

## **Volecular** Programming

9.10.2019 - Due on Wed. 16/10 before 12:45

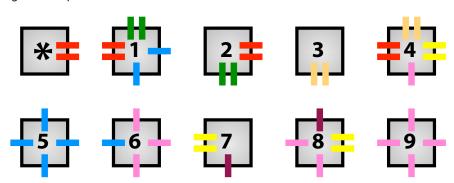


You are asked to complete the exercise marked with a [★] and to send me your solutions to:

nicolas.schabanel@ens-lyon.fr

as a PDF file named HW1-Lastname.pdf on Wed. 16/10 before 12:45.

- Exercise 1 (Algorithmic Self-Assembly). Recall that the self-assembly process consists in, given a finite tileset (with infinitely many tiles of each type), starting from the seed tile (marked with a ★), glueing tiles with matching colors to the current aggregate so that each new tile is attached by at least *two* links to the aggregate (either on the same border or on two borders). Recall that a shape is *final* if no tiles can be attached to it anymore.
- ▶ Question 1.1) What is the exact family of final shapes self-assembled by the following tileset? (No proof nor justification is asked.) Indicate the local order of assembly by drawing arrows over the tiles of a generic final shape. Which are the two competing tiles that decide the size of the resulting final shape?



- Exercise 2 (Guess the shape). Recall that the self-assembly process consists in, given a finite tileset (with infinitely many tiles of each type), starting from the seed tile (marked with a  $\bigstar$ ), glueing tiles with matching colors to the current aggregate so that each new tile is attached by at least  $T^\circ=2$  links to the aggregate (either on the same border or on two borders). Recall that a shape is *final* if no tiles can be attached to it anymore.
- ▶ Question 2.1) What is the exact family of final shapes self-assembled by the following tileset at temperature  $T^{\circ}=2$ ? (No proof nor justification is asked.)













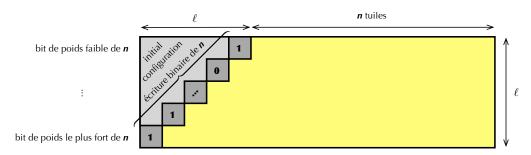




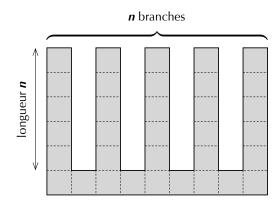
Indicate the local order of assembly by drawing arrows over the tiles of a generic final shape. Which are the competing tiles that decide the size of the resulting final shape?

**Exercise 3 (Counter at**  $T^{\circ}=2$  ( $\bigstar$ )). Given an integer n, and an seed configuration consisting of an isosceles rectangle triangle isocèle of side  $\ell=\lceil\log_2 n\rceil$  where the bits of n are encoded on the diagonal as shown in grey bellow.

Propose a well-ordered (finite) tileset which assembles the yellow at  $T^\circ=2$  to realise a rectangle of size  $\ell\times(n+\ell)$ . Carefully indicate the position of the glue of strength 1 and 2 on the diagonal of the seed configuration. Indicate the assembly order<sup>(1)</sup>. What does the tiles encode?



**Exercise 4.** Propose a staged assembly scheme at temperature  $T^{\circ} = 1$  of the shape family E of candelabrums with n branches of length n.



Describe the tiles, glues, their number, the number of stages and the number of different bechers needed. Give an illustration of the stages to build a generic production.

■ Exercise 5. Assume a random Poisson model where the random time X between two consecutive appearances of a tile of a given type  $\tau$  at a given empty location follows an exponential law:  $p(x)=c\cdot e^{-cx}$  where c>1 is the concentration of the tiles of type  $\tau$ . We want to prove the following theorem:

**Theorem 1 (Adleman et al, 2001).** Consider an ordered tile system  $\mathcal T$  that assembles deterministically a single shape S. Let  $\prec$  be the partial order of the assembly, i.e. such that  $(i,j) \prec (k,l)$  if the tile at position (i,j) is attached before the tile at (k,l) by  $\mathcal T$ . With very high probably, the assembly time of a shape S by  $\mathcal T$  is:

$$O(\gamma \times \operatorname{rank}(S))$$

where  $\gamma$  only depends on the concentrations and  ${\rm rank}(S)$  is the highest rank in the shape S (i.e. the length of the longest path in  $\prec$ ).

▶ Question 5.1) Let X be an exponential random variable such that  $p(X=x)=ce^{-cx}$  for all real  $x\geqslant 0$ , for some c>0. Show that X is memoryless, i.e. for all  $u,t\geqslant 0$ ,

$$p(X=t+u|X\geqslant u)=p(X=t)$$

Let T be the assembly time of the shape S, i.e. the time at which the last tile of shape S is attached. We denote by w(P) the random variable for the weight of a  $\prec$ -path P, defined as:  $w(P)\sum_{(i,j)\in P}X_{i,j}$ .

**Question 5.2)** Let  $X_{i,j}$  be the independant exponential random variable for the time between two consecutive appearances of the tile to be attached at position (i,j) in S. Show that:

$$T = \max_{\prec\text{-path }P} w(P)$$

 $ightharpoonup \operatorname{\underline{Hint}}$ . Proceed by recurrence on the rank of the tiles and show that for all tile (i,j), its assembly time is the random variable  $T_{ij} = \max_{\prec \text{-path } P \text{ from } (0,0) \text{ to } (i,j)} w(P)$ .

▶ Question 5.3) Let  $X_1, \ldots, X_\ell$  be  $\ell$  independent exponential variables s.t.  $p(X_i = x) = c_i e^{-c_i x}$  with  $c_i > 1$ . Show that there is  $\gamma$  which depends only of  $\min_i c_i$  such that: for all  $n \geqslant \ell$ ,

$$\Pr\{X_1 + \dots + \ell \geqslant \gamma \cdot n\} \leqslant 1/4^{\ell} \cdot e^{-\gamma(n-\ell)}$$

ho <u>Hint</u>. Note that  $\mathbb{E}[e^{X_i}]<\infty$  and apply Markov inequality to  $Z=e^{X_1+\cdots+X_\ell}$ .

► Question 5.4) Conclude.