode a on the south side of block b⊗ z. So, this is a limitation that has to be257

dealt with if later in the simulation the head arrives from the south and has to read from258

CVIT 2016
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a0 a1 a2 an

a

↓

↓

←↑

.

. . .

.a0 a1 .

. . .

a2

. . .

. a3 ... ... . an

. . .

. .

.

........a

=? YESNO

Figure 4 Behavior of turedo T ′ on the seed σ(⃗a, 2, a). The red and blue colors indicate letters
present in the seed. The dark yellow color indicates the initial position of the head and light yellow
cells represent the path of the head until the last step of the orbit. The orange cell correspond to the

position of the head before moving left or right according to the result of the test a
?= a2.

the south side of block b⊗ z. A single copy-and-move is not enough to get a contradiction259

because the simulation of T1 could be organized so as to transport the complete information260

about a along the way and have it on hands already when arriving at the south of block261

b⊗ z. However, by repeating such copy-and-move steps, one can saturate the simulator262

and show the following theorem that states that there is no universal turedo of radius 1263

among turedos of radius 1 for rigorous simulations.264

▶ Theorem 6. For any T ∈ TUR2(1) there is T ′ ∈ TUR2(1) such that T ′ 6≤R T . In particular265

U≤R

2 (1) ∩ TUR2(1) = ∅.266

Proof. Let Q be the state set of T , A be the alphabet of T and consider any alphabet A+267

with m = |A| < |A+| = m+. Then it is straightforward to construct a turedo T ′ ∈ TUR2(1)268

of alphabet A′ = A+ ∪ {↓,←, ↑} that has the following behavior (see Figure 4):269

for any n ∈ N, any a⃗ = (a0, . . . , an) ∈ An+1
+ , a′ ∈ A+ and 0 ≤ i ≤ n, consider the finite270

seed σ(⃗a, i, a′) with head in position (0, 0), aj in position (3j + 2, 0) for 0 ≤ j ≤ n, a′
271

in position (3i + 1,−3) and ↓ in positions (3(n + 1) + 2, 0) and (3(n + 1) + 2,−1),← in272

position (3(n + 1) + 2,−2) and finally ↑ at position (3i,−2);273

from such a seed, T ′ starts a sequence of n + 1 copy-and-move steps that results in274

having a copy of aj at position (3j + 1, 0) for 0 ≤ j ≤ n; the end of this phase occurs at275

time step 5(n + 1) and the head reaches position (3(n + 1), 0);276

then T ′ reaches the first ↓ and follows the move indications of arrows (down, down,277

left), until it reaches the up arrow, and moves from position (3i + 1,−2) to (3i + 1,−1);278

finally, at position (3i + 1,−1) it moves right if ai = a′ and left otherwise (it can do so279

because it has copied the value of a′ when leaving position (3i + 1,−2)).280

Let’s call tn,i the time step at which occurs this final left or right move (tn,i only depends281

on i and n): at time tn,i, the head of T ′ must be either at position (3i,−1) or (3i + 2,−1).282

Thus T ′ implements on seed σ(⃗a, i, a′) the test of whether ai = a′. We are going to show283

that T cannot simulate T ′ under rigorous simulations. Suppose by contradiction that284

T ′ ≤R T with block size b and time scaling factor k. Given n ∈ N and 0 ≤ i ≤ n, denote by285

An ⊆ Z2 the set of positions that are on the right side of block b⊗ (3(n + 1), 0) (the block286

corresponding to the position reached by T ′ at the end of the copy-and-move sequence as287

detailed above). Denote by Bi,n ⊆ Z2 the set of positions that are on the south side of288

block b⊗ (3i + 1, 0). Finally, denote by Ci,n ⊆ Z2 the set of positions made of the union of289

blocks (3i + 1,−3), (3i,−2), (3(n + 1) + 2, 0), (3(n + 1) + 2,−1), (3(n + 1) + 2,−2) (i.e.290

those corresponding to position a′ or an arrow {↓,←, ↑} in the seed σ(⃗a, i, a′)). Consider291

now n ∈ N, a⃗, c⃗ ∈ An+1
+ a′ ∈ A+ and 0 ≤ i ≤ n, and take any two global states g1 and g2 of292

T that correctly simulate the orbits of T ′ on seed σ(⃗a, i, a′) and σ(c⃗, i, a′) respectively and293
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that are identical on Ci,n Considering time step t0(n) = 5k(n + 1) corresponding to the294

end of the copy-and-move sequence, if global states T t0(n)(g1) and T t0(n)(g2) are identical295

on domains An and Bi,n and have the same head state, then both orbits must make the296

same final decision to move to the left block or the right block at the final time step ktn,i,297

precisely: the head in global state T ktn,i(g1) is in the same block as the head in global state298

T ktn,i(g2) (and it must be either b⊗ (3i,−1) or b⊗ (3i + 2,−1)). Indeed, by the property of299

rigorous simulations and the behavior of T ′, the only positions with content written before300

t0(n) that the head of T can possibly read between time step t0(n) and ktn,i are positions301

in An ∪Bi,n ∪ Ci,n, so the orbit starting from step t0(n) is completely determined by the302

content of the configuration in that domain and the internal state of T at time t0(n).303

▷ Claim 7. There must exist n ∈ N, 0 ≤ i ≤ n, a⃗ ∈ An+1
+ , a′ ∈ A+ and c⃗ ∈ An+1

+ with aj = cj304

for all j < i and ai 6= ci, and two global states g1 and g2 of T that correctly simulate seeds305

σ(⃗a, i, a′) and σ(c⃗, i, a′) respectively, and also such that T t0(n)(g1) and T t0(n)(g2) have same306

head state and are identical on domain An ∪Bi,n ∪ Ci,n.307

Proof of the claim. In this proof, we fix for each a ∈ A+ a unique block of ARb that308

encodes it, and for any seed of T ′ we only consider a unique global state of T that309

simulates it. First, there are only a bounded number (bound in n) of possible content of a310

configuration on domain An and state of T , so for each n there must exist u ∈ AAn and311

q ∈ Q, a set Xn ⊆ An
+ of size Ω(mn

+) such that for each 0 ≤ i ≤ n and each a⃗ ∈ Xn, the312

corresponding global state g of T simulating T ′ on seed σ(⃗a, i, n), is such that T t0(n)(g) is313

equal to u on domain An and with head state q.314

Second, we claim that for large enough n there must be some i and a prefix315

a0, . . . , ai−1 ∈ Ai
+ such that there are at least m + 1 choices of ai ∈ A+ such that a0, . . . , ai316

can be completed into an element a⃗ ∈ Xn. Indeed, otherwise we would have |X| ≤ mn
317

which would contradict the fact that |X| ∈ Ω(mn
+) for large enough n since m < m+.318

Now consider the set of global states that simulates the seeds σ(⃗a, i, a′) where a⃗ ∈ Xn319

are the m + 1 completed vectors from the common prefix a0, . . . , ai−1, and a′ ∈ A+. They320

are identical on the blocks corresponding to the common prefix a0, . . . , ai−1 of the seed321

they simulate. As already said, these global states at step t0(n) are also identical on domain322

An and have same head state. Moreover, on domain Bi,n and still at step t0(n), they agree323

because of the common prefix a0, . . . , ai−1, except possibly on the lower-right corner where324

they can take at most m different values (see Figure 3 and discussion at the beginning of325

this section). We deduce that among the m + 1 choices for ai, at least 2 must correspond326

to global states that completely agree on Bi,n. Denote by a′ and c′ these two choices and327

consider a⃗ and c⃗ to be the vectors completing the prefixes a0, . . . , ai−1, a′ and a0, . . . , ai−1, c′
328

respectively. The claim follows by choosing seeds σ(⃗a, i, a′) and σ(c⃗, i, a′). ◀329

The theorem follows from the claim by contradiction: as shown above, global states g1 and330

g2 force the same behavior of T starting from time t0(n), but at the same time their orbits331

should not end up in the same block because they simulate seeds of T ′ that do not have the332

same answer to the final equality test. ◀333

We will now establish a strong separation between TUR2(1) and TUR2(2) even under334

liberal simulations. We first establish a lemma expressing bounds on information leakage335

between too regions separated by a 4-connected path. It is formulated using Kolmogorov336

complexity. Recall that the (plain) Kolmogorov complexity of a string u ∈ {0, 1}∗ is the337

length of the shortest program that outputs u, more precisely the length of the shortest338

v ∈ {0, 1}∗ such that a suitable fixed universal Turing machine outputs u on input v (see339
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u u u u u u u u u u u u u u u u u u u u u u u u un

n n

zS

zN

Figure 5 Orbit of turedo T2 starting from a seed u of length n (in red) with the head initially in
the position shown in dark yellow. The last part of the orbit is shown in orange.

[15]). For any X ⊆ Z2 and any (partial) configuration c ∈ QX of finite domain, we denote340

by K(c) its Kolmogorov complexity, which is the Kolmogorov complexity of the finite341

binary string u that encodes c as a list of pairs (z, c(z)) such that c(z) 6= ⊥ given in342

lexicographical order.343

▶ Lemma 8. Let C0 ∈ N be some constant and T ∈ TUR2(1). Then there is another constant344

C ∈ N with the following property. Consider any 4-connected path ρ of Z2 that divides Z2 in345

2 or more connected components, and any finite global state s ∈ GT with head at position (0, 0),346

and whose domain D(s) lies entirely in one of the connected components defined by ρ, denoted A0.347

Suppose moreover that for some n ∈ N, the orbit from global state s to global state (c, z, q) = F n
T (s)348

is such that the head visits path ρ at most C0 times. Then, the restriction of c to the complement of349

A0 has ’small’ kolmogorov complexity: K(c|Z2\A0) ≤ C log(n).350

Note that if the seed s has ’large’ kolmogorov complexity, for instance Ω(n), then n steps are351

far from enough to transmit all the information about s to another connected component352

under the hypothesis of the lemma. The power of this lemma lies in the fact that constant C353

does not depend on the path ρ nor on the seed s. In particular, one can choose ρ depending354

on s to apply the lemma. Turedos of radius 2 can overcome the limitation of Lemma 8355

because they can transmit information over a path without writing on it. It turns out that356

this is enough to separate TUR2(2) from TUR2(1) even under liberal simulations.357

▶ Theorem 9. There is T2 ∈ TUR2(2) such that for any T1 ∈ TUR2(1): T2 6≤ T1.358

Proof. Let’s consider the turedo T2 ∈ TUR2(2) that behaves as follows on a seed made of359

a vertical word u of length n (see Figure 5):360

it copies u to the right by making zigzags and does this n times (it implements a unary361

counter initialized to the length of u while making copies);362

it then moves one cell to the right without making copies (and thus leaving an empty363

column above);364

it then do again n copies of u by zigzag while moving to the right (note that the first365

copy can be done because T has radius 2);366

at the end of the last copy it goes around the last bloc of n copies by the north side until367

it encounters the empty column and then goes down into it until it is blocked.368

Denote by zN and zS the northmost and southmost positions of the last sequence of n south369

moves of the head (see Figure 5), and by tN and tS the respective time steps at which the370

head is at position zN and zS . Note that tS is O(n2) and it is the final step of the orbit371

considered here.372
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Now suppose by contradiction that there is some T1 ∈ TUR2(1) such that T2 ≤ T1.373

Denote by k the time rescaling factor and b the block size involved in this simulation. Let’s374

suppose that n is large enough (to be precised later) and that u has large kolmogorov375

complexity, let’s say Ω(n). Consider a global initial state s1 for T1 from which starts a376

correct simulation of the run of T2. When the simulation reaches step ktN , the head of T1377

is inside bloc b⊗ zN and there must be a finite 4-connected path p1, . . . , pm of empty378

positions from this position to some position inside bloc b⊗ zS because T2 has to simulate379

the state changes made by T1 between steps tN and tS along the vertical segment of380

positions from zN to zS . Let ρ denote the infinite path that extends p1, . . . , pm infinitely to381

the north from p1 and infinitely to the south from pm.382

We claim that there is a bound C0 depending only on T1, b and k, but not on n and383

neither on u, such that the run of T1 starting from global state s1 until time step ktN384

crosses at most C0 times path ρ. First, by choice of p1, · · · , pm, such crossings can only385

happen at positions of ρ that are either at the north of p1 or at the south of pm. The386

simulation is liberal, so the head of T1 has some freedom of move but it must always387

remain at a bounded distance from the block corresponding to the simulated head388

position of T2 during intermediate steps, precisely: if the head of T2 is at position z at time389

step t, then the head of T1 must be inside block b⊗ z at time step kt and therefore at390

distance at most k of block b⊗ z during time steps between kt and k(t + 1). A position is391

therefore potentially reachable by T1 before time step ktN only if it is at distance at most k392

from a block b⊗ z such that position z in the run of T2 is visited before time step tN . The393

key observation is that in the run of T2, there are only finitely many positions that are394

visited before time tN and at distance less than k from either zN or any position at the395

north of it, or from zS or any position at the south of it. From this we deduce that396

ρ \ {p1, . . . , pm} is crossed a bounded number of times C0 by the head of T1 before time397

step ktN . The claim that ρ is crossed at most C0 times before time step ktN follows since398

{p1, . . . , pm} are by definition empty before this time step.399

Finally, note that path p1, . . . , pm cannot move away more than distance k from blocks400

b⊗ zN to b⊗ zS , so if n is large enough, the domain of s2 is guaranteed to lie entirely inside401

the left connected component A0 of Z2 \ ρ. Similarly, the blocks containing the encoding402

of the rightmost copy of u must lie entirely inside Z2 \A0. In particular, the configuration403

c of T1 reached at step ktN must be such that K(c|Z2\A0) ∈ Ω(n) by choice of u. However,404

Lemma 8 applied at step ktN to T1 and ρ gives: K(c|Z2\A0) ≤ C log(ktS) ∈ O(log(n)) which405

is a contradiction for large enough n. ◀406

4 Universality Results407

4.1 Radius 3 in 2D under Rigorous Simulations: the Heat Sink Trick408

Theorem 6 shows that no turedo of radius 1 can be universal for TUR2(1) under rigorous409

simulations. We show that this is however possible with radius 3. In order to achieve410

universality, four key behaviours must be performed by our turedo at each simulation411

step. It needs to read all necessary information of neighbouring blocks, compute the next412

simulation step, write the computed letter and exit the current block (entering the correct413

next one). Figure 6 illustrate those behaviours. To rigorously simulate a turedo of radius414

1, it seems natural to perform the 3 behaviours interacting with neighbours on the edge of415

the block, each on its layer, motivating a radius 3. But as we are dealing with universality,416

the so called necessary information is not only the letters of neighbouring blocks but also417

the transition table defining the simulated turedo. Carrying this information has a direct418
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transition table buffer a1 ∈ A1 buffer transition table

b1∈

A1

Figure 6 Behaviour, in one block, of the presented 2D radius 3 turedo T3 ∈ U≤R
2 (1). The light

blue rectangles represent the information to read of the neighbouring cells. In this example, a letter of
A1 is encoded by 3 letters of A3. We can see the 2 padding cells, the transition table (here of arbitrary
small size for readability of the figure), the buffer of size 12 (to contain 4 letters of A1 encoded), the
padding, the letter of the block encoded by 3 letters of A3 repeated 4 times each and again the the
padding, the buffer, the table and the last 2 padding cells. The arrows represent the path followed by
the turedo, entering the block in the bottom left of the figure. The blue part reads the content of the
adjacent blocks, the grey one allows for turning, the orange one is where the computing takes place,
the red one fetchs the computed letters (and writes them on the faces that will not be visited again
before exiting the block) and the green one finishes to write the letters and exits to the next block.

impact on the width of the reading and writing layer, we propose an intertwined zigzag to419

merge the space occupied by those two, keeping the radius 3 and taking full advantage of420

it.421

▶ Theorem 10. U≤R

2 (1) ∩ TUR2(3) 6= ∅.422

Proof. We show that there is T3 ∈ TUR2(3) such that for all T1 ∈ TUR2(1): T1 ≤R T3.423

Denote T3 = (A3, Q3, δ3). Let’s take T1 ∈ TUR2(1) some 2D turedo, T1 = (A1, Q1, δ1), a424

configuration c1 ∈ AZ2

1 and describe how T3 simulates it with square blocks R(n,n) and425

n = 0 mod 4. We first focus on the organisation of transmittable information in a given426

block B, i.e. the transition table δ1 and the letter a1 ∈ A1 in this position in c1. To be427

accessible to the neighbouring blocks, this information is present on the outside edges of428

B, repeated on each edge such that429

B(0, i) = B(i, n − 1) = B(n − 1, n − 1 − i) = B(n − 1 − i, 0). Considering a partial onto430

letter decoding map γ : Am
3 → A1 with m ∈ N, the organisation on one edge of B is the431

following. The first two positions B(0, 0) and B(0, 1) are empty or irrelevant, then the next432

3m|A1| positions from B(0, 2) to B(0, 3m|A1| + 1) are the encoding of the transition table433

with γ (which we assume to be a multiple of 4 without loss of generality). Positions434

B(0, 3m|A1| + 2) to B(0, m(3|A1| + 4) + 1) are reserved for a buffer in which 4 letters will435

be encoded (the ones contained in the 4 neighbouring blocks). Then m(3|A1| + 4) + 2436
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positions are empty or irrelevant, from B(0, m(3|A1| + 4) + 2) to B(0, 2m(3|A1| + 4) + 3),437

to allow the block to be spacious enough for the computation. Following that is written438

u ∈ A4m
3 such that u(4i + k) = γ(a1)(i) for all 0 ≤ k < 4 (the redundancy is present to439

ensure proper reading later). Then again, from B(0, 2m(3|A1| + 6) + 4) to440

B(0, 3m(3|A1| + 4) + 2m + 5) is some irrelevant padding followed by the 4m sized buffer,441

the 3m|A1| sized transition table and 2 irrelevant position, finishing at442

B(0, m(12|A1|+ 20) + 7). An illustration of this distribution is represented in figure 6.443

Let’s now describe the behaviour of T3 in a block to achieve universality. As all444

necessary information to compute is contained in a m(3|A1| + 4) letters long word on A3,445

we base our construction on two types zigzags of this size : the square and the heat sink.446

A square gadget of even size k is a back and forth k/2 times of a k sized line during which447

the content of the original line is replicated on each four sides of the created square. This448

copy is possible thanks to the radius of T3 being greater than 2. Its main use is to keep and449

spread information while cornering. A heat sink gadget is a zigzag with each back and450

forth being spaced by 2. The radius 3 of T3 allows the heat sink to still copy information451

from the previous zag during a zig. Its purpose is to acquire and transmit data laterally452

while being intertwined with another heat sink. Both gadget and the simulation of a block453

are illustrated in figure 6 to illustrate the following explanation.454

T3 enters a block B at position B(0, 2) (or B(2, n − 1), B(n, n − 3), B(n − 3, 0) up to455

rotation), it first continues forward by 2 (until reaching B(2, 2)) then turns 90◦
456

counter-clockwise and starts a square gadget, initialised by the copy of the transition table457

and empty buffer available at distance 3. Those squares will be performed at each corners458

of the block with in between a heat sink which will both transmit the transition table459

already collected earlier and approach the outside edge of the neighbouring block at460

distance 3, reading its information and filling the buffer. (The heat sink has access to only461

half of this information but it has been taken care of by the redundancy detailed earlier).462

Once the information of all four neighbouring blocks collected, right after the last letter463

has been read, T3 turns toward the center of the block, using the space left by the padding,464

performing one more square gadget. With a big enough transition table and a well chosen465

encoding, computing the next transition of T1 can be performed in a square the size of the466

buffer and transition table encoded. As the only way to leave the center of the block is467

now a path of width 1, T3 must transmit its computation before rejoining the edge of the468

block. It does so with a zigzag that follows along the the inside of the reading heat sink.469

This information is then retrieved by the writing process, with a heat sink intertwined470

with the reading one. The writing process writes on the edge of the block on the faces471

before the exit one and at distance 1 after. When following a square gadget, it copies the472

transition table and writes an empty buffer (which is possible because the square not only473

corners but copies information on all its sides), when following a reading gadget, it creates474

a heat sink gadget of its own, fetching the computed information and writing it on the face475

of the block. Lastly, once all the writing has been done, T3 finishes filling its block by going476

back to the exit edge, following the writing path which had been shifted to the inside by 1477

to allow for this, copying everything from the reading path to effectively write it on the478

edge making it attainable and finally T3 exits the block at distance 2 from the corner. ◀479

4.2 The Power of Third Dimension and Liberal Simulations480

Having a third dimension available allows for a lot more freedom to simulate a turedo. Let481

us first focus on TUR3(1) and rigorous simulations. In dimension 2 we had to use the heat482

sink trick to gather all required information and we used a radius of 3 to accommodate483
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Figure 7 One block of the presented 3D radius 1 turedo T ∈ U≤R
3 (1). At this stage T comes

from the block above, the front and left blocks are also non-empty and the others are empty. T will
exit the block by entering the next block at its right. On the right is represented the disposition of
information. The light blue cubes are information to read in adjacent blocks and the red ones are
information written by T in the considered block. In this example, a letter of A′ is encoded by 2
letters of A, the transition table is of arbitrary small size for readability and they are written in a cross
on the faces of blocks. On the left is the behaviour of T in the same considered block, in blue is the
reading phase (building also a skeleton), in orange the computation phase, in red the writing phase
and in green the exit phase.

for a reading, a writing and an exiting layer. The third dimension allows us to shrink the484

radius to 1 thanks to its crossing capabilities. The trick to achieve this is to have a marker485

to indicate if the neighbouring block is empty or not, to prevent trying to read in spaces486

where the turedo will have to write later on.487

▶ Theorem 11. U≤R

3 (1) ∩ TUR3(1) 6= ∅.488

Proof. We show that there is T ∈ TUR3(1), T = (A, Q, δ), such that for all T ′ ∈ TUR3(1):489

T ′ ≤R T . Denote T ′ = (A′, Q′, δ′). For a block B, the transmittable information is organised490

on the faces as follow. In the center of each faces, a marker is written, indicating that491

information is present. On the face of the block facing the next block (the exit face), added492

to the presence marker, is an empty cross of width 1 with only at its end a stop marker493

indicating the end the block. Surrounding it is a cross of width 3 in which is written the494

transition table and a buffer big enough to accommodate for the encoding of 6 letters of A′
495

and one state from Q′ (with the size of the transition table and the buffer plus 1 left before496

writing). On the face of the block facing other empty blocks, the same crossing pattern is497

used to only write the presence marker and the computed letter at distance 2 of the center498

of the face. See figure 7 for this organisation on an example.499

T has the following behaviour in a block, also illustrated in figure 7. First, T performs500

a reading phase : entering a block by the middle of a face, it travels straight to the edge501

of the face until reading the stop marker. We assume T entering by the middle of the502

face as it truly enters at distance one of the middle but this shift of one position in one503

direction can be remembered and corrected immediately after entering. This allows T to504

turn and go back toward the center, reading the transition table and the buffer. All this505

information gathered, T follows a fixed path composed of shrinking zigzags, staying in506

the planes formed by the 3D cross centered in the block (hence the peculiar way we place507

information, to reserve space for this path). Doing so, it reaches the center of each face508

while carrying the transition table and filling the transition buffer when a presence marker509
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is read. As the order in which the faces are visited is fixed, T can store in its head state510

which neighbouring blocks are empty. This reading phase has the added benefit to have511

created a skeleton in the block, enabling easy travel for the following phases. Next T enters512

the computing phase consisting of a square zigzag, using the transition table and the now513

filled buffer carried previously and so present in all the branches of the centered 3D cross.514

Once the next step of the simulation computed, T can carry the letter to encode following515

the skeleton and write it on all previously identified faces except the exit one. The last516

phase, the exit one, consists in carrying the encoded letter to the exit face, retrieve on the517

centered 3D cross the transition table and the buffer (reset with the new state and letter of518

the computed transition) and writing all this information as previously presented thanks519

to square and triangular zigzags. Finally T exits to the next block, at distance one of the520

center of the face (to get around the reading skeleton). ◀521

The combination of 3D and liberal simulations allows to shrink the radius of any turedo522

to 1. In this construction, the computation of simulated transitions is done internally in the523

simulating turedo’s head. The challenging part however is in acquiring the states of distant524

neighbors. Thankfully the liberal nature of the simulation allows travel through empty525

blocks and the 3D enables crossing paths without intersection. Still, a rigorous organisation526

is needed in order to prevent overlapping.527

▶ Theorem 12. For any radius r and any Tr ∈ TUR3(r) there is T1 ∈ TUR3(1) such that528

Tr ≤ T1.529

Proof. Let r ∈ N+ and Tr ∈ TUR3(r), Tr = (Ar, Qr, δr). We build T1 = (A1, Q1, δ1),530

with Q1 big enough to encode in one state a position z ∈ Z3 modulo 2r of each dimension531

and the |B3(r)| neighbouring letters. This allows for an instant computation of δr once all532

needed information is gathered. Let b be the block size, the critical aspect of this simulation533

is for T1 to visit all blocks b⊗ z′ with z′ ∈ z + B3(r) for each simulation step. Therefore534

we have to assign non intersecting exploration paths for all positions at distance less than535

2r. To achieve this, we define C = {0, ..., 8r3 − 1} a set of colors and we assign the color536

(z1 mod 2r) + 2r(z2 mod 2r) + 4r2(z3 mod 2r) to the block b⊗ (z1, z2, z3). By taking b =537

8r3l + 7 with l ∈ N+, in each block, for each color c ∈ C, we can reserve tubes of width538

l following the edges of a centered cube of edges of length lc + 1 and the direct extension539

of said edges to the face of the block (see figure 8b). This creates reserved spaces for each540

color consisting of centered nested cubes. Those cubes fill a space of 8r3l, we add 1 to have541

a proper center and 6 to have some padding near the faces of the blocks (we will discuss542

its necessity later). Note that l actually doesn’t need to be large, l = 10 is enough. On each543

face of the block b⊗ z, the letter a ∈ Ar ⊂ A1 is repeated in a cross pattern (see 8a).544

FTr (cr, zr, qr) is simulated as follow. Assuming T1 knows the color c ∈ C of block b⊗ zr545

(which is possible as its position in all directions modulo 2r is stored in its head state), we546

can define a reference starting position to explore the neighbouring blocks by ordering the547

directions of B3(1). Moreover, this ordering allows to decide a depth-first exploration of548

the blocks b⊗ z′ with z′ ∈ B3(r) passing through each block at most seven times. Once549

the exploration done, back in block b⊗ z, the head of T1 contains all necessary information550

to compute δr and all that remains to do is to write the computed letter in a cross pattern551

on the faces of the block. This is possible following a eulerian path, crossing only on the552

center of the faces, hence the padding of 2 defined earlier. The 1 padding left is for T1 to553

align itself with its next color (which is possible since it knows its current color and has554

computed to in which block to go next). ◀555
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(a) The letter a ∈ Ar ⊂ A1
is repeated on all faces in a cross
pattern.

(b) Reserved space for the
exploration path of color c ∈ C.

(c) One face of a block.

Figure 8 Representation of the reserved space for color c in block b⊗ z. In red are the tubes of
width l on the edges of the centered cube of edges of length lc + 1. In green are the extensions of
said tubes, allowing to reach the reserved space for color c in the neighbouring blocks, completing
the exploration path of color c (8b). Those extensions also allow the exploration path to access the
blue cross containing the letter of position z in the configuration (to either read or write)(8c).

By combining Theorem 11 and Theorem 12, we get the existence of an intrinsically556

universal 3D turedo for liberal simulations as expressed in the following corollary.557

▶ Corollary 13. U≤
3 ∩ TUR3 6= ∅.558

5 Discussion559

The problem tackled in this work depends on three parameters (radius, dimension,560

simulation). Our results give a rather clear picture of the simulation hierarchies in 3D, but561

we left several open question in the 2D case, in particular: is there a turedo in TUR2(2)562

which is universal for TUR2(1) under rigorous simulations? what if we allow liberal563

simulations? Actually even Theorem 6 raises questions: the simulation impossibility564

makes a crucial use of non-connected seeds, does this impossibility remain if we just ask565

simulation of orbits starting from connected seeds?566

In this work we chose the square lattice in 2D (to simplify and as we also consider the567

3D case) whereas oritatami are mostly considered on the hexagonal lattice. We don’t568

expect any significant difference on the simulation hierarchy result by changing from569

square to hexagonal lattice on a given model (either turedos or oritatami). However, it is570

not clear that the delay hierarchy for oritatami behaves likes the radius hierarchy for571

turedos. In particular, we don’t know if an analog of Theorem 10 holds for oritatami. The572

key difference between a large radius turedo and a large delay oritatami is that the turedo573

can gather information locally across obstacles, while the oritatami can only probe574

information around that can be reached by a path of empty positions (because it can only575

probe by trying to position a small strand of beads).576

We end this paper by suggesting the following two directions in order to better577

understand the gap between turedos and oritatami systems: what if we restrict turedos to578

’see’ only neighboring positions that can be reached through a path of r empty positions?579

and what if we enrich oritatami systems by a more general ’magnetic’ attraction law580

between beads where pairs of distant beads can still contribute to the total amount of581

attraction that the free strand at the end of the molecule is trying to maximize (let’s say by582

a quadratic decrease with distance up to some radius)?583
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A Proof of Theorem 5649

Proof. We prove the result for d = 2, the argument can be generalized to higher dimension650

straightforwardly (by completing 2D configurations by ⊥ everywhere else).651

For the first item, simply consider a turedo Tr+1 ∈ TUR2(r + 1) that has the following652

behavior when the head in position (0, 0) has only ⊥ letters at the north and at the south653

of its current position: read the letters at positions (r + 1, 0) and (0, r + 1) and move to the654

north is they are equal and to the south otherwise. Consider any turedo Tr ∈ TUR2(r) and655

any block size b ∈ N2
+. To simulate Tr+1 fuzzlessly, Tr has to move either to block b⊗ (0, 1)656

or block b⊗ (0,−1) depending on blocks b⊗ (r + 1, 0) and b⊗ (0, r + 1) without entering657

into any other neighboring block: this is impossible, because with radius r turedo Tr can’t658

have any information about either b⊗ (r + 1, 0) or b⊗ (0, r + 1) before making a decisive659

move (by entering inside either b⊗ (0, 1) or b⊗ (0,−1)) so it will fail to correctly simulate660

the orbit of at least one seed.661

The second item can be proved similarly, using a pumping trick on the alphabet: for any662

fixed Tr ∈ TUR2(r) with alphabet of cardinal k, choose T2 ∈ TUR2(2) with an alphabet663

strictly larger than kr2
so that at least on dimension of the block size b of any potential664

simulation of T2 by Tr has to be at least r + 1 (otherwise there is simply no way to code665

all letters of T2 on different blocks of size b). Then, choosing T2 to have the same behavior666

as Tr+1 above, we get the same contradiction: there is a direction of b, let’s say the vertical667

one, which overwhelms the radius r of Tr so Tr won’t be able to read the content of block668

b⊗ (0, 2) before making a decisive move and will therefore fail to correctly simulate at least669

one orbit. ◀670

B Proof of Lemma 8671

Proof. We show that c|Z2\A0 can be computed from the following description D:672

the finite list of positions on ρ that are visited by the head during the n first steps of the673

run starting from s;674

the list of events corresponding to each such position z given as a triple: time at which675

the head leaves position z, letter written at that step, and move made by the head at676

that step.677

This description is of size O(log(n)) because both positions z and time steps occurring in678

the above lists are bounded by n by definition (recall that the head is initially at (0, 0)).679

Because T is of radius 1 and ρ is 4-connected, each time the head of the turedo is neither680

in A0 nor on ρ, the local transition does not depend on the current configuration on domain681

A0. A Turing machine can therefore compute c|Z2\A0 from this description by maintaining682

the following partial information step by step:683

the current configuration restricted to domain Z2 \A0,684

the partial information on the head position z: the exact position if z 6∈ A0 or the state685

“undefined” else.686

This information is straightforward at the initial step since D(s) ⊆ A0 so the head is in A0687

and the configuration is ⊥ everywhere outside A0. The partial information at step n is688

enough to give c|Z2\A0 and it is updated from one step i to the next i+ as follows:689

if the partial information on the head at step i is undefined and time step i + 2 does not690

appear in the lists ofD, then don’t change the partial information (the head is in A0 and691

won’t move to ρ at step i + 1);692
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if the head information is undefined but step i + 2 appears in D, then updates the head693

position to the position on ρ that corresponds to the item stamped by time steps i + 2 in694

D;695

if the head position is on ρ then some item in the list of Dmust be stamped by time step696

i+1 and gives all the information to update both the head position and the configuration697

on ρ;698

finally if the head position is neither in A0 nor on ρ, then the knowledge of the current699

configuration restricted to domain Z2 \A0 is enough to update the partial information700

(position and partial configuration).701

◀702
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