

16.10.2019 - Due on Wed. 23/10 before 12:45



You are asked to complete the exercise marked with a [★] and to send me your solutions to: nicolas.schabanel@ens-lyon.fr as a PDF file named HW2-Lastname.pdf on Wed. 23/10 before 12:45.

**Exercise 1 (Exponential random variables & kTAM implementation).** Recall that an *exponential random variable* X with parameter  $\lambda > 0$  is defined by:  $(\forall x \ge 0) \Pr\{X \ge x\} = e^{-\lambda x}$ .

▶ Question 1.1) Compute  $\mathbb{E}[X]$ .

 $\triangleright$  <u>Hint</u>. Recall that if X is a non-negative random variable, then  $\mathbb{E}[X] = \int_0^\infty \Pr\{X \ge x\} dx$ .

▶ **Question 1.2)** Show that the exponential distribution is memoryless, *i.e.* if X is exponentially distributed with parameter  $\lambda$ , then  $(\forall t, u \ge 0) \operatorname{Pr} \{X \ge t + u \mid X \ge t\} = \operatorname{Pr} \{X \ge u\}$ .

Let X and Y be two independent exponentially distributed random variables with respective parameters  $\lambda$  and  $\mu$ .

▶ **Question 1.3)** Show that min(X, Y) is also exponentially distributed. What is its parameter?

▶ **Question 1.4**) What is the probability that min(X, Y) = X?

▶ **Question 1.5)** Same questions as the two above for n independent exponentially dsitributed variables  $X_1, \ldots, X_n$  with parameters  $\lambda_1, \ldots, \lambda_n$ .

▶ Question 1.6) Assume that a non-negative random variable X is given by its tail distribution  $F(x) = \Pr{X \ge x}$ . Show that X is identically distributed as  $F^{-1}(U)$  where U is a uniform random variable in [0, 1].

Describe how to sample an exponential random variable of rate  $\lambda$ .

▶ Question 1.7) Propose an algorithm together with a data structure to implement the kTAM model with attachement rate  $r_f = k_f [Strand] = k_f e^{-G_{mc}}$  and detachment rate  $r_{s,b} = k_f e^{-b \cdot G_{se}}$  where b is the number of bonds made by the strand with the current agregate.

Use parameters  $k_f = 10^6/M/sec$ ,  $G_{mc} = 12.9$  and  $G_{se} = 6.5$  for the algorithmic phase.

**Exercise 2 (Tileset for simulating cellular automata (★)).** A cellular automaton consists of a finite set of *states* Q, a function  $f : Q^3 \to Q$ , called the *rule*, and an initial configuration  $c^0 \in Q^*$ . The configuration at time t + 1 is obtained from the configuration at time t as follows:  $c_i^{t+1} = f(c_i^t, c_{i+1}^t, c_{i+2}^t)$  for  $0 \le i < |c^t| - 2$ . The calculation stops at the first time T such that  $|c^T| < 3$  and the result of the computation is  $c_0^T$ . A classic visualization of the computation of a cellular automaton consists of a pyramid where the bottom line is the initial configuration and time goes upwards. Here is an example:



▶ Question 2.1) Propose a finite tileset whose self-assembly simulates the computation of any Q-state cellular automata from any initial configuration and whose size is independent of the initial configuration length. Give a generic example of the execution of your assembly for generic computation steps. Give the number of variants of each tile type as a function of |Q|. Provide the procedure which selects the tiles used to simulate a given Q-state cellular automaton. ▷ <u>Hint</u>. Do you need upscaling? Consider reshaping the pyramid to simplify your design.

**Exercise 3 (Probabilistic simulation Turing Machine at**  $T^{\circ} = 1$  **in 2D).** Recall that in 3D, for any single-tape binary-alphabet Turing machine M, there is a tile set which simulates M using a clever trick to encode 0s and 1s. These are encoded with bridges and read using two probes where only one go through the bridge:



▶ Question 3.1) By adjusting the concentrations (and thus the rate at which the different tiles attached), describe a tile set together with concentrations for each tile type, that simulates a given single-tape binary-alphabet Turing machine M with an arbitrary small error  $\varepsilon$  for each symbol read in 2D at temperature  $T^{\circ} = 1$ .