

You are asked to complete questions 1.1) and 1.2) and to send me your solutions to: nicolas.schabanel@ens-lyon.fr as a PDF file named HW3-Lastname.pdf on Wed. 6/11 before 11:45.

Exercise 1 (Window Movie Lemma). We investigate the computation power of tile assembly at temperature $T^{\circ} = 1$. We allow *mismatches*, i.e. a tile can be added to the current aggregate as soon as it is attached by *at least one side* to the current aggregate for which the glues match (the other sides in contact can have mismatching glues). Unless specified explicitly otherwise, all assemblies take place at $T^{\circ} = 1$ in this exercise.

Let us first consider a (finite) tile set \mathcal{T} which only assembles unidimensional segments of size $1 \times \ell$ for some $\ell \ge 1$ starting from its seed tile. Let $\tau = |\mathcal{T}|$ denote the number of tile types in \mathcal{T} in all of the following. Recall that the *final productions* of a tileset \mathcal{T} are the shapes corresponding to every possible assembly of tiles from \mathcal{T} starting from the seed tile of \mathcal{T} and where no more tile can be added.

▶ Question 1.1) Show (and explicit) that there is a constant $k(\tau)$, which depends only on τ , such that if a segment of size $1 \times \ell$ with $\ell \ge k(\tau)$ is a final production of \mathcal{T} , then there is an integer $1 \le i < k(\tau)$ such that all the segments $1 \times (\ell + n \cdot i)$ are also final productions of \mathcal{T} for all $n \ge -1$. If so, we say that the tile set \mathcal{T} is pumpable.

Let us now consider a (finite) tile set \mathcal{T} whose final productions are 2-thick rectangles of size $2 \times \ell$ for some $\ell \ge 1$.

▶ Question 1.2) Show (and explicit) that there is a constant $k_2(\tau)$, which depends only on τ , such that if a 2-thick rectangle of size $2 \times \ell$ with $\ell \ge k_2(\tau)$ is a final production of \mathcal{T} , then \mathcal{T} is pumpable, i.e. that there is an integer $1 \le i < k_2(\tau)$ such that all the 2-thick rectangles $2 \times (\ell + n \cdot i)$ are also final productions of \mathcal{T} for all $n \ge -1$.

▷ <u>Hint</u>. Pay attention to the order in which the tiles are attached, make sure that the pumped structure can indeed self-assemble.

Let us now generalise and consider a (finite) tile set \mathcal{T} whose final productions are q-thick rectangles of size $q \times \ell$ for some $\ell \ge 1$.

▶ Question 1.3) Show (and explicit) that there is a constant $k_q(\tau)$, which depends only on τ , such that if a *q*-thick rectangle of size $q \times \ell$ with $\ell \ge k_q(\tau)$ is a final production of \mathcal{T} , then \mathcal{T} is pumpable, i.e. that there is an integer $1 \le i < k_q(\tau)$ such that all the *q*-thick rectangles $q \times (\ell + n \cdot i)$ are also final productions of \mathcal{T} for all $n \ge -1$.

Consider the following tile set $\mathcal{U} = \{ \bigstar, A, B, C, A', B', C', D \}$ at $T^{\circ} = 2$ for which \bigstar is the seed tile:

The final productions of \mathcal{U} at $T^{\circ} = 2$ consist of two arms which are either 1) of different lengths and then don't touch eachother; or 2) of equal length and then there is a tile D that makes contact between them:

▶ **Question 1.4)** Show that no tile set can simulate intrinsically at $T^{\circ} = 1$, the dynamics of U at $T^{\circ} = 2$.

ightarrow Hint. As a simplification, consider that in an intrinsic simulation, all megacell corresponding to an empty position in the simulated system must never be filled by more than 30% of tiles, and all megacell corresponding to a non-empty position in the simulated system must be filled at 100% by tiles. If you have time left: how would you waive these assumptions?