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Programming

You are asked to complete the exercise marked with a [%] and to send me your solutions to:
nicolas.schabanel@ens-lyon.fr
as a PDF file named HWR2-Lastname.pdf on Wed. 23/10 before 12:45.

B Exercise 1 (Exponential random variables & KkTAM implementation). Re-
call that an exponential random variable X with parameter A > 0 is defined by:
(Vz > 0) P{X >z} = e,

» Question1.1) Compute E[X].
> Hint. Recall that if X is a non-negative random variable, then E[X] = [;* Pr{X > z}du.

» Question 1.2) Show that the exponential distribution is memoryless, i.e. if X is exponen-
tially distributed with parameter A, then (Vt,u > 0) Pr{X > t+u|X >t} = Pr{X > u}.

Let X and Y be two independent exponentially distributed random variables with respec-
tive parameters A and (.

» Question 1.3) Show that min(X,Y") is also exponentially distributed. What is its parame-
ter?

» Question 1.4) What is the probability that min(X,Y") = X?

» Question 1.5) Same questions as the two above for n indenpendent exponentially
dsitributed variables X1, . . . , X, with parameters A1, . .., An.

» Question1.6) Assumethata non-negative random variable X is given by its tail distribution
F(z) = Pr{X > x}. Show that X is identically distributed as F~(U) where U is a uniform
random variable in [0, 1].

Describe how to sample an exponential random variable of rate \.

» Question 1.7) Propose an algorithm together with a data structure to implement the
kTAM model with attachement rate 1 = k¢[Strand) = ks e~%m< and detachment rate

Tsp = ky e~ Gse where b is the number of bonds made by the strand with the current agre-
gate.

Use parameters ky = 109/ M /sec, Gme = 12.9 and G4 = 6.5 for the algorithmic
phase.

B Exercise 2 (Tileset for simulating cellular automata (%)). A cellular automaton consists
of a finite set of states @, a function f : Q3 — (@, called the rule, and an initial configuration
A e Q. The configuration at time ¢ + 1 is obtained from the configuration at time ¢ as follows:
cf“ = f(cl, ety clyy) for0 < i < || — 2. The calculation stops at the first time 7" such
that |c!'| < 3 and the result of the computation is cg. A classic visualization of the computation
of a cellular automaton consists of a pyramid where the bottom line is the initial configuration

and time goes upwards. Here is an example:
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if{z,y,2} = {M}or{ M}
fortherule f(x,y,2) =< M if{z,y,z} ={ }or{M M}
W if{z,y,z} = {M}or{ M}or{ WM}

» Question2.1) Propose a finite tileset whose self-assembly simulates the computation of any
Q-state cellular automata from any initial configuration and whose size is independent of the
initial configuration length. Give a generic example of the execution of your assembly for generic
computation steps. Give the number of variants of each tile type as a function of | Q|. Provide the
procedure which selects the tiles used to simulate a given (Q-state cellular automaton.

> Hint. Do you need upscaling? Consider reshaping the pyramid to simplify your design.

H Exercise 3 (Probabilistic simulation Turing Machine at 7° = 1in 2D). Recall thatin 3D,
for any single-tape binary-alphabet Turing machine M, there is a tile set which simulates M
using a clever trick to encode Os and 1s. These are encoded with bridges and read using two
probes where only one go through the bridge:

Only the 1-probe
goes thrul!

a 1-probe

Spawning
a 0-probe -

» Question 3.1) By adjusting the concentrations (and thus the rate at which the different tiles
attached), describe a tile set together with concentrations for each tile type, that simulates a
given single-tape binary-alphabet Turing machine M with an arbitrary small error € for each
symbol read in 2D at temperature T° = 1.



