An experimental realization of a universal computer

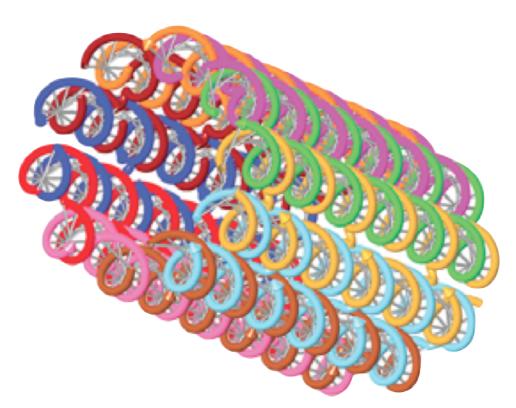
Nicolas Schabanel

LIP & IXXI - ÉNS de Lyon

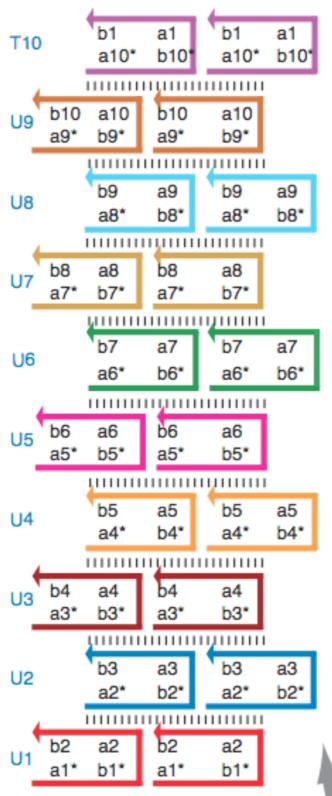
Slides mainly borrowed from Damien Woods et al (Nature 2019)

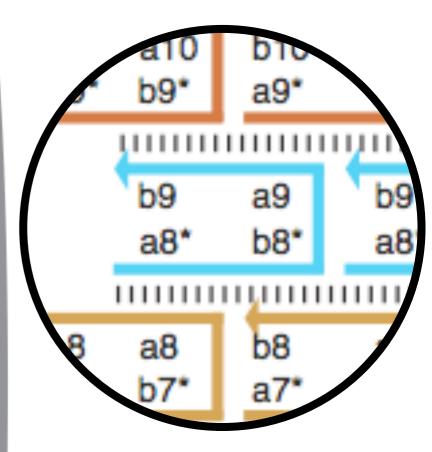
Single Stranded Tiles Nanotubes

Single stranded Nanotubes

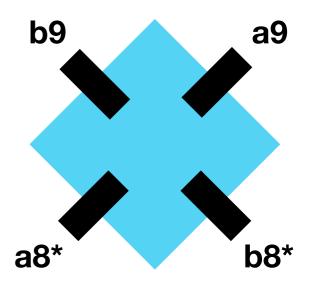


10-helix nanotube schematic, Yin et al. '08

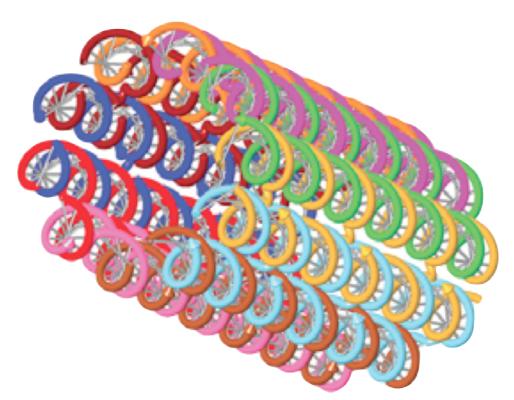




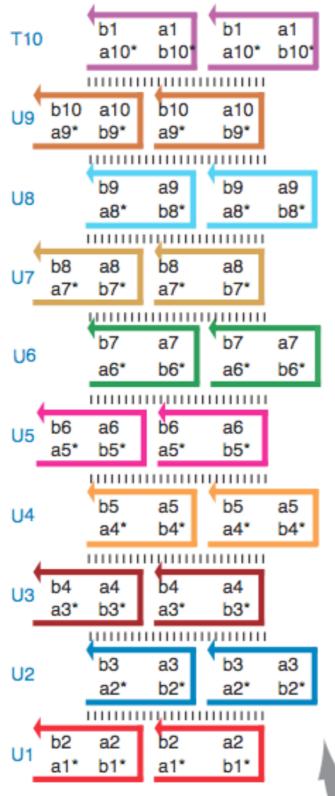
4 domains = 4 glues

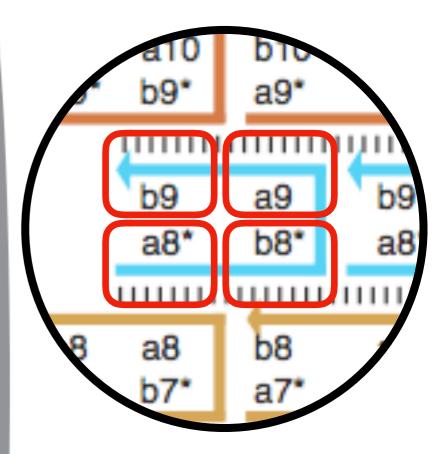


Single stranded Nanotubes

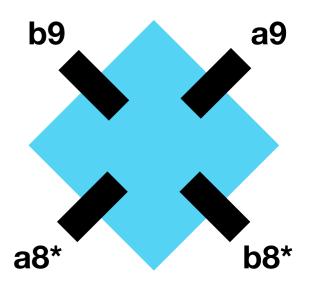


10-helix nanotube schematic, Yin et al. '08

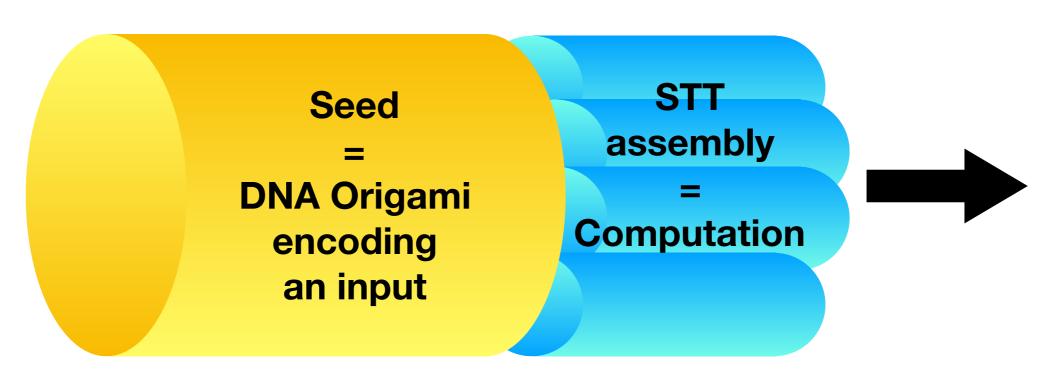


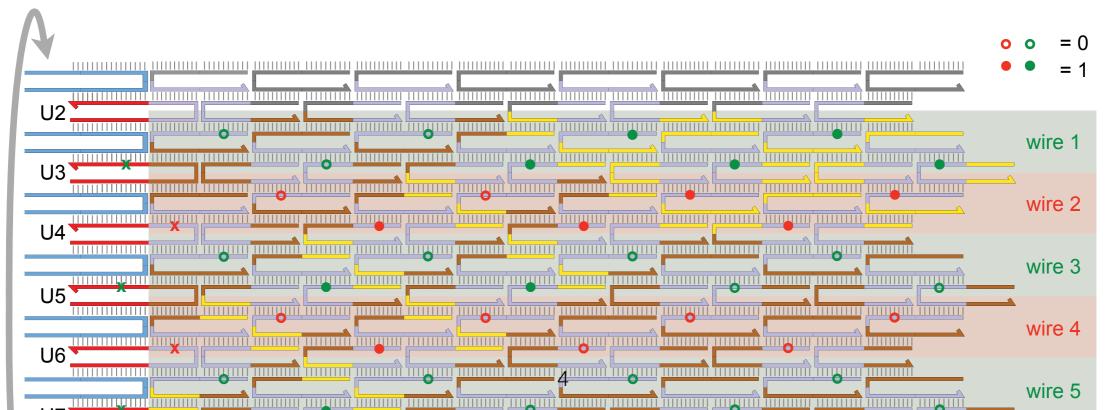


4 domains = 4 glues



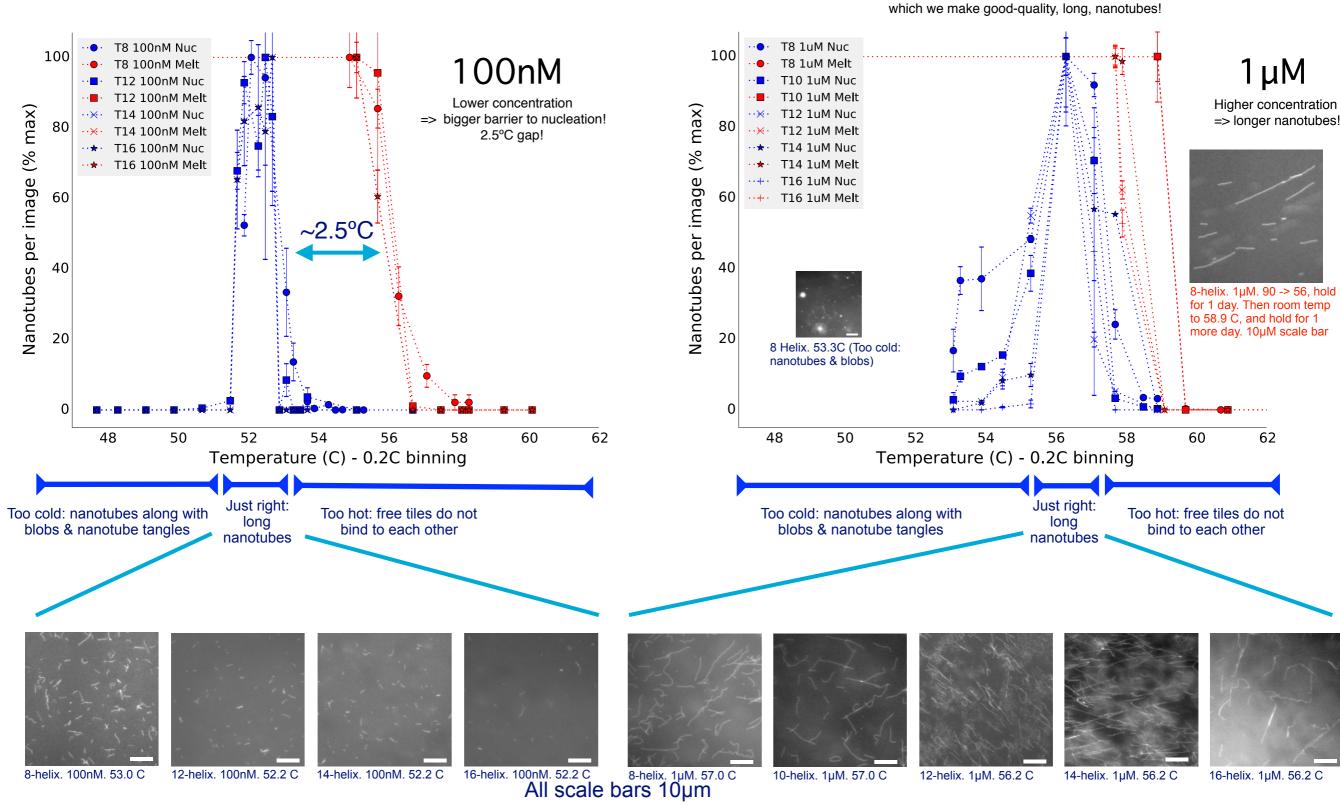
Growing them





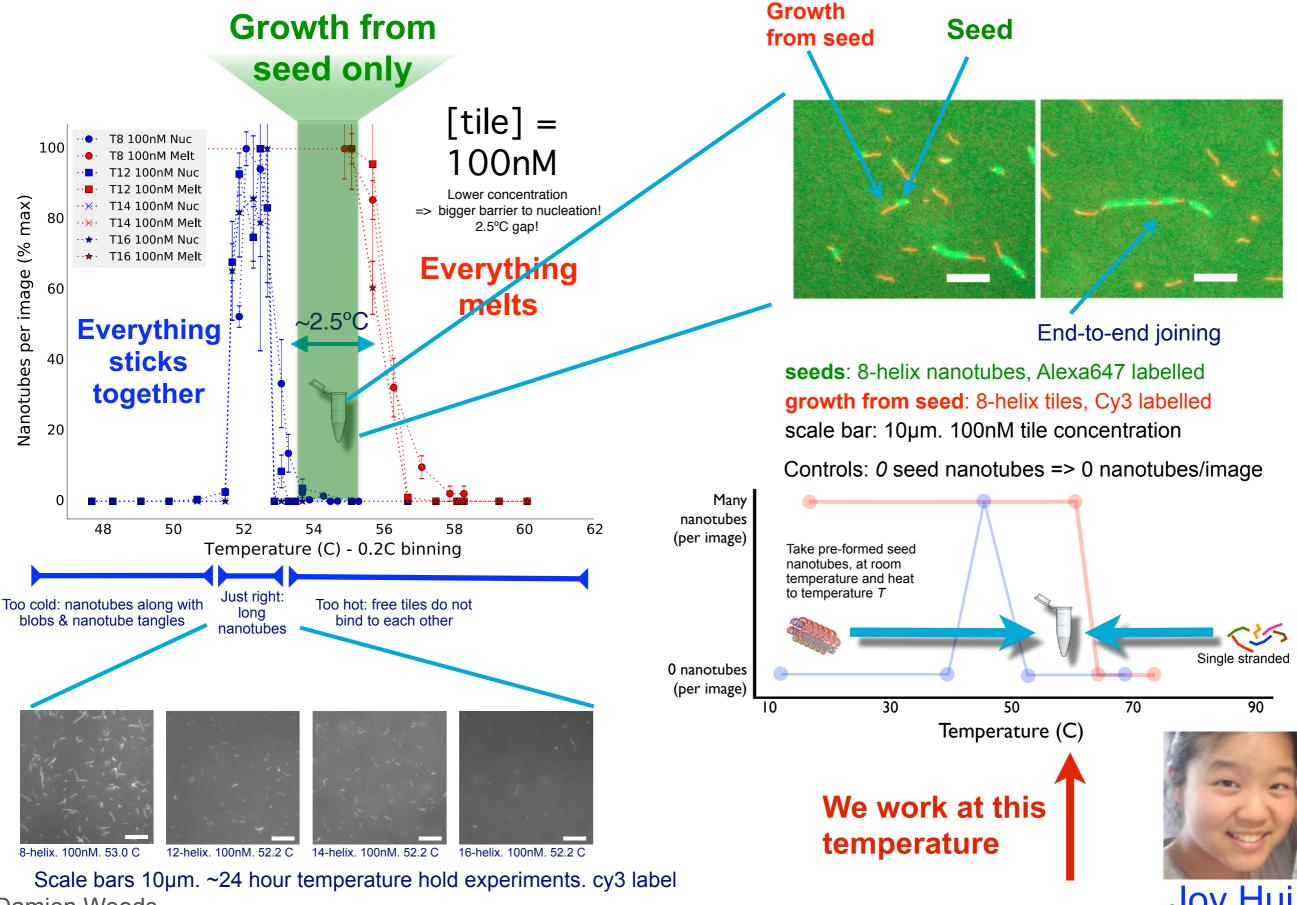
Seeded growth: barrier to nucleation at [tile]=100nM

Experiments give a (narrow) temperature range at



Each datapoint is a separate ~24 hour temperature hold experiment Fluorescence microscopy images: cy3 label Error bars show SEM for *n*=5 experiments for blue, and *n*=2 for red

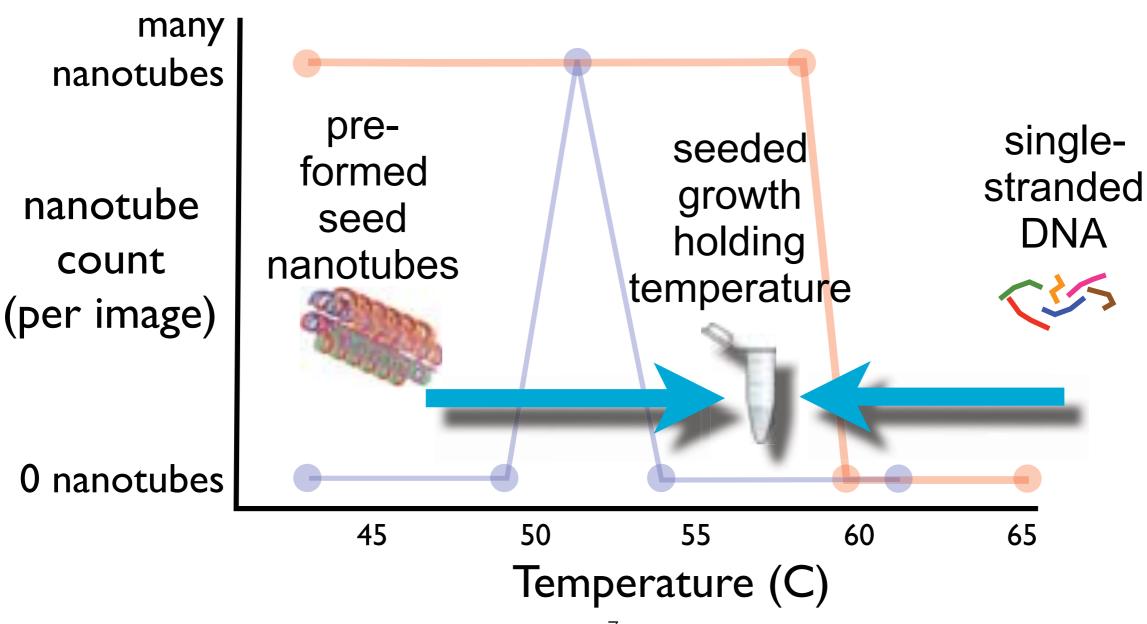
Seeded growth: barrier to nucleation at [tile]=100nM



Damien Woods

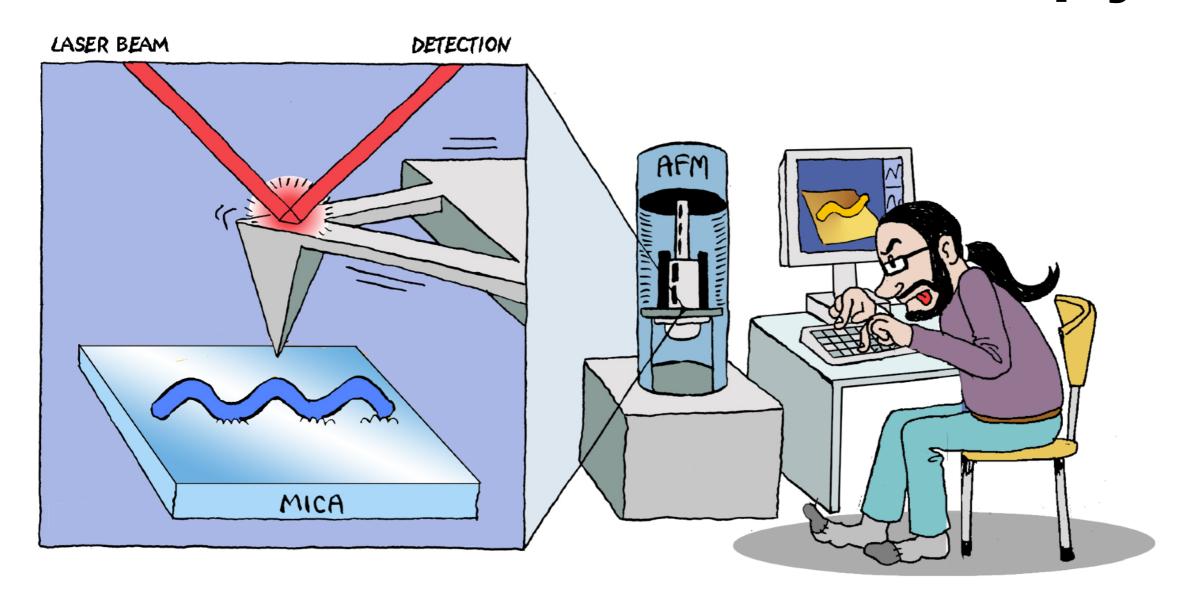
Joy Hui

Seeded growth only



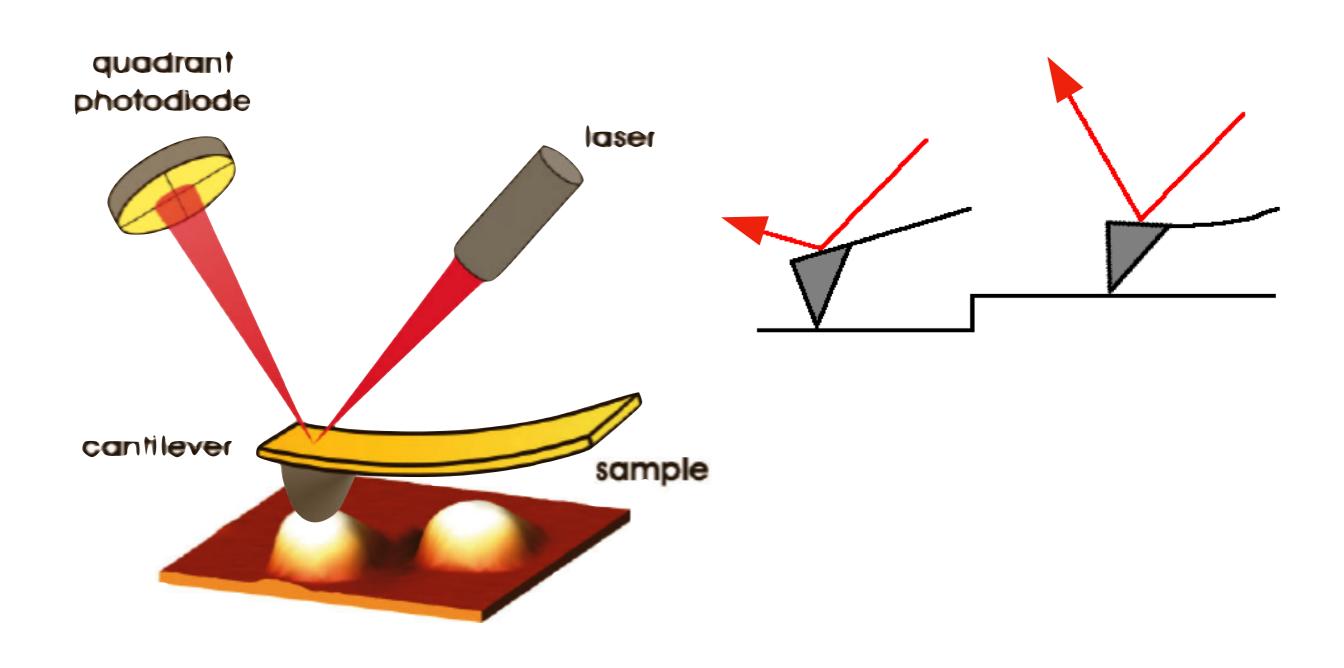
Imaging the results

Principle of Atomic Force Microscopy

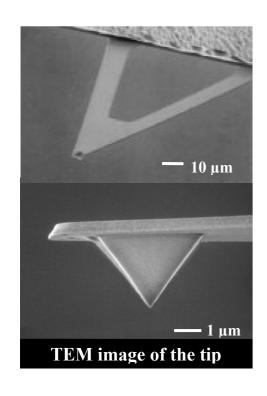


The microscope works by scanning the surface with a sharp probe and gently touching the DNAs that arrange on the mica.

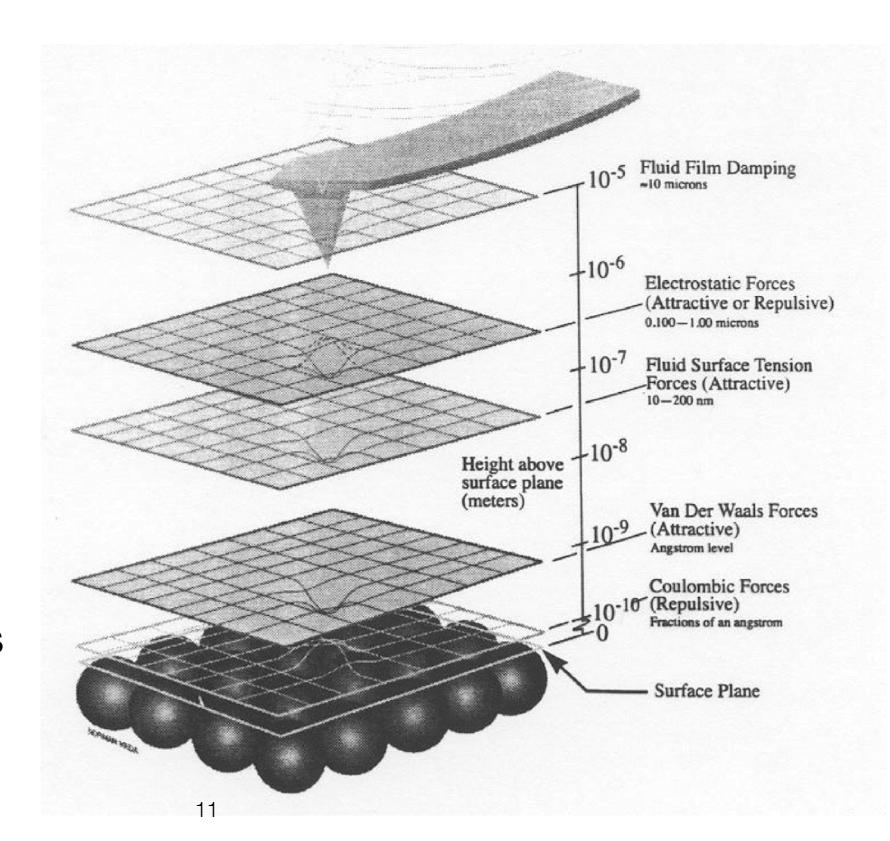
Laser deflection



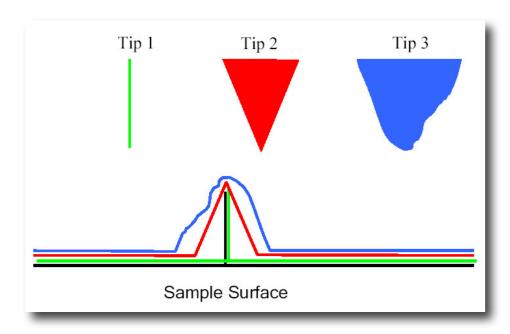
The forces involved in AFM

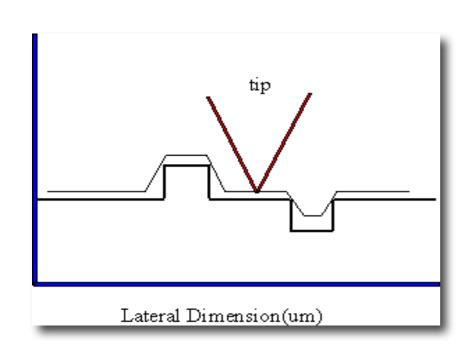


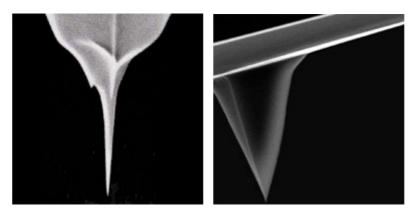
They are interaction forces between the atoms of the end of the tip and the atoms on the sample surface.



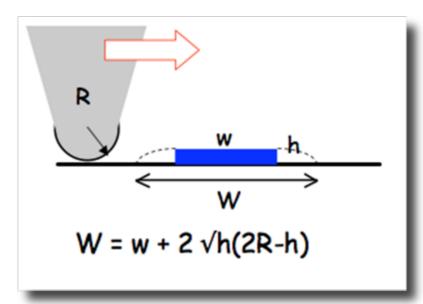
Tip convolution

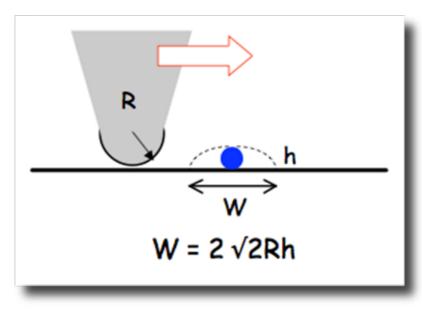






Tip radius 2-20 nm





Moskalenko 12

High resolution imaging

The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy

Leo Gross, *et al. Science* **325**, 1110 (2009);

DOI: 10.1126/science.1176210

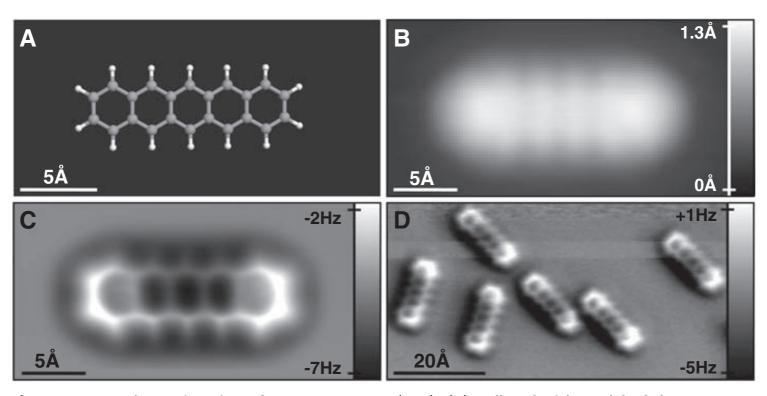
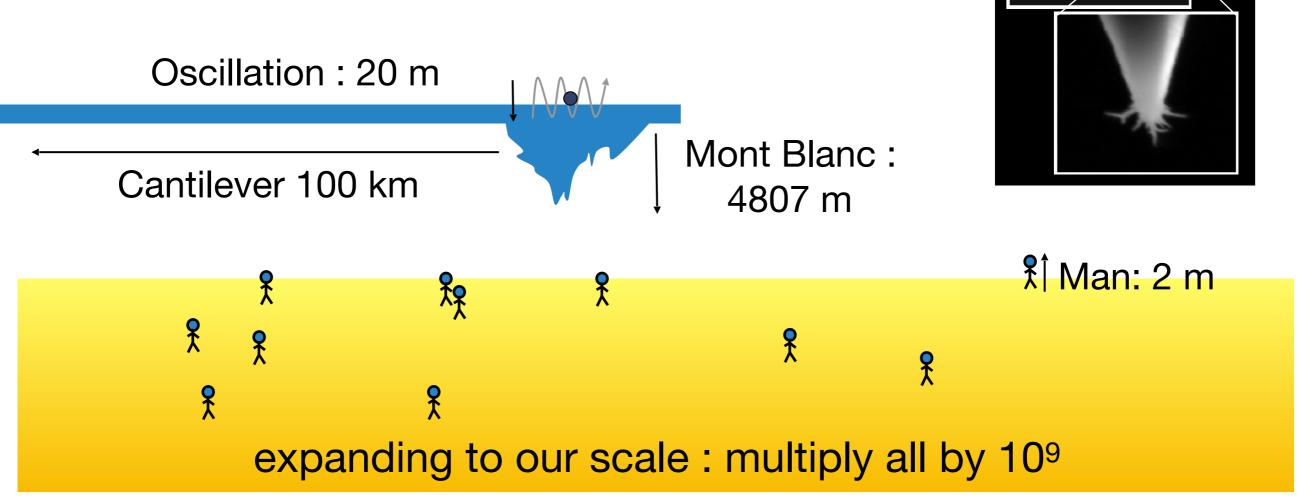


Fig. 1. STM and AFM imaging of pentacene on Cu(111). (**A**) Ball-and-stick model of the pentacene molecule. (**B**) Constant-current STM and (**C** and **D**) constant-height AFM images of pentacene acquired with a CO-modified tip. Imaging parameters are as follows: (B) set point I = 110 pA, V = 170 mV; (C) tip height z = -0.1 Å [with respect to the STM set point above Cu(111)], oscillation amplitude A = 0.2 Å; and (D) z = 0.0 Å, A = 0.8 Å. The asymmetry in the molecular imaging in (D) (showing a "shadow" only on the left side of the molecules) is probably caused by asymmetric adsorption geometry of the CO molecule at the tip apex.

About AFM scale

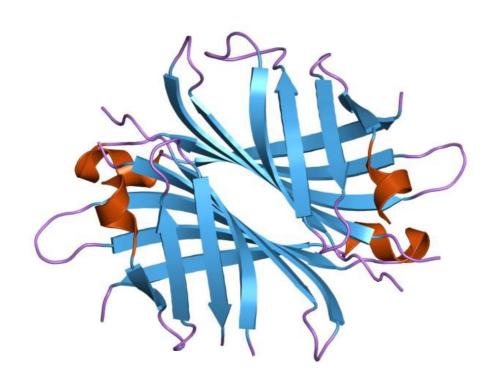
... how to shake the Mont Blanc over little men heads without crushing them



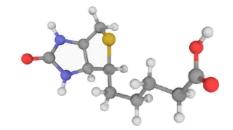
Moskalenko 14

Marking 0s and 1s

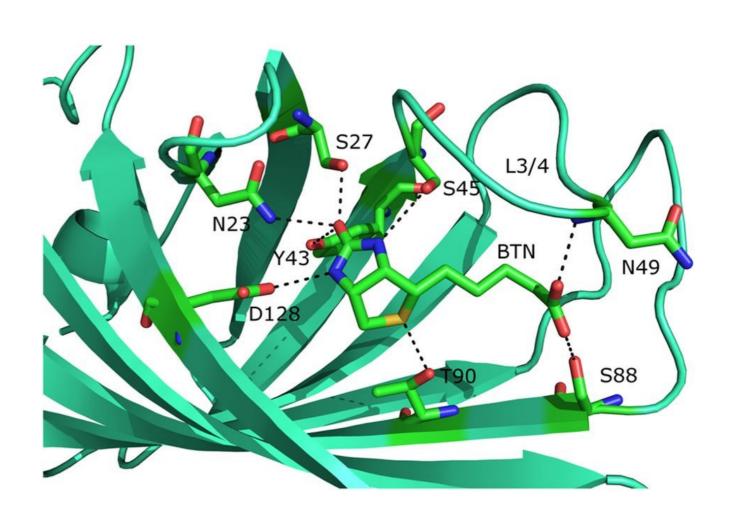
Streptavidin-biotin marker



Streptavidin: a "huge blob"



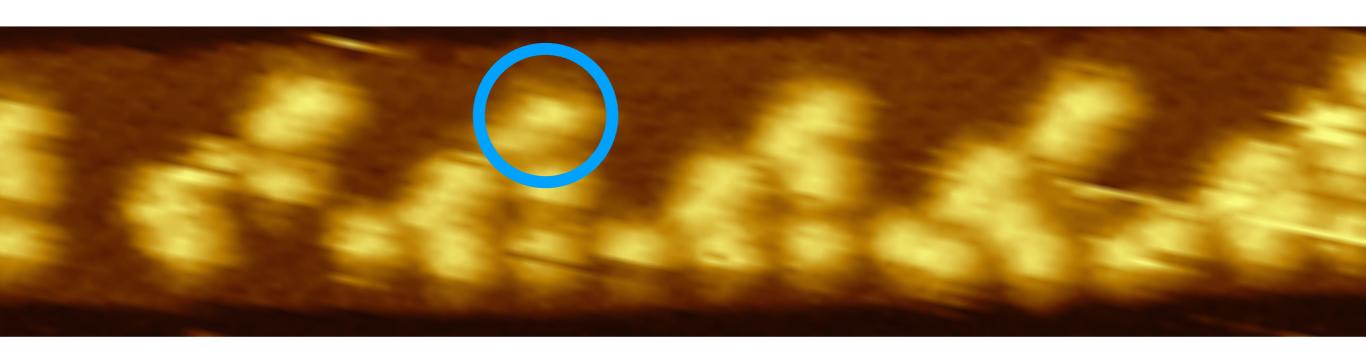
Biotin can easily be attached to DNA strand at order



Together they make one of the strongest non-covalent bond

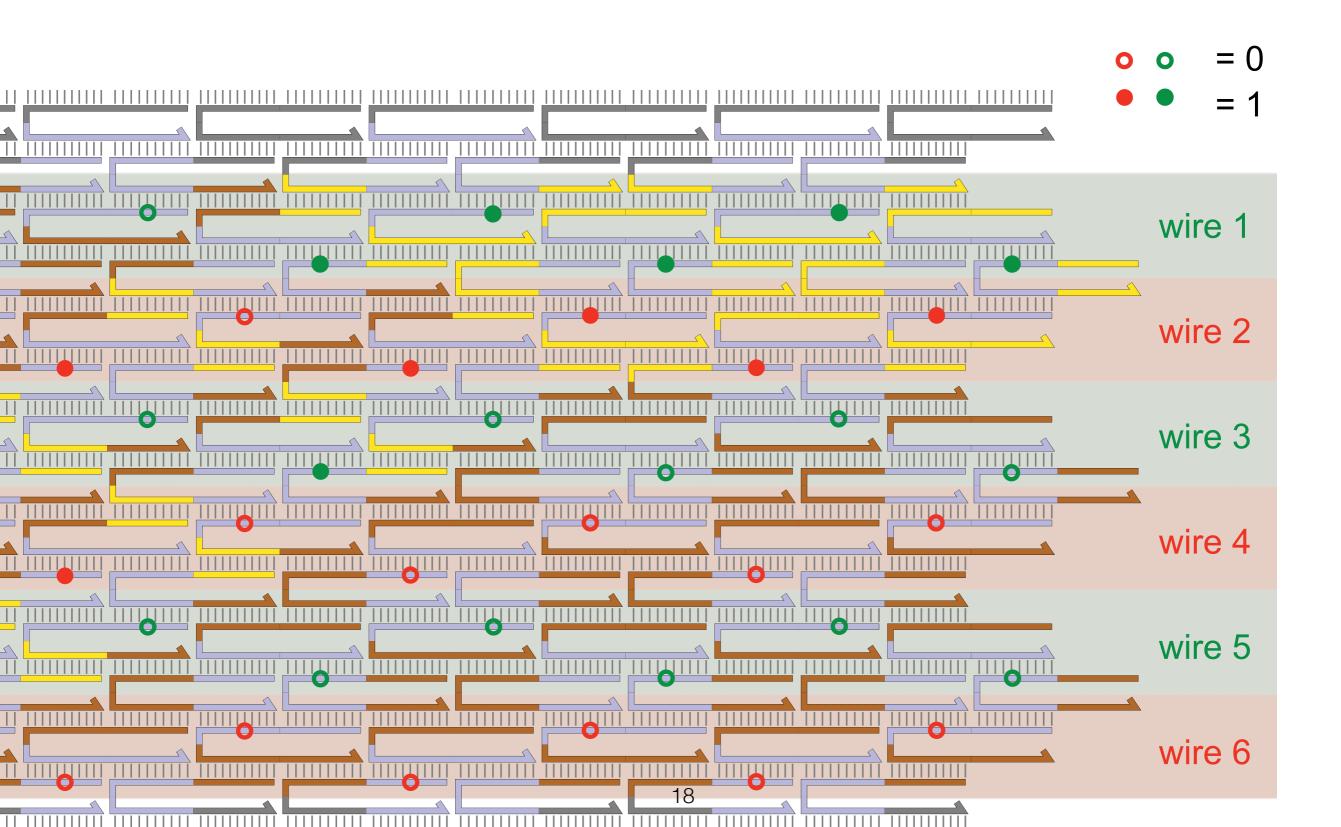
Streptavidin-biotin marks

We can order single DNA strand with biotin attached (the tiles encoding a 1!)



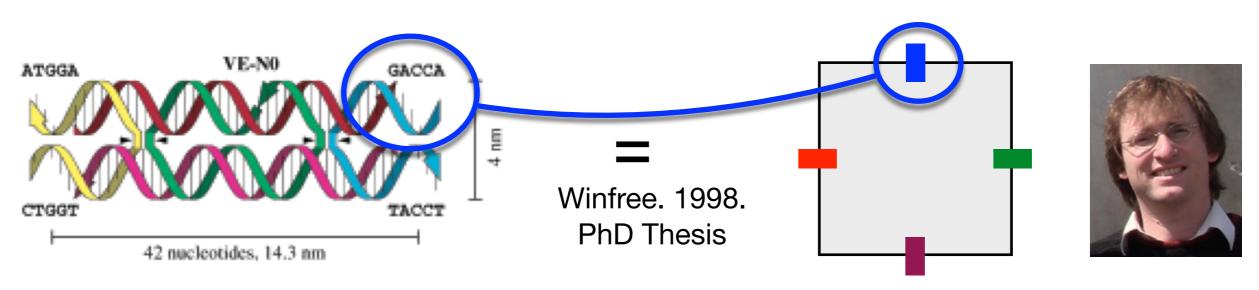
When added to the solution while imaging, Streptavidin attaches to biotin, marking the corresponding single stranded tiles

Streptavidin-biotin marks

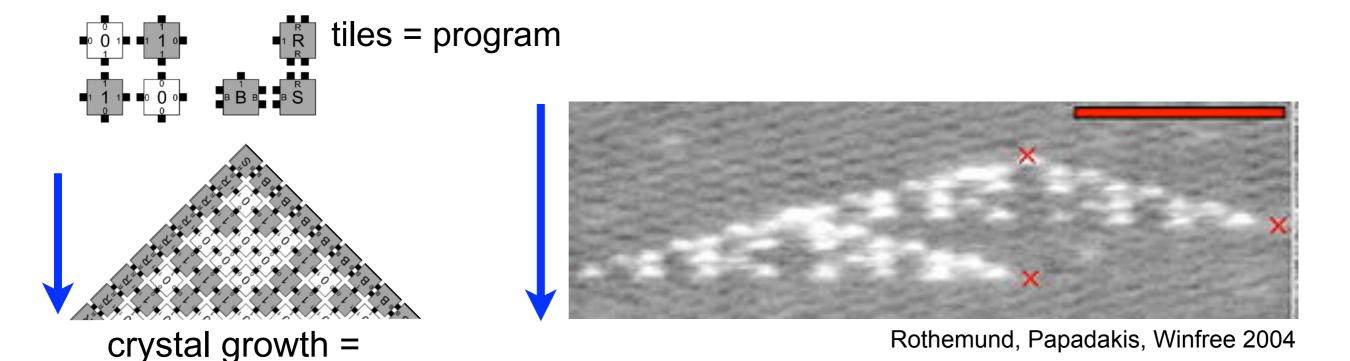


kTAM model for algorithmic assembly

Algorithmic self-assembly



Erik Winfree had the idea that a growing lattice of DNA tiles could run a computer program, like Wang tiles or a CA

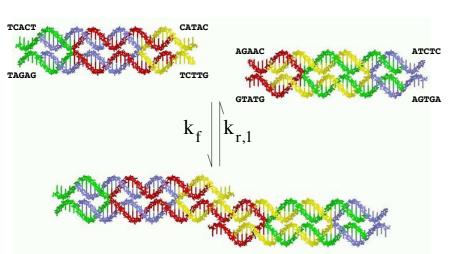


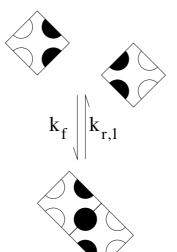
program execution

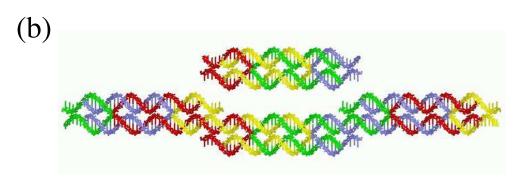
self-assembly.net

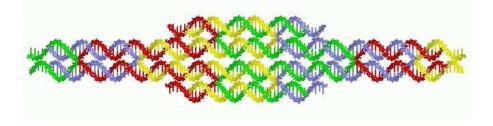
Thermodynamical model

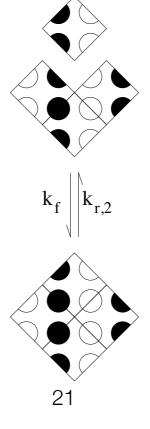
(a)











Attachement rate

 $k_f \cdot [\ Strand\]$

 $k_f \cdot \, \mathrm{e}^{-Gmc}$

(mainly entropy)

Detachment rate

=

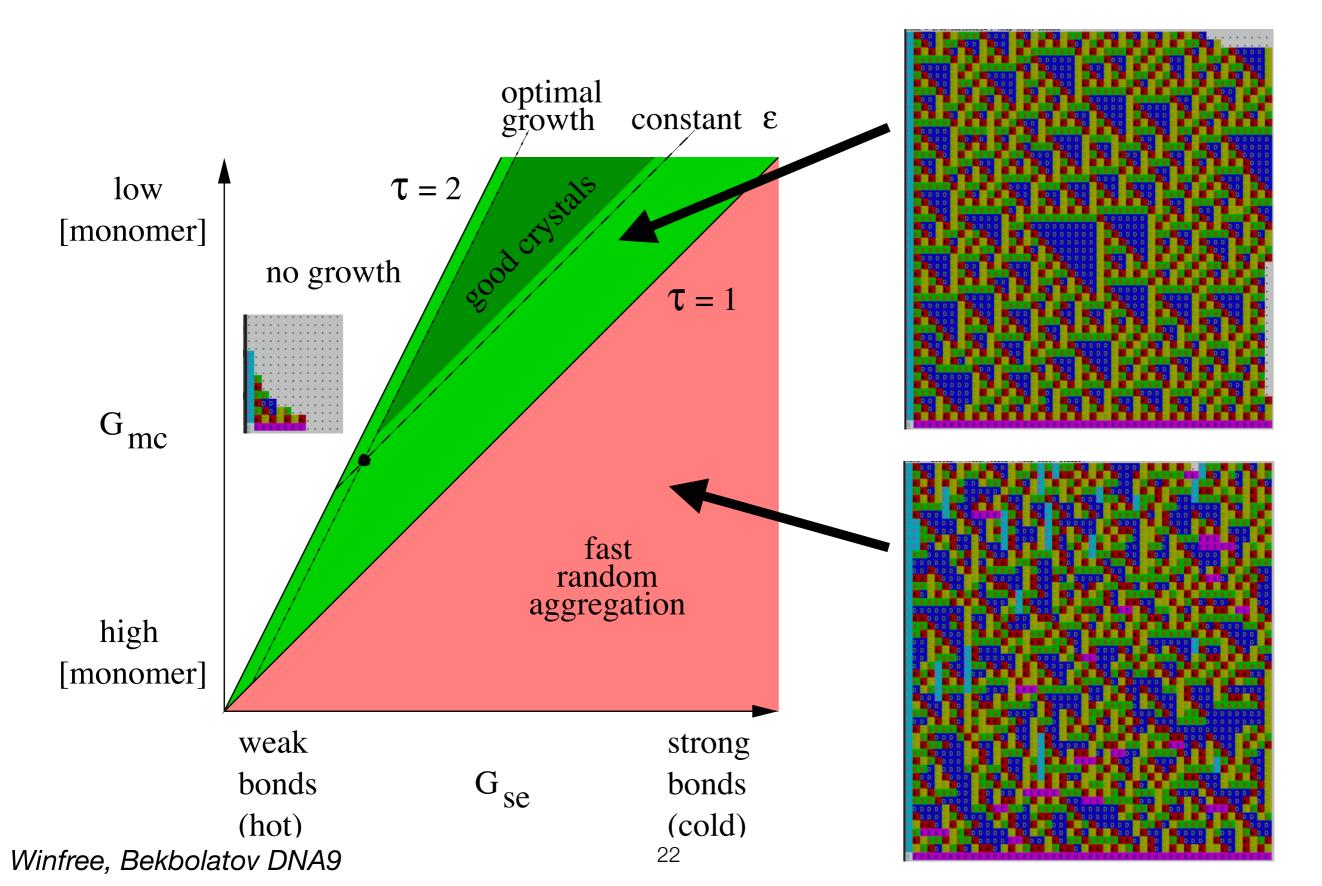
$$k_f \cdot \, {
m e}^{-(b \cdot \, Gse)}$$

where b is the number of bonds and $G_{se} = \Delta G/RT$

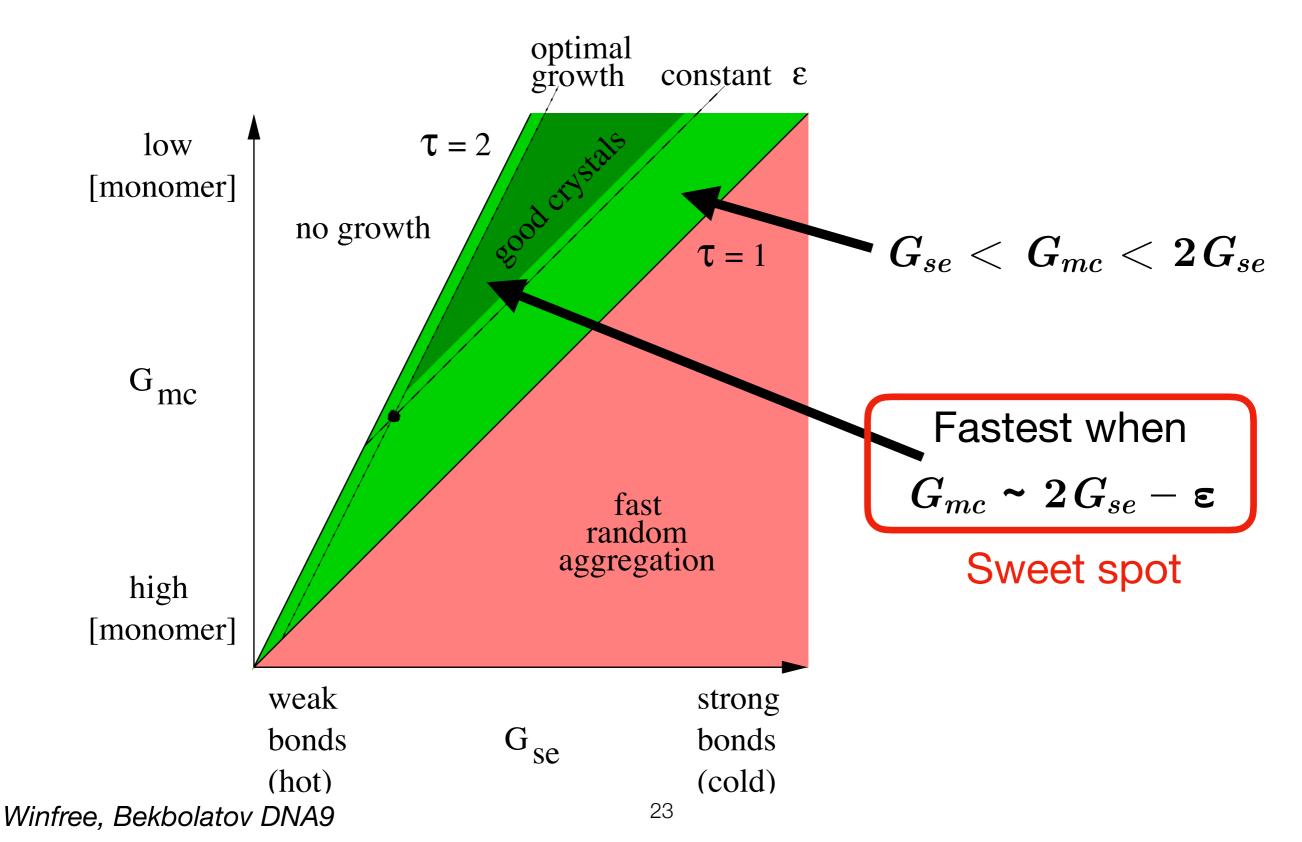
the bonding unit energy in RT units (mix of entropy and enthalpy)

mc = **m**onomer **c**oncentration se = **s**ticky **e**nd bond strength

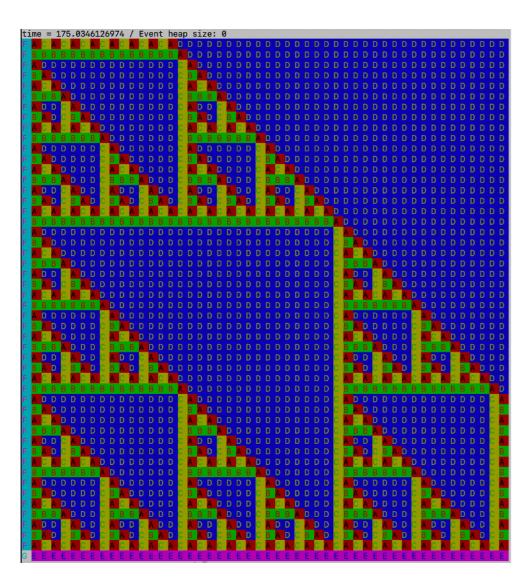
V



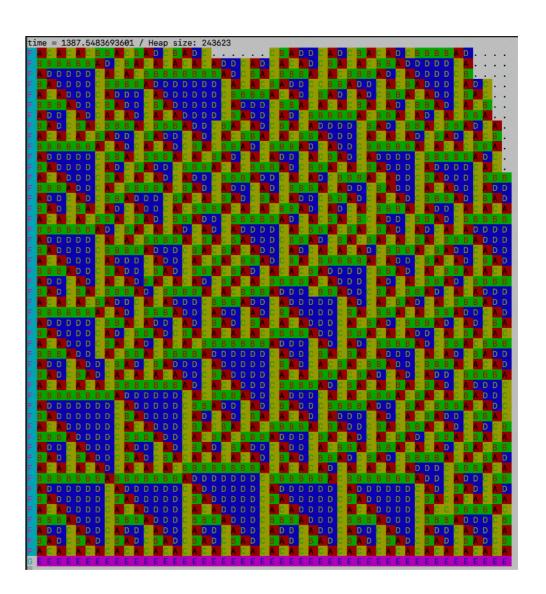
Simulations



Minimzing errors

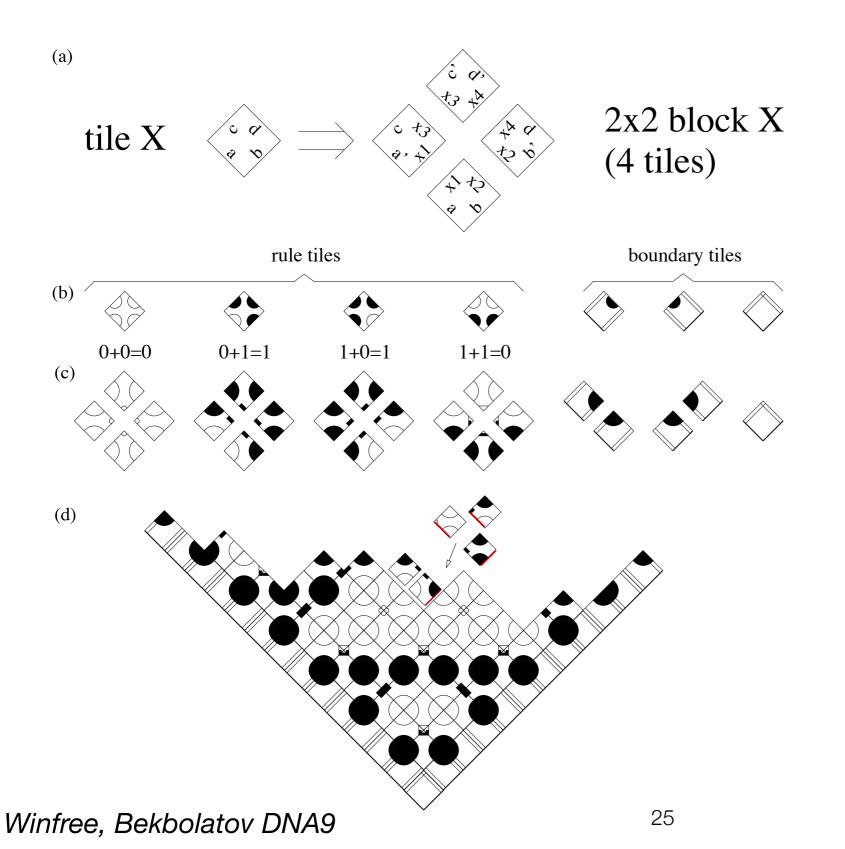


Desired



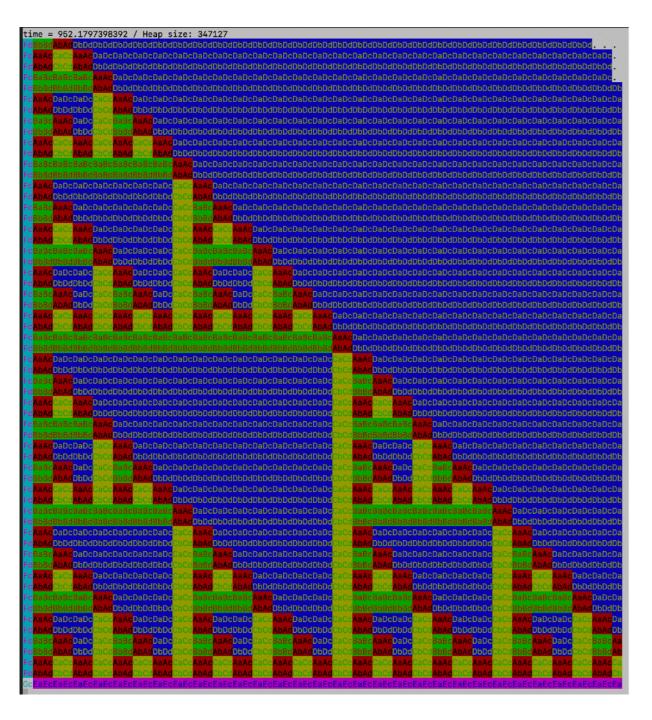
Obtained

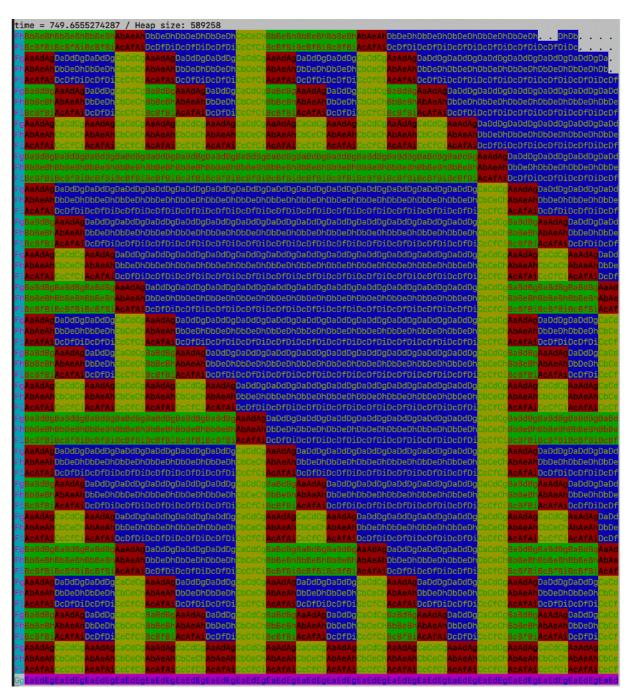
Proofreading tiles



- Cut every tile into
 k x k tiles
- Now, you need to make an other error to compensate for an error
- The error rate is squared for k = 2!

Proofreading tiles

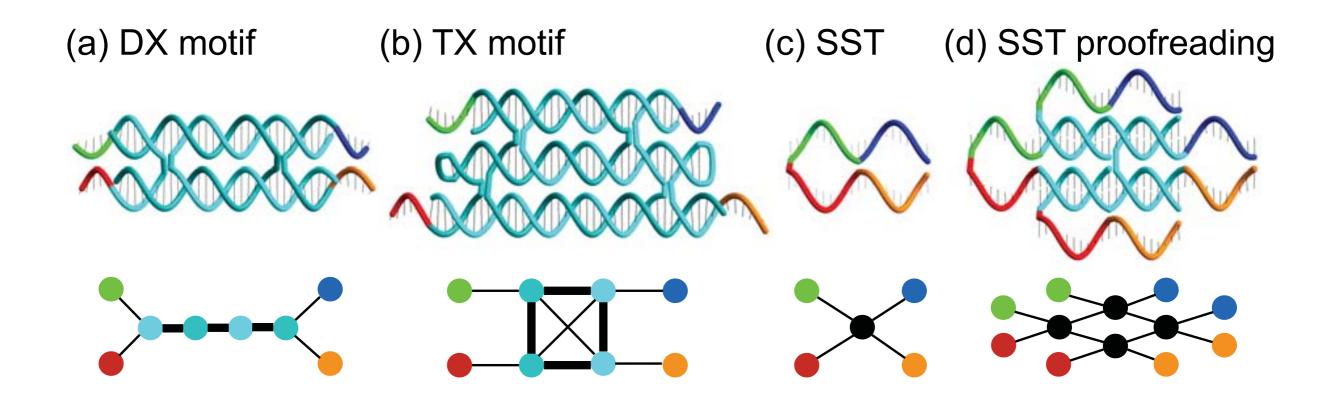




$$k = 2$$

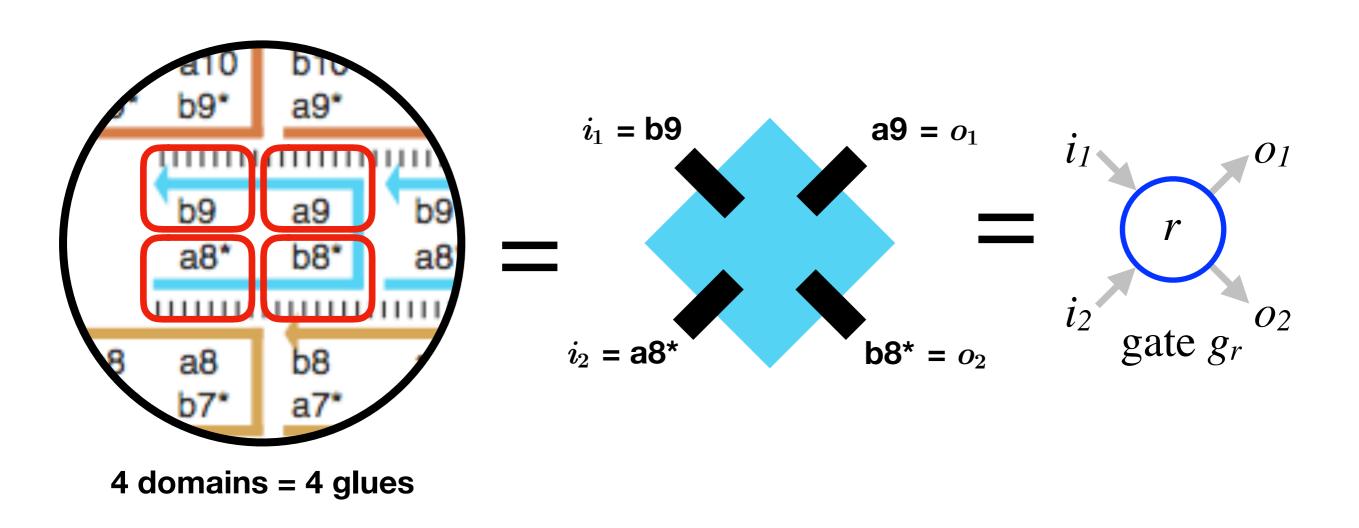
$$k = 3$$

Proofreading tiles compared to other tiles



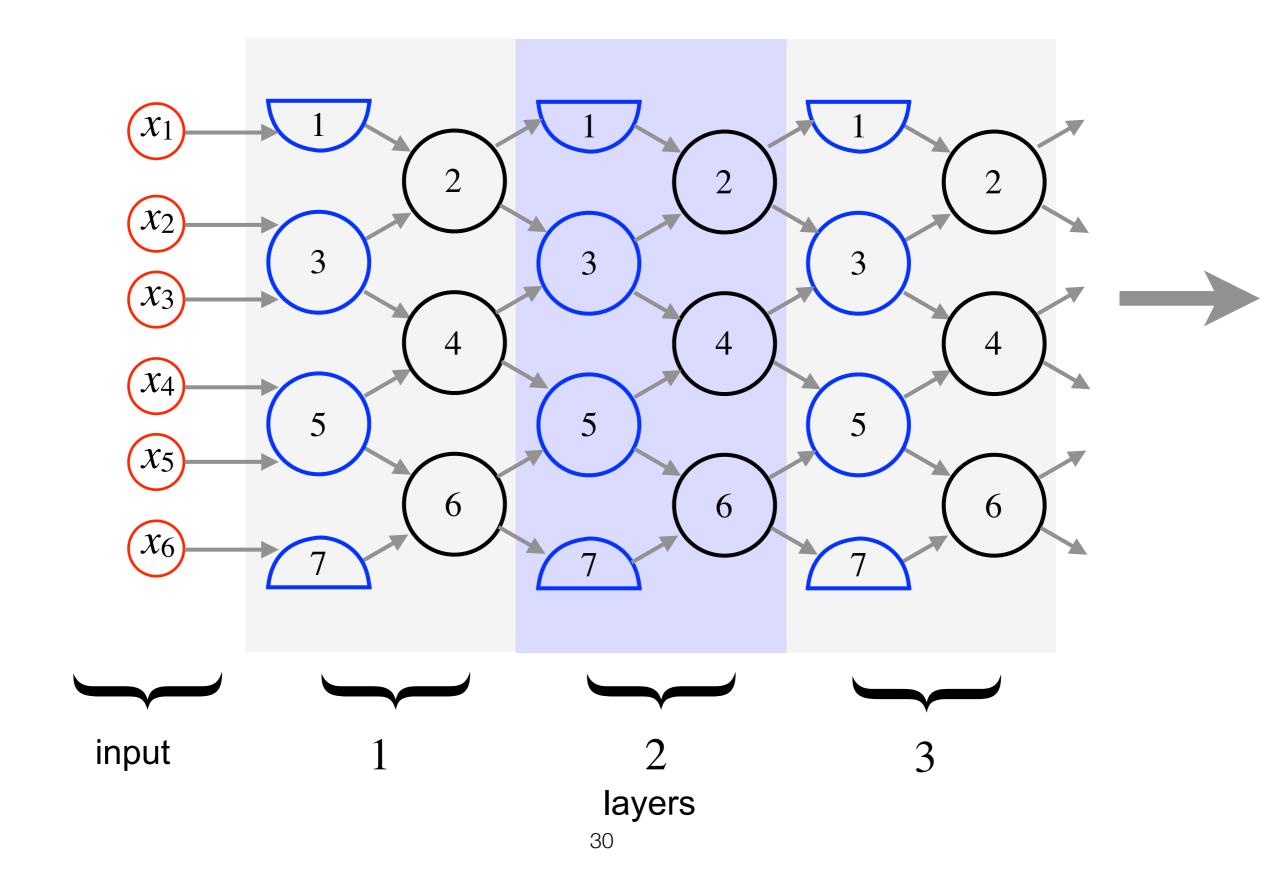
Implementing boolean circuits

Tile as gates

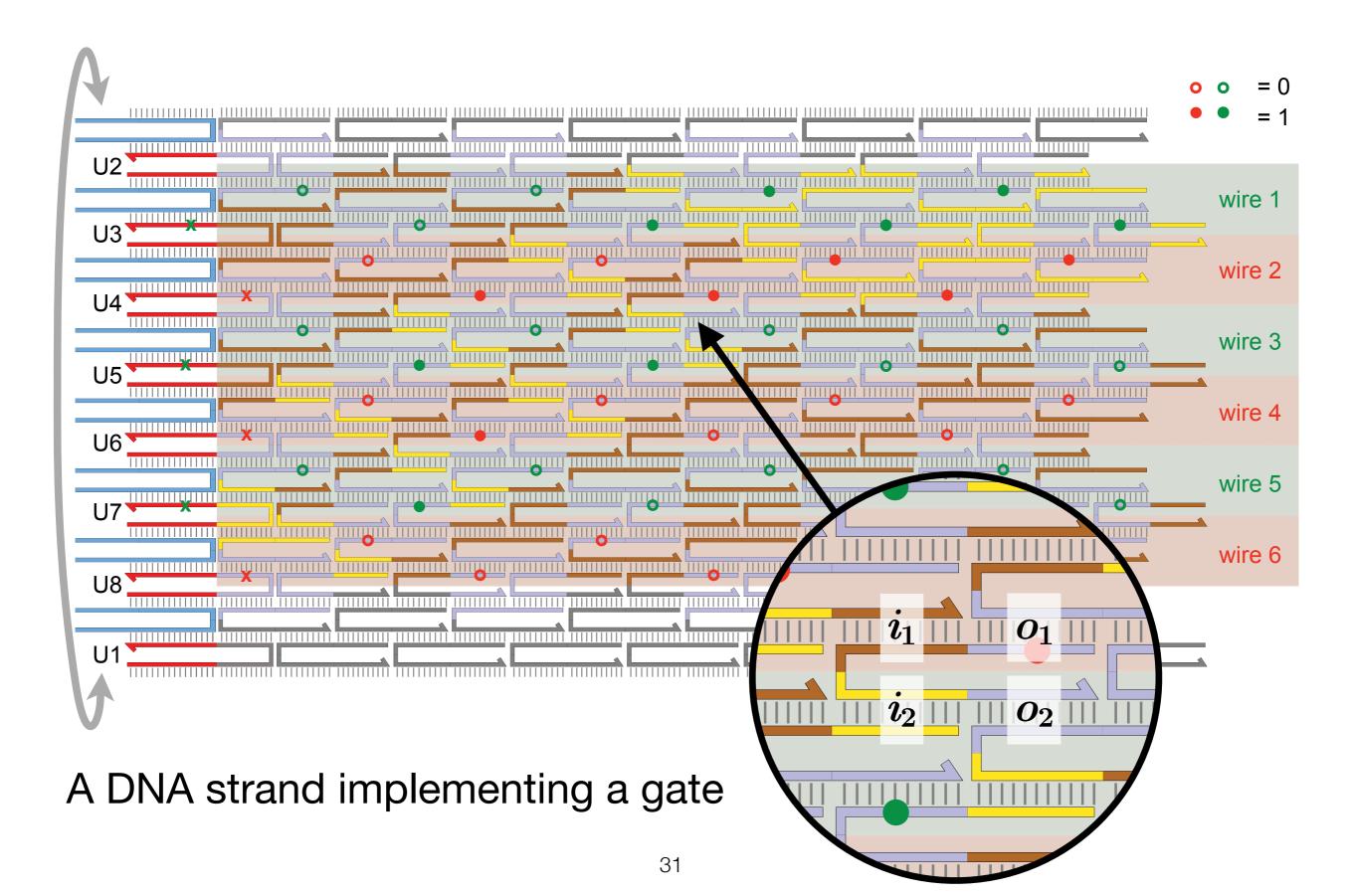


Tiles assembly is a rewriting system

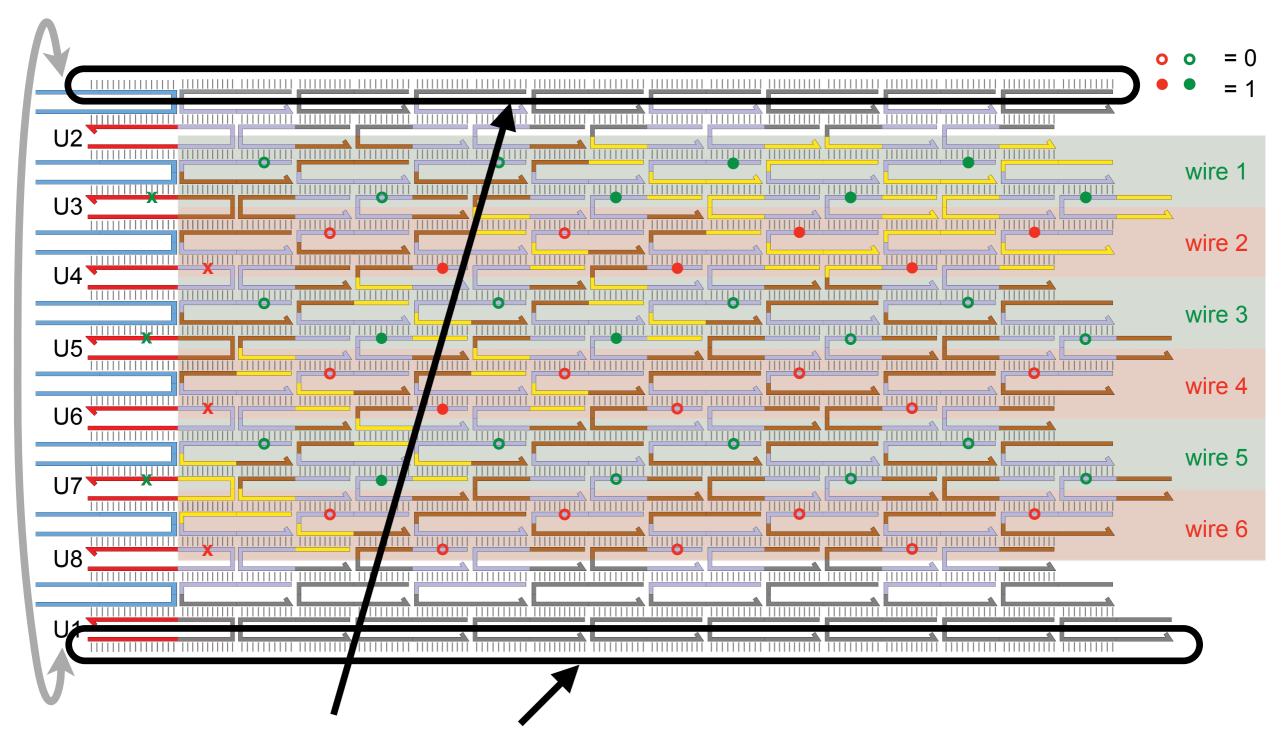
DNA nanotube circuit model



DNA nanotube circuit model



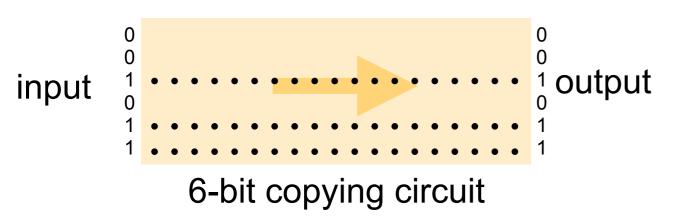
DNA nanotube circuit model

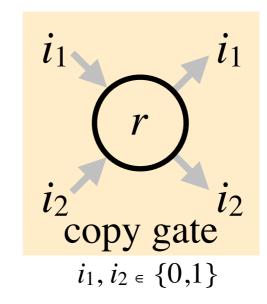


The seam which can be unzipped to flatten the assembly for imaging

Example nanotube circuits

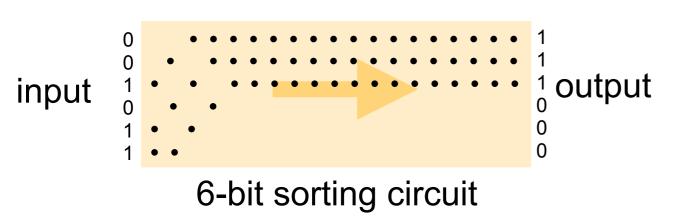
• *n*-bit copying: *n*+1 copy gates

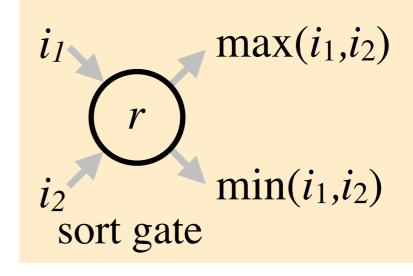




i_1	i_2	01	02	
0	0	0	0	
0	1	0	1	
1	0	1	0	
1	1	1	1	
copy gate				
truth table				

n-bit binary sorting: n+1 sort gates

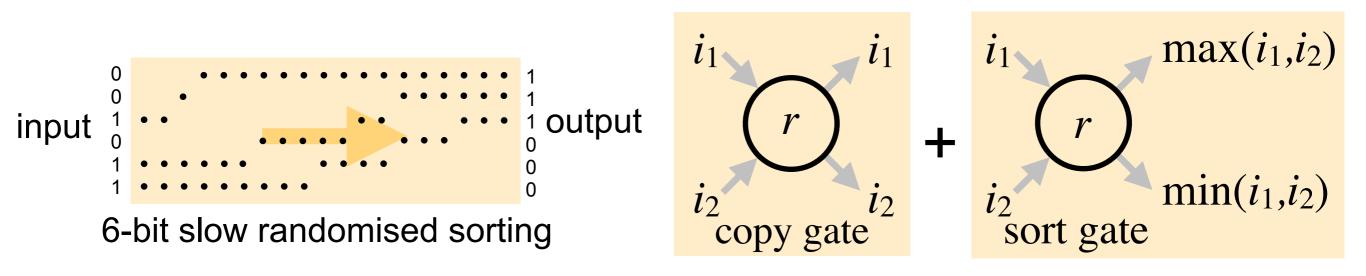




i_1	i_2	01	02		
0	0	0	0		
0	1	1	0		
1	0	1	0		
1	1	1	1		
sort gate					
truth table					

Example nanotube circuits

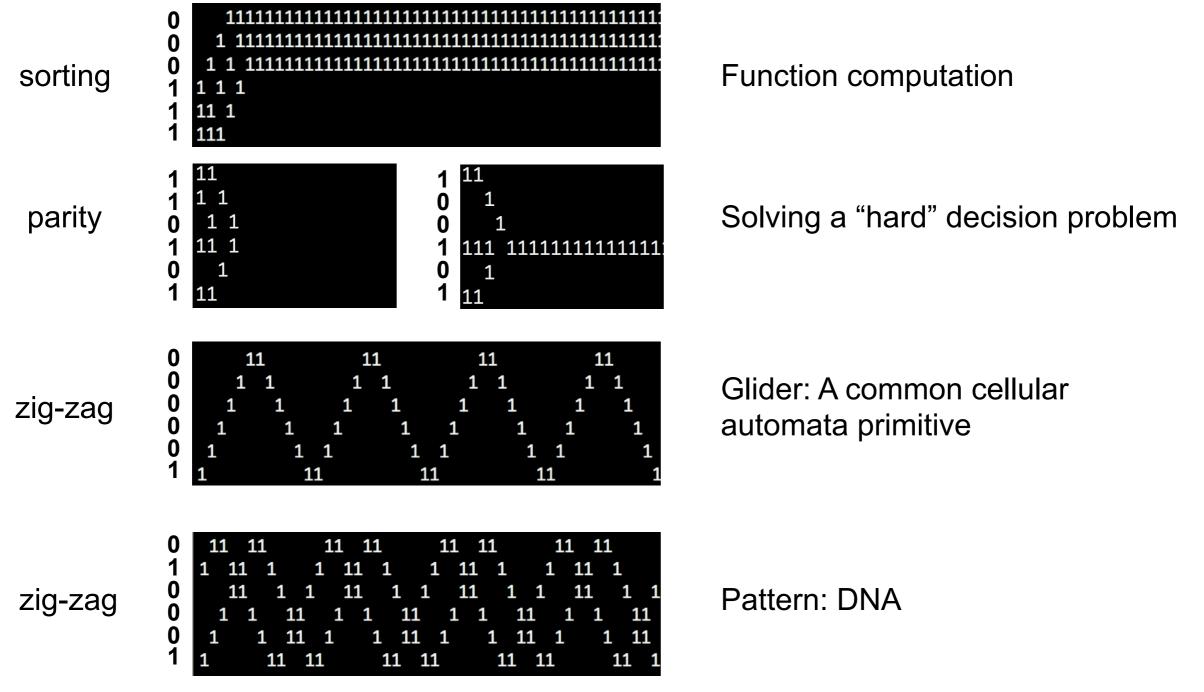
Lazy sorting! Take the union of the copy gate set and the sort gate set.
 Copying fights to slow down the sorting process, but assuming a fair execution, sorting will eventually win.



 Since, in any given circuit, each gate "knows" its row number r, we will also write circuits (programs) that exploit this feature, do something that is interesting and (more importantly) provably impossible without that feature

Damien Woods 34

Circuits



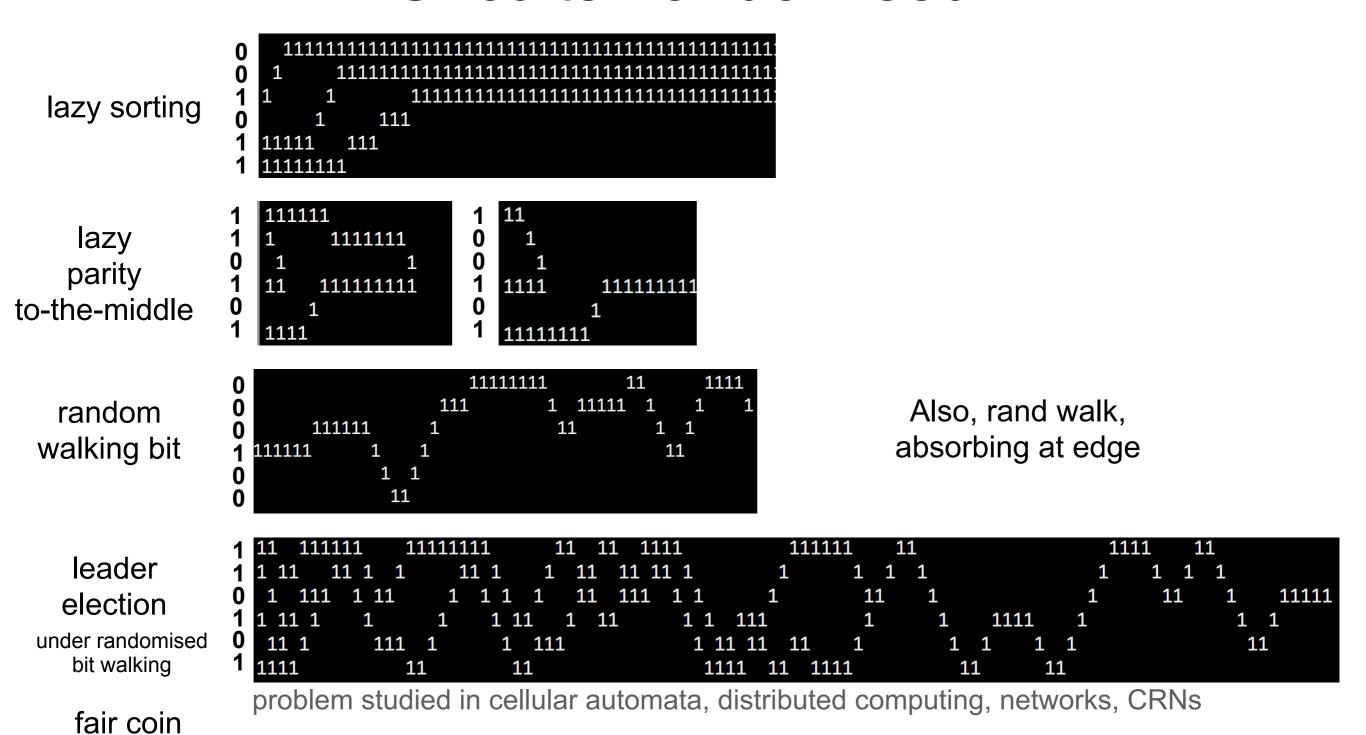
long repeat

Behaviour: 63 layers to see

the same thing twice!

Rule 110

Circuits: randomised



Randomised programs may be a useful tool to calculate energetics of tile binding, or groups of tiles binding, from AFM data

A nice method to assess the quality of our sequence design

Circuits

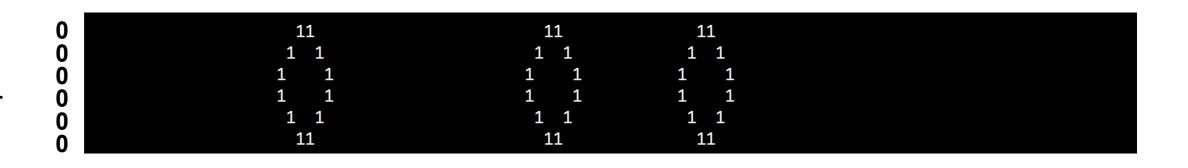


Glider: A common cellular automata primitive

Pattern: Monotone / horizontally connected

Nonmontonic widely-spaced patterns are provably impossible in the deterministic circuit model

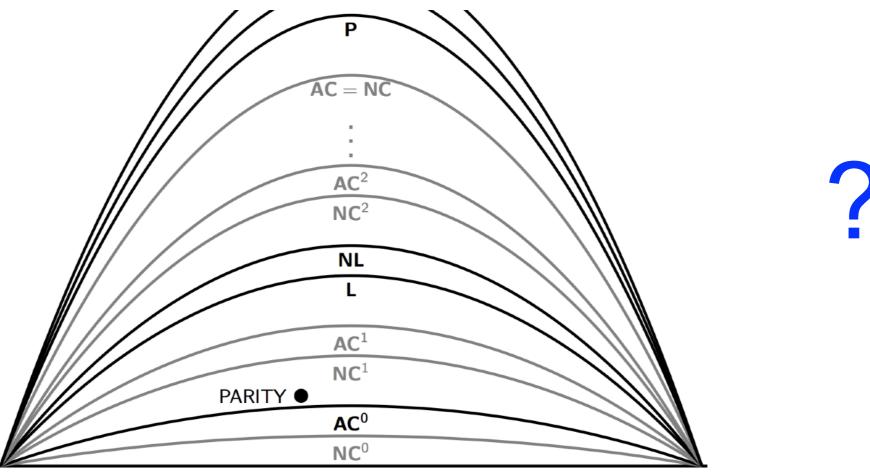
Diamonds are forever



Blowing bubbles

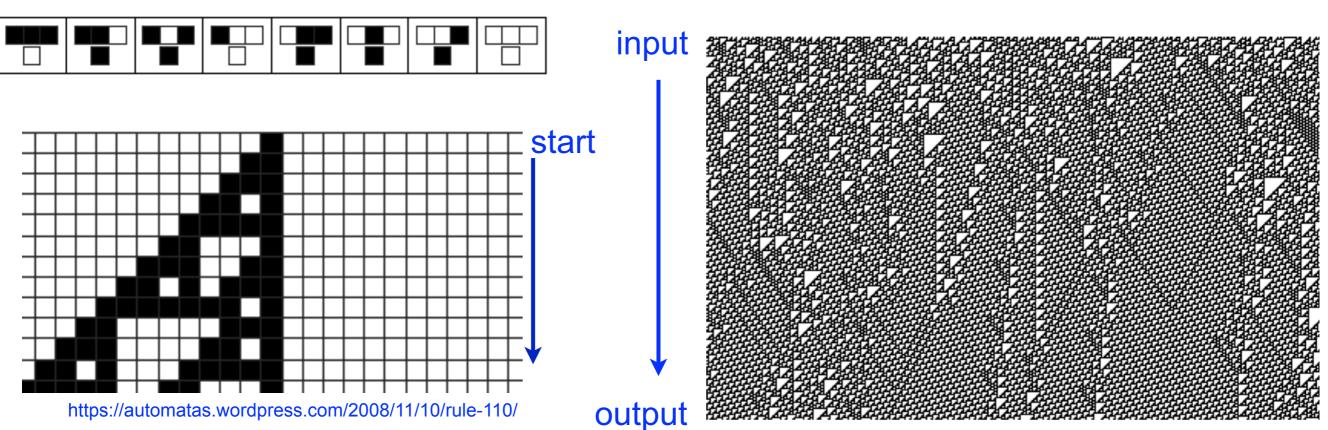
Computational power of DNA (DNA = DNA nanotube algorithms)

- What is the computational power of our circuit model?
- With *n* input bits, depth-2 layer, and poly(n) depth circuit, what can be solved?
 - No more than P (proof: simulate poly(n) depth circuit in polynomial time on a Turing machine)
 - We've seen already that the model can solve SORTING, PARITY both of which are outside AC⁰



Damien Woods 38

Rule 110



• Theorem: Rule 110 is an efficient and general purpose computer

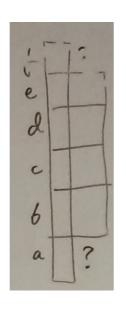
Neary, Woods. Cook. Complex

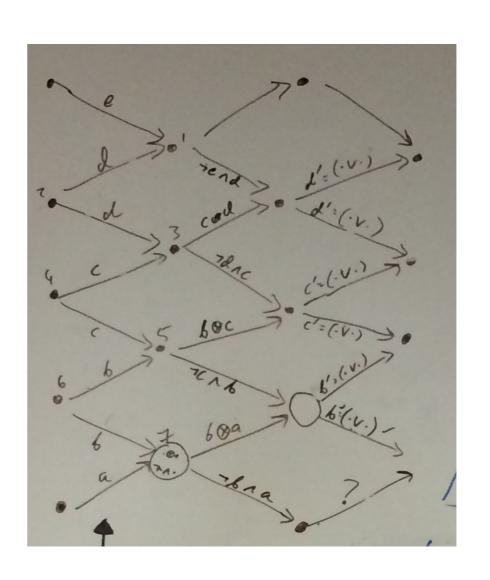
ICALP 2006 Systems. 15:1-40 2004

Computational power of DNA (DNA = DNA nanotube algorithms)

- What is the computational power of our circuit model?
- With *n* input bits, depth-2 layer, and poly(n) depth circuit, what can be solved?
 - No more than P. Proof: simulate poly(n) depth circuit in polynomial time on a Turing machine
 - All of P: Proof: simulate Rule 110

$$egin{array}{cccc} \mathbf{c} & \mathbf{b} & \mathbf{a} & \mathbf{c} & \mathbf{b} & \mathbf{a} \\ F(0,0,0) &= 0 & F(1,0,0) &= 0 \\ F(0,0,1) &= 1 & F(1,0,1) &= 1 \\ F(0,1,0) &= 1 & F(1,1,0) &= 1 \\ F(0,1,1) &= 1 & F(1,1,1) &= 0 \end{array}$$

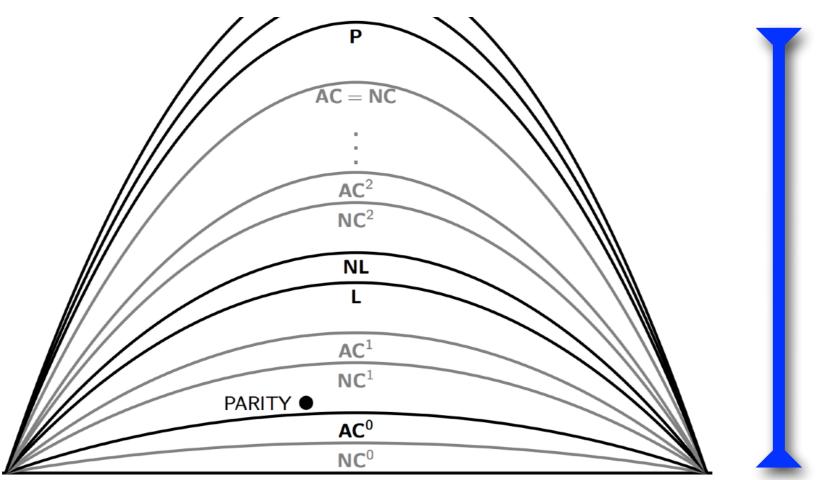




Computational power of DNA (DNA = DNA nanotube algorithms)

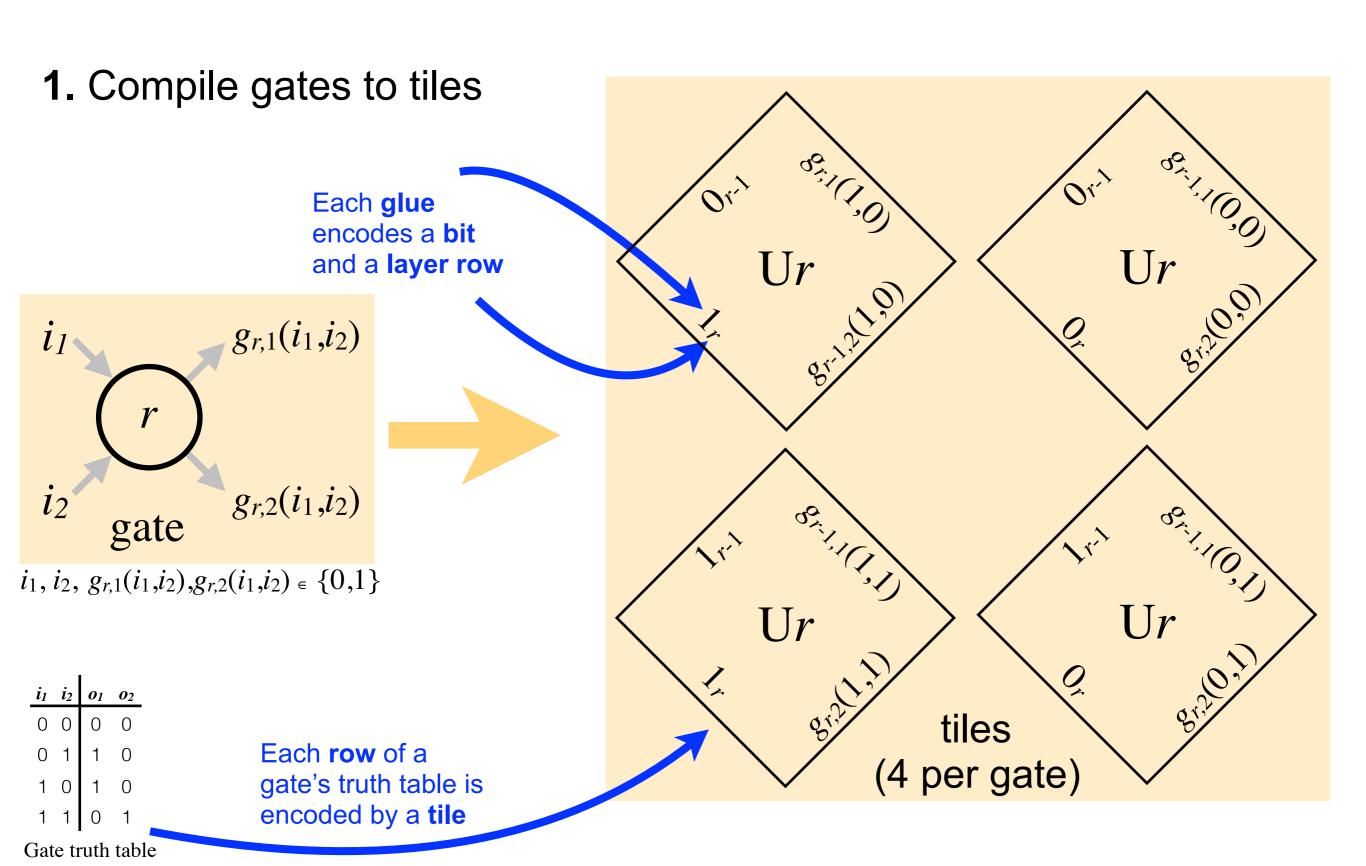
- What is the computational power of our circuit model?
- With n input bits, depth-2 layer, and poly(n) depth circuit, what can be solved?
 - Answer: Exactly P, via Rule 110 simulation

T. Neary, D. Woods. P-completeness of cellular automaton Rule 110. ICALP 2006. Springer LNCS 4051(1):132-143 Cook, M.: Universality in elementary cellular automata. Complex Systems 15 (2004) 1–40

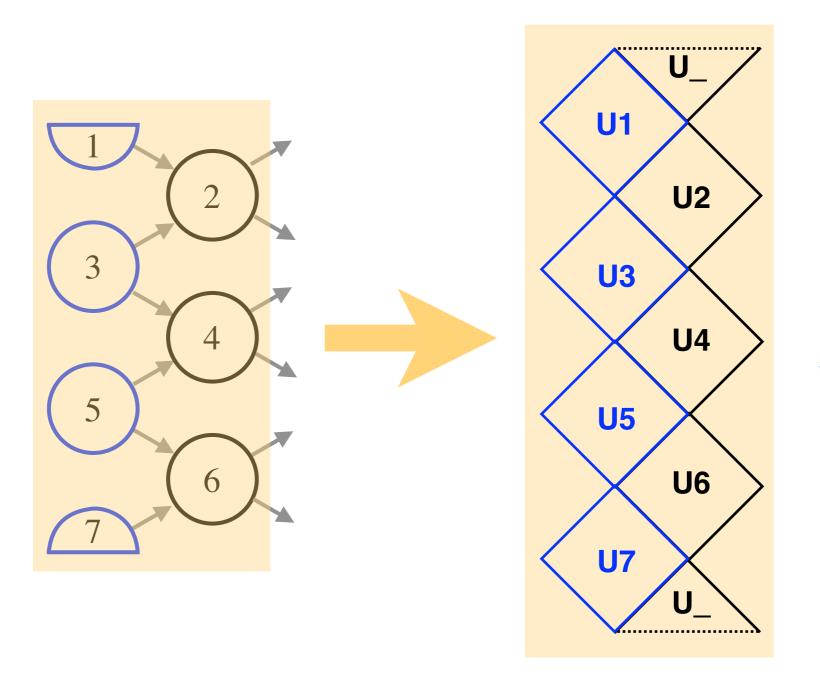


Damien Woods 4

From gate abstraction to tile abstraction



6-bit universal tileset: overview

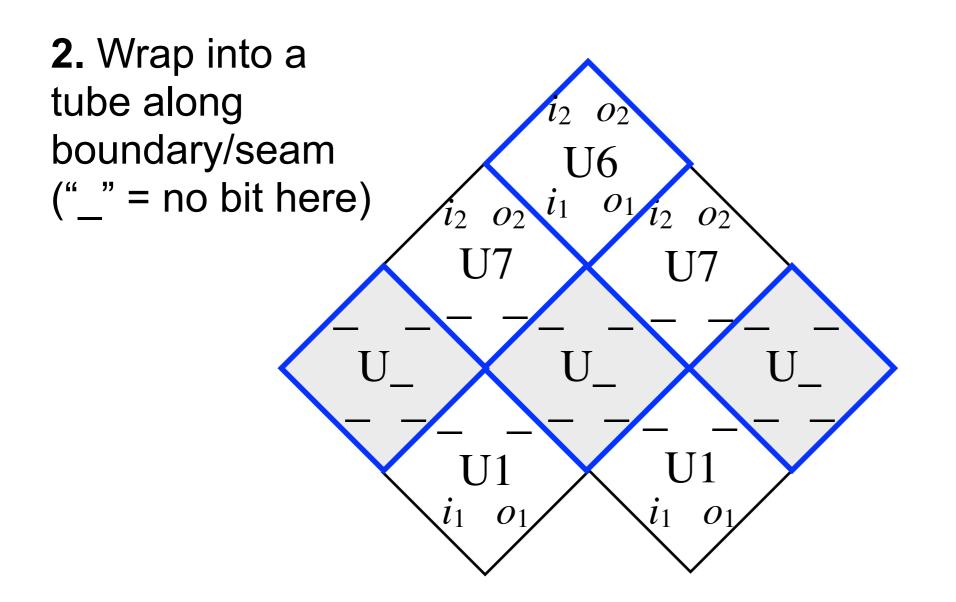


For each gate we have 4 tiles, 1 or which sticks

Glues encode rows

Damien Woods 43

6-bit universal tileset: overview



- **2.1.** U_ does not encode input/output bits. U_ encodes "boundary"
- 2.2. U2,...,U6 have 2 input and 2 output bits. U1 & U7 have only 1 input and 1 output bit.

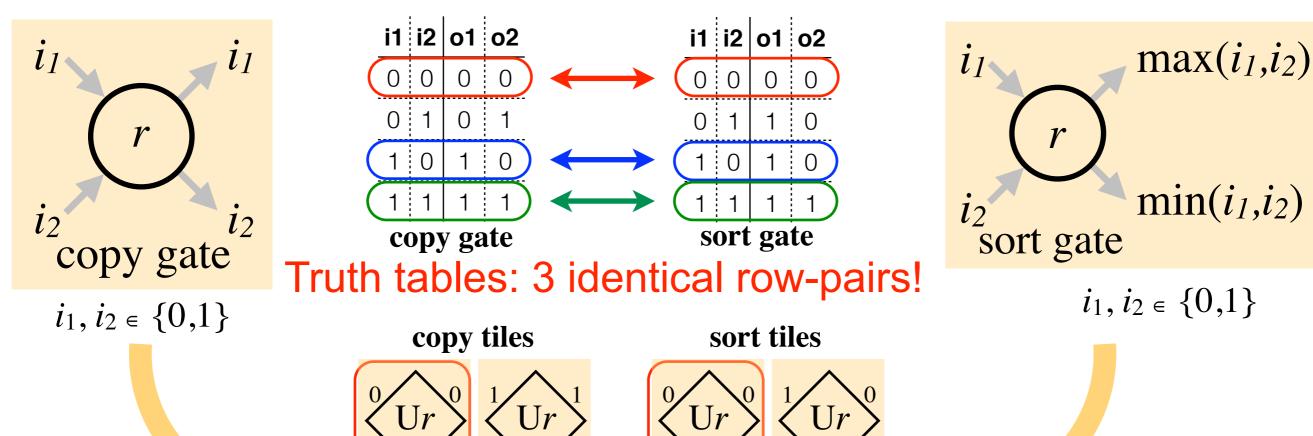
3. Asynchronous update semantics: assembly frontier grows asynchronously rather than layer-by-layer (does not change expressivity of circuit versus tile model, roughly speaking)

But can we afford all those tiles?

Damien Woods 45

From gates to tiles: savings

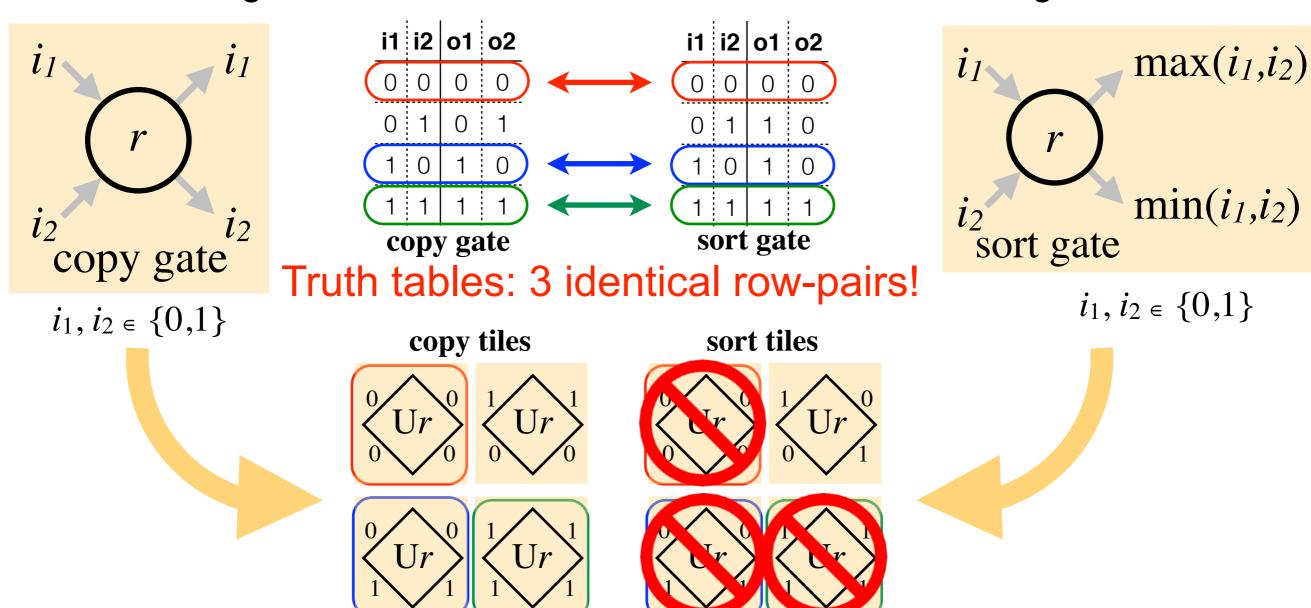
- Let's convert the set of *R*-bit universal gates into tiles, and examine at the resulting *R*-bit universal tile set
- Suppose I have two different gates, e.g. copying and sorting. If I convert each into 4 tiles I get 8 tiles, but lets look closer at some tile-savings:



3 identical tile-pairs!

From gates to tiles: savings

- Let's convert the set of *R*-bit universal gates into tiles, and examine at the resulting *R*-bit universal tile set
- Suppose I have two different gates, e.g. copying and sorting. If I convert each into 4 tiles I get 8 tiles, but lets look closer at some tile-savings:



Only 5 tile types needed to do both copying and sorting!

3 identical tile-pairs!

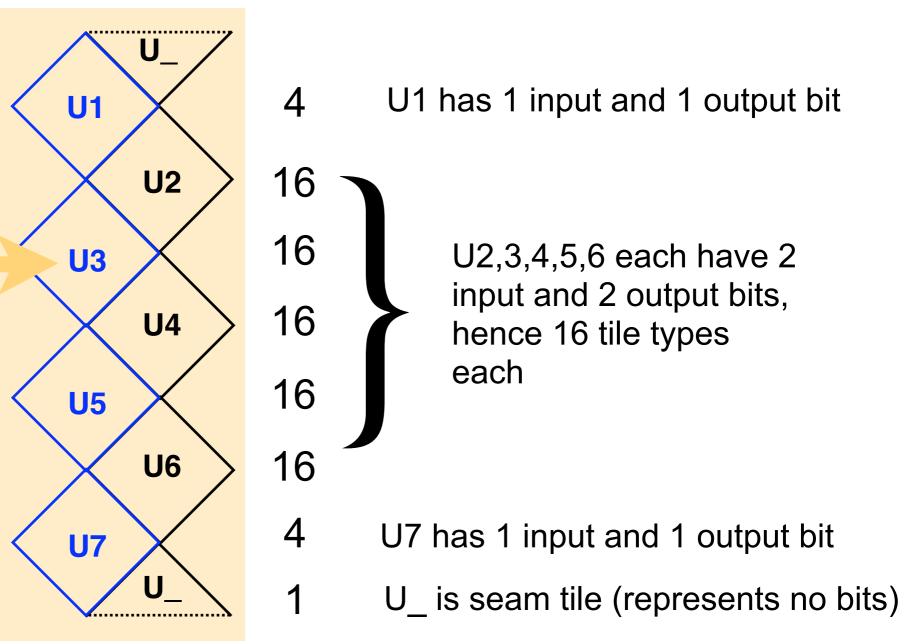
Damien Woods 46

6-bit universal tileset: overview

- Intuition from previous slide: Tiles separate the 4 "elementary operations" of a gate into 4 individual tiles, which results in fewer tile types in our universal tile set than gates in the universal gate set
- So how many tiles in the R-bit universal tile set?

E.g. U4: There are 16 U3 tile types that can go here (a tile is defined by its row & 4 bits), as opposed to 256 gates in the circuit model.

The user may plug and play with these 16 tile types!

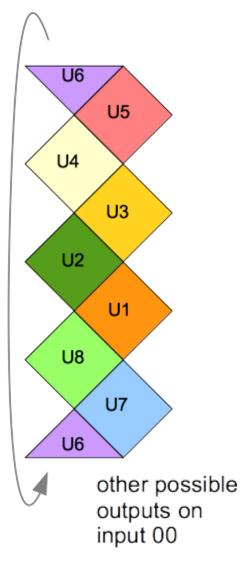


Total: 89 tile types

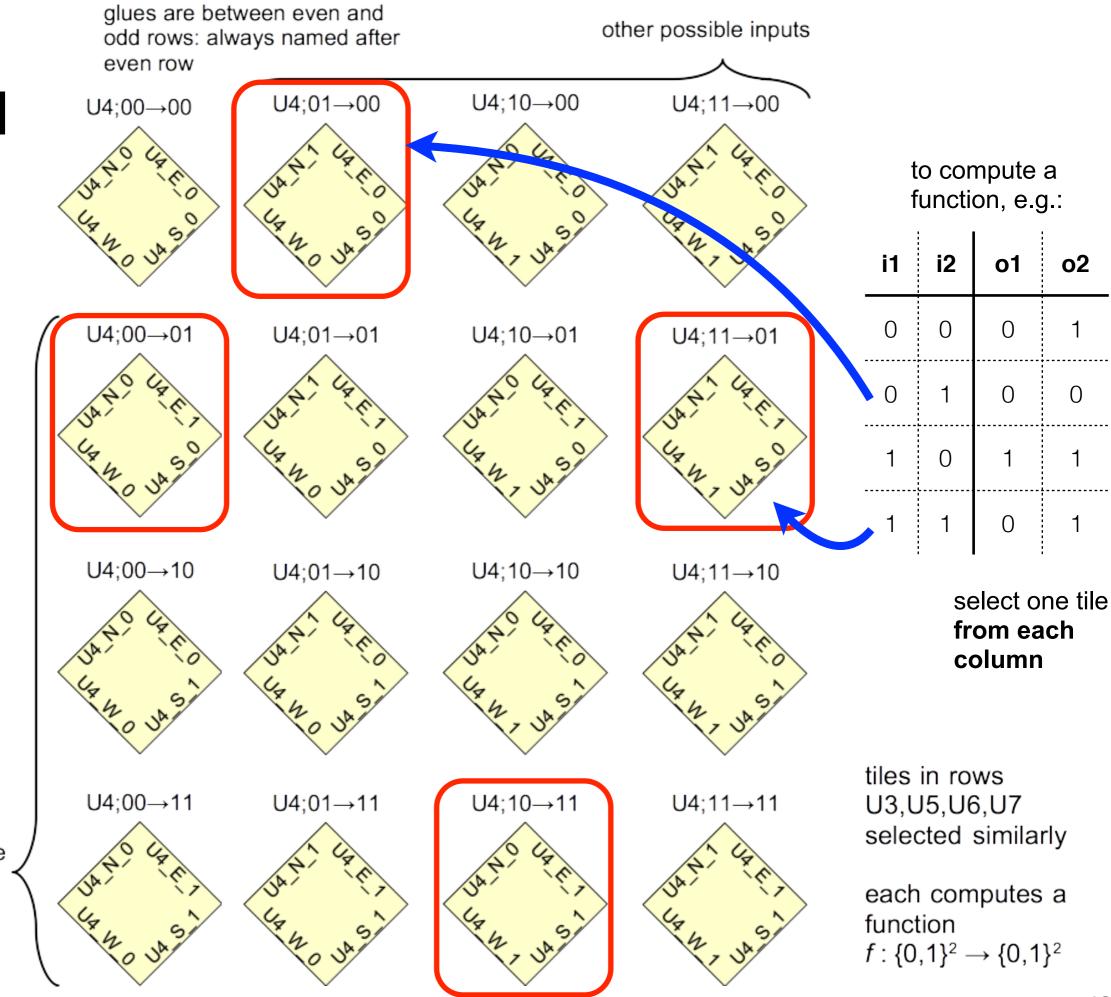
47

6-bit universal tileset: details

8 rows U1-U8; each has disjoint subset of tile types



pic by Dave Doty



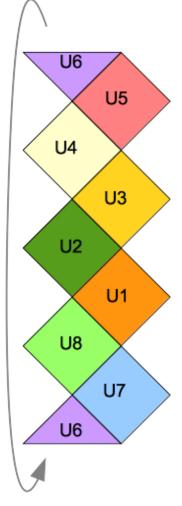
Damien Woods

o2

0

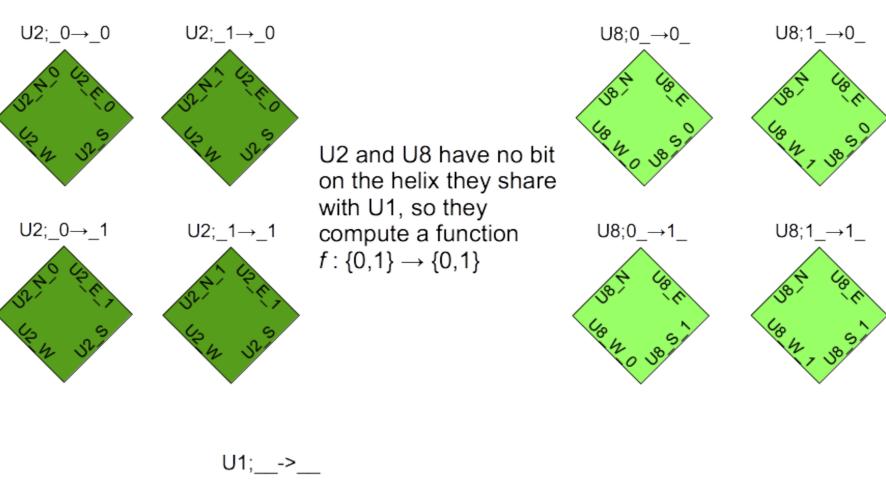
6-bit universal tileset: details

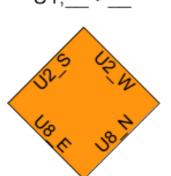
8 rows U1–U8; each has disjoint subset of tile types



pic by Dave Doty

Special cases for rows near seam





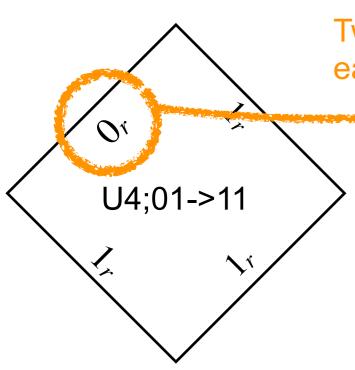
only 1 tile type on position U1, computes trivial function $f:(_,_) \rightarrow (_,_)$

6-bit universal proofreading (PR) tileset

Linear/polynomial redundancy for exponential error reduction

2x2 PR transformation: each tile type t is transformed into a 2x2 block of

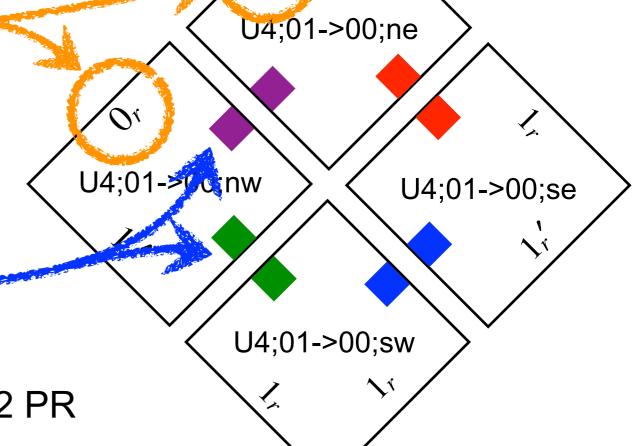
4 tiles types that uniquely represent, or hardcode for, t



Two distinct versions of each external glue

proofreading transformation

Unique glues in centre of block



 3-bit copying experiments show that 2x2 PR significantly reduces errors

- Transforms 89 tiles into 356 proofreading tiles
- Caveat: we will use only a single tile type along the seam (hence, the 2x2 "U_" block at the seam is not a proofreading block). => 4*89-1=355 unique strands

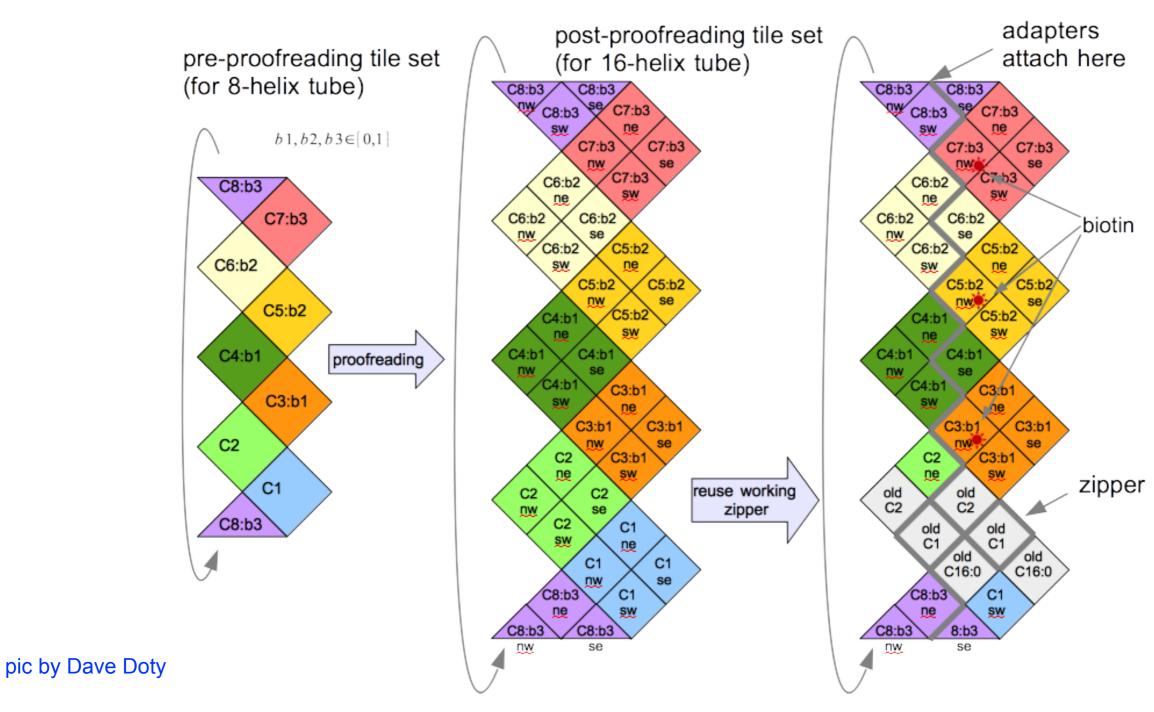
Key property: 1 error forces a 2nd error in the same block, squaring the error rate

Winfree, Bekbolatov.

DNA9, 2004

3-bit proofreading copying tileset

 To give an idea of what a 2x2 proof-reading transformation is here is a 3-bit proofreading copying applied to the 3-bit copying tile set (i.e. for a different tile set)

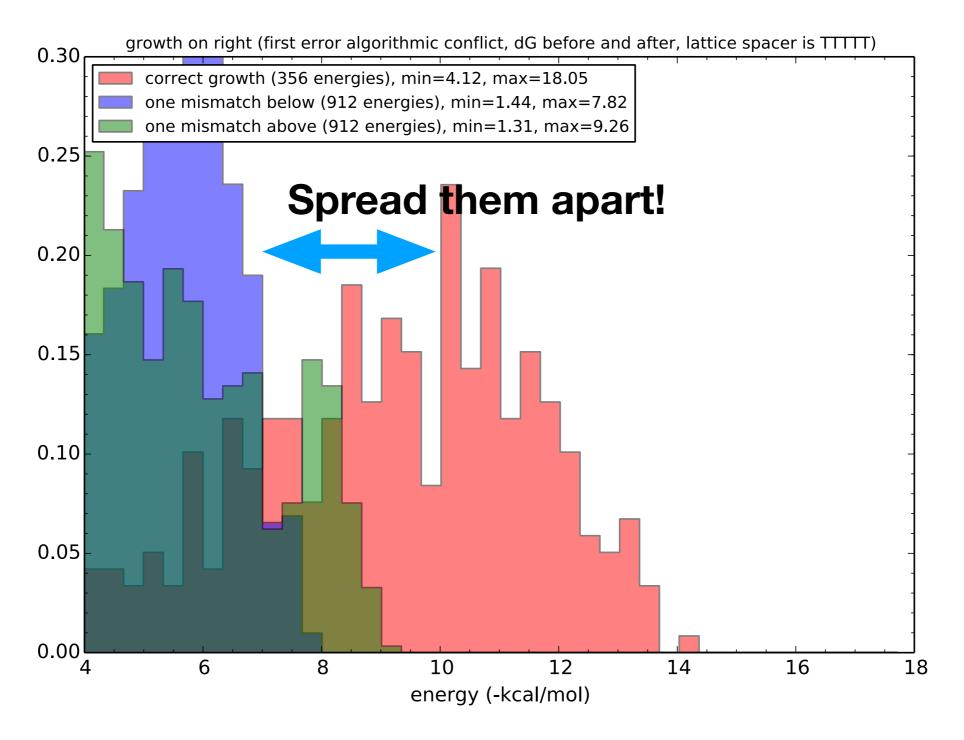


Damien Woods

51

Sequence design

Random sequences will not work

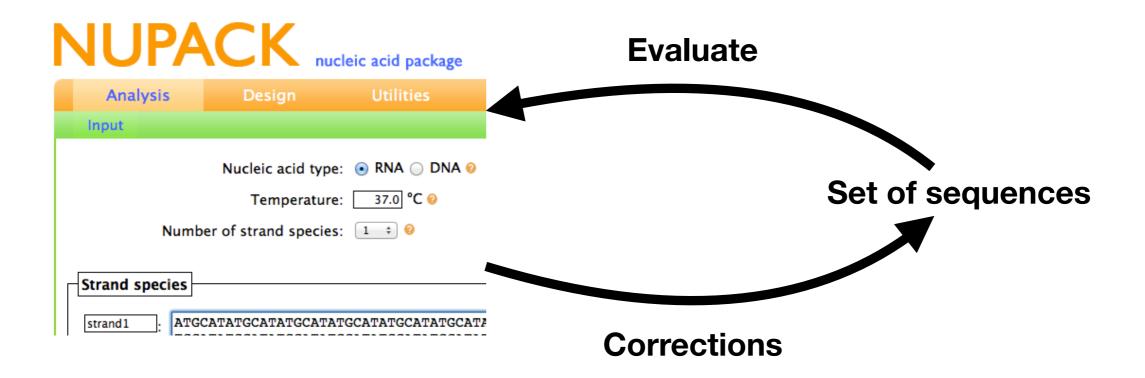


Random sequences over 3-letter code with 1 base exception, and domain-pairs ending with AT stack

What do we want?

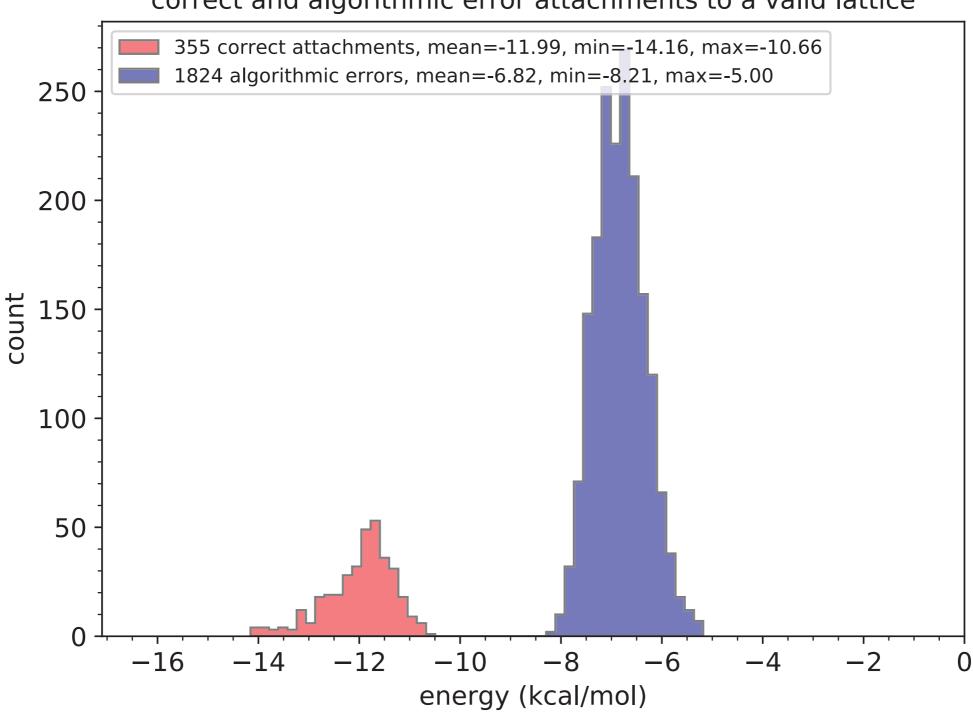
- 1. No "self-folding"
- 2. Clean lattice boundary
- 3. Minimize interactions between strand pairs
- 4. Uniform correct binding: in a tight range
- 5. Incorrect binding should have a much higher energy

An iterative process



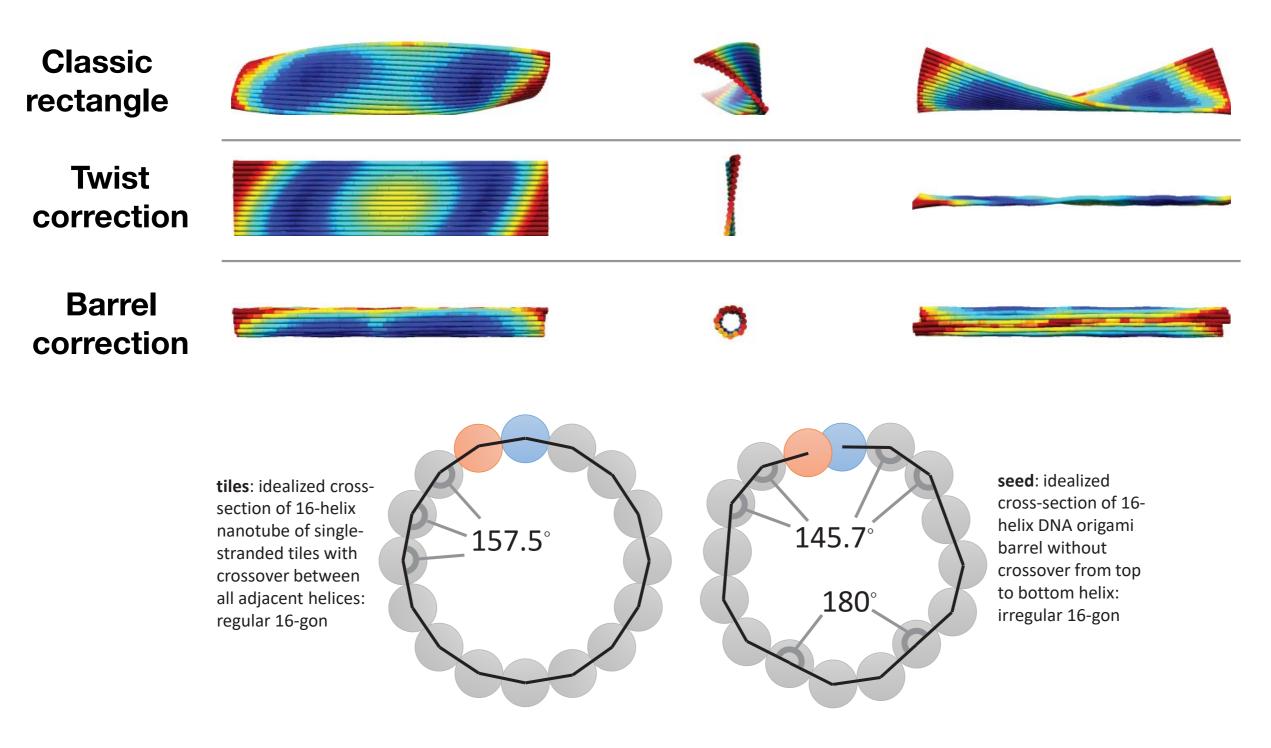
Designed sequences

correct and algorithmic error attachments to a valid lattice

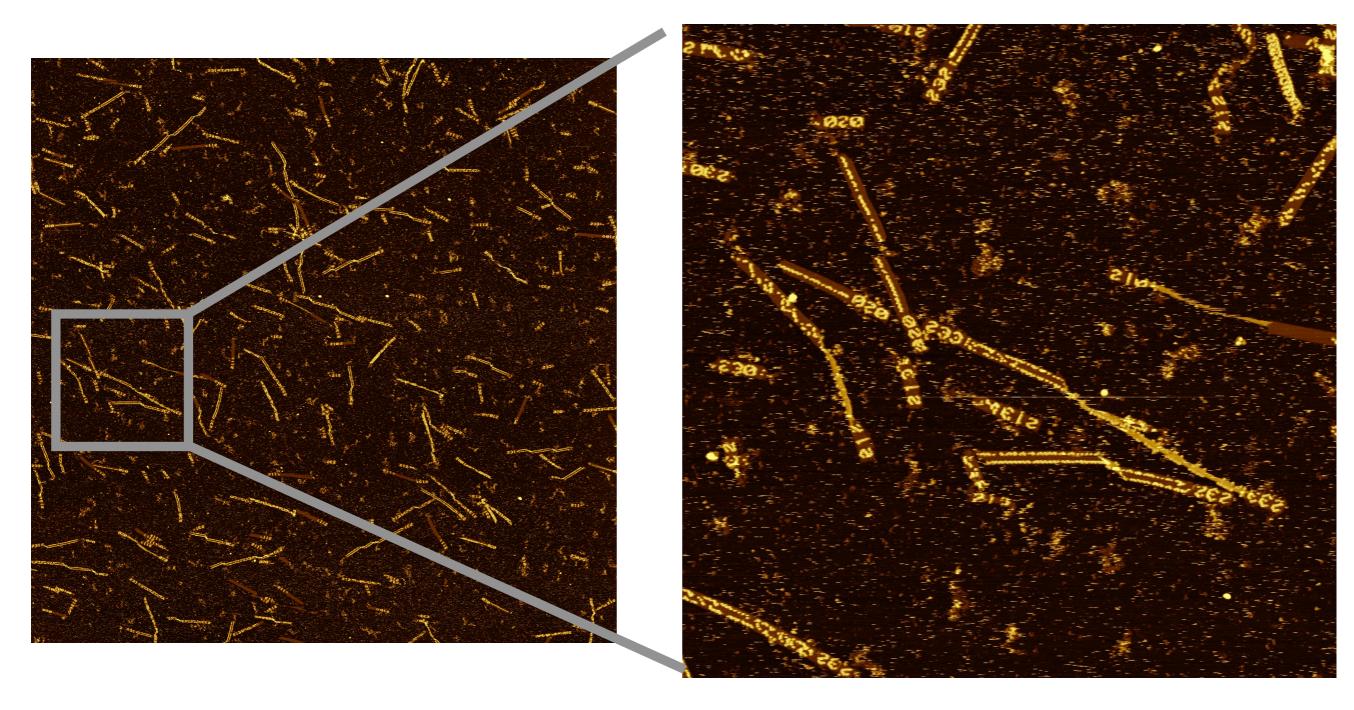


The experiments

The seed: a DNA origami



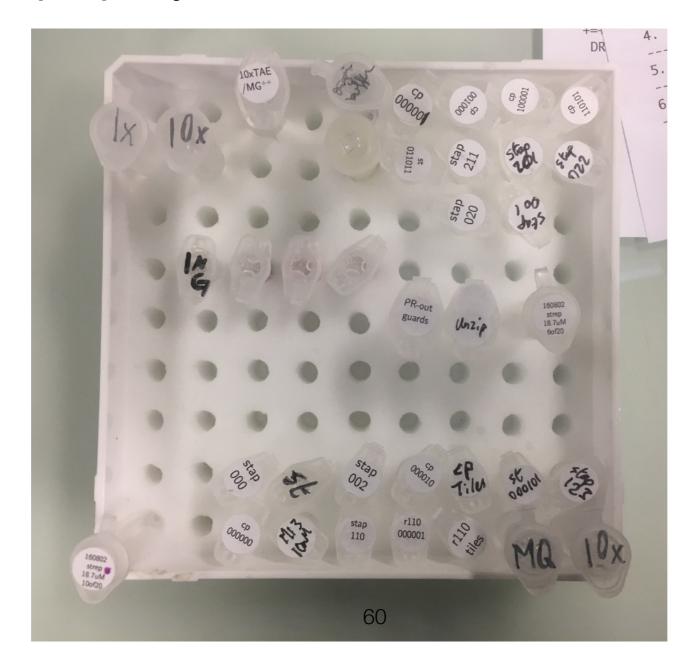
Barcode

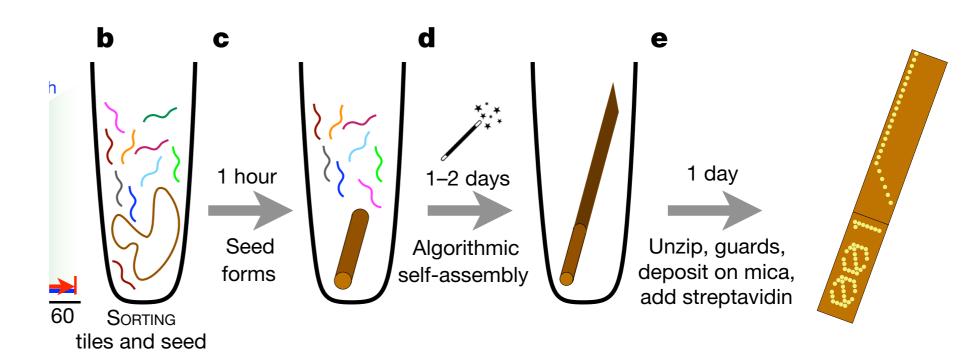


Seed barcodes allow to image many circuits/inputs at the same time

Preparing the tiles

Mix of the tile strands for each of the circuits in an individual properly labelled tube





1. Origami

- 1.1. Mix sca
- 1.2. Heat at 58.1°C

2. Growth

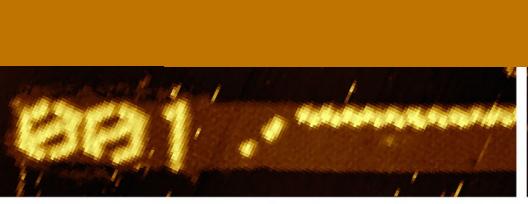
- 2.1. Add tile
- 2.2. Let it gi

3. Guards

- 3.1. Add Guard staples
- 3.2. Let it attach for 4h

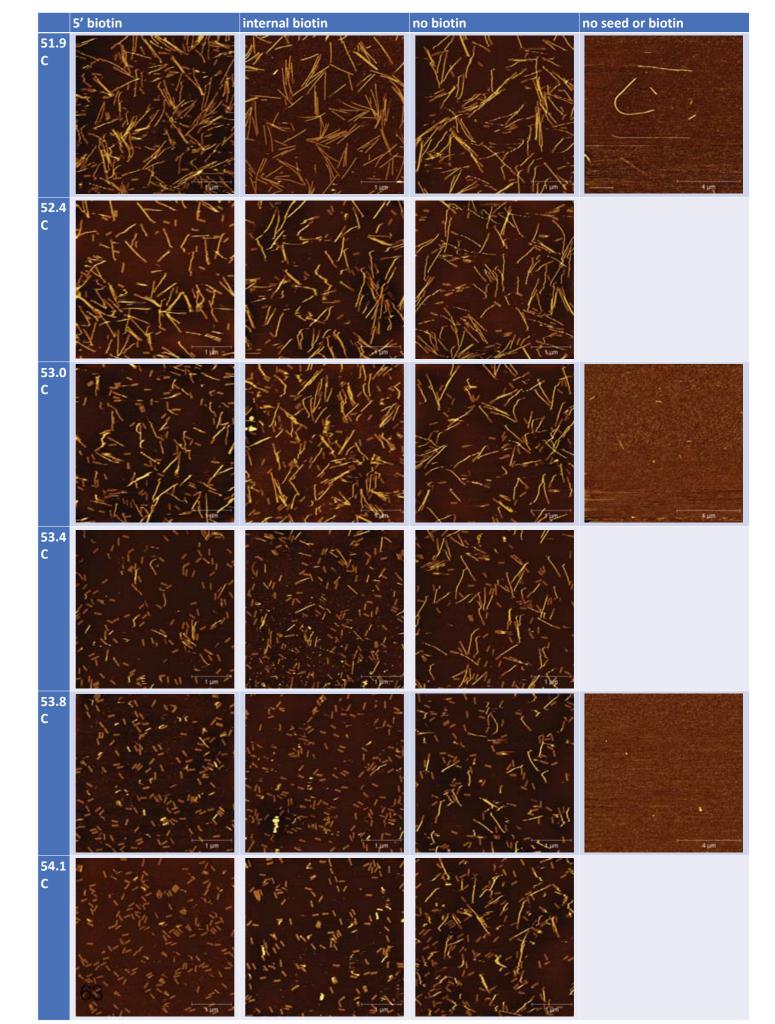
4. Unzip

- 4.1. Add the unzipers
- 4.2. Let it rest for 1 night
- 5. Cool down to room temperature and Image!

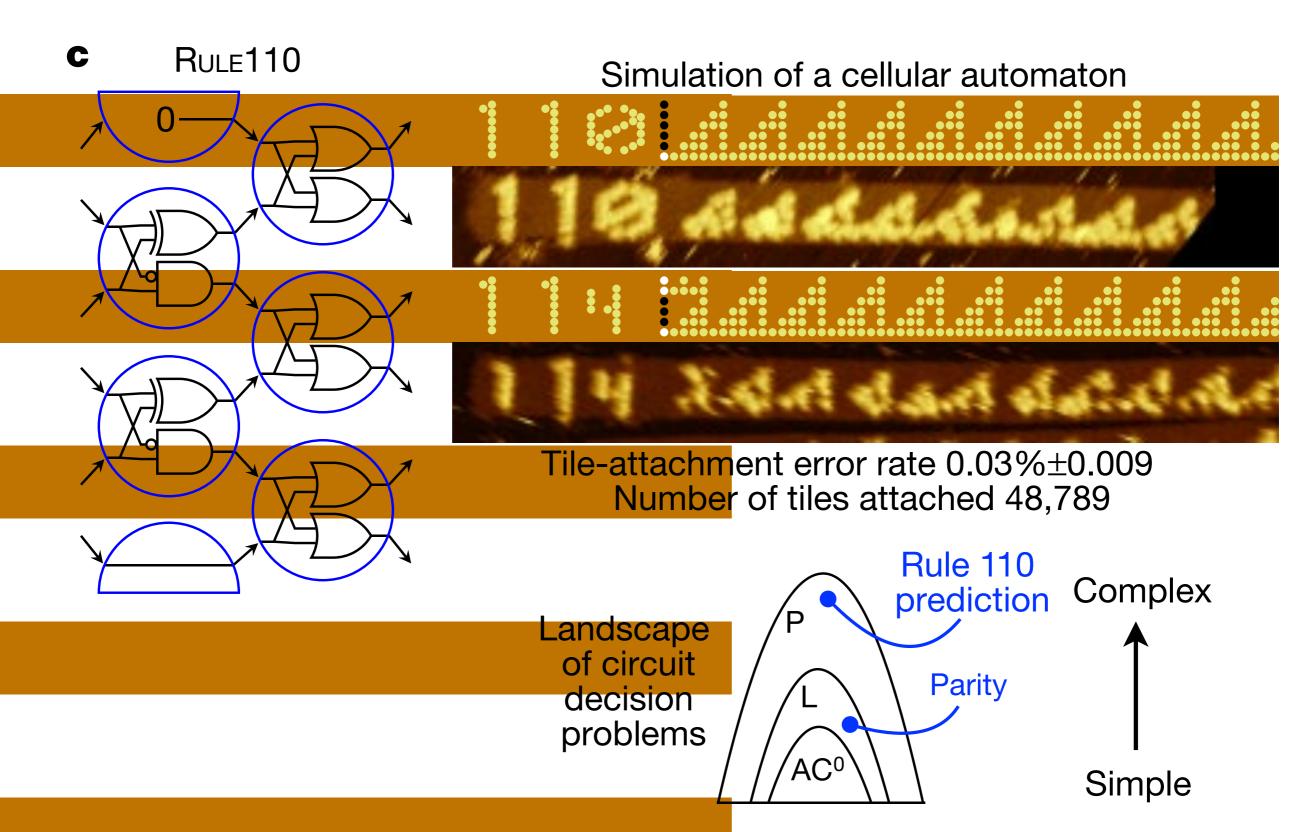


The result

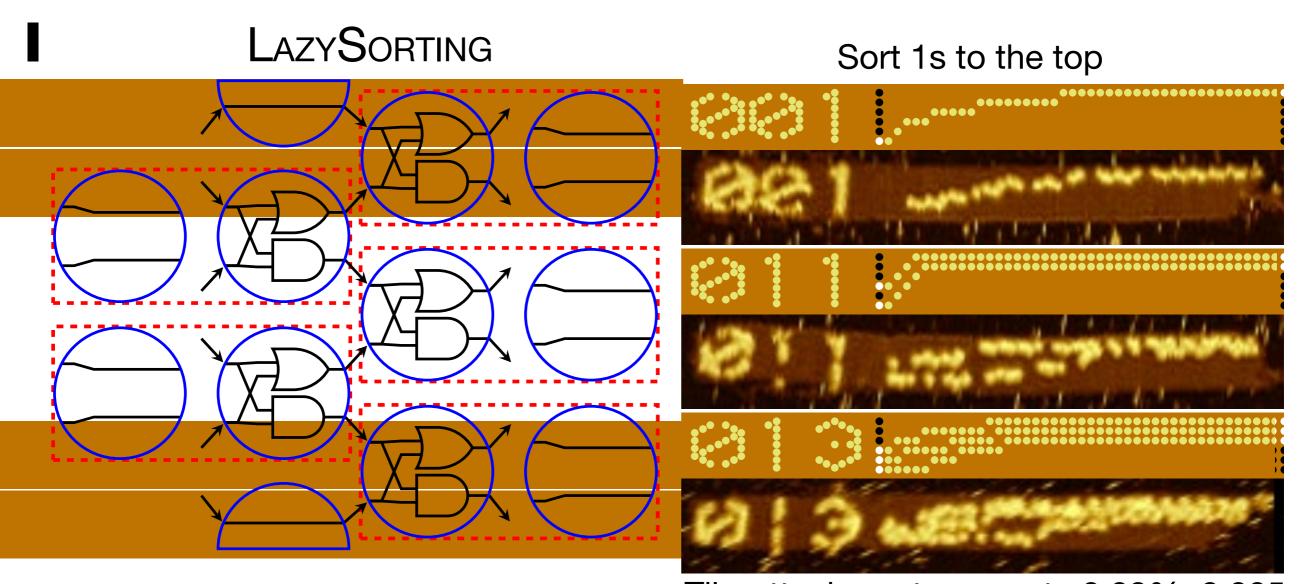
Influence of Temperature



Rule 110: Turing complete!

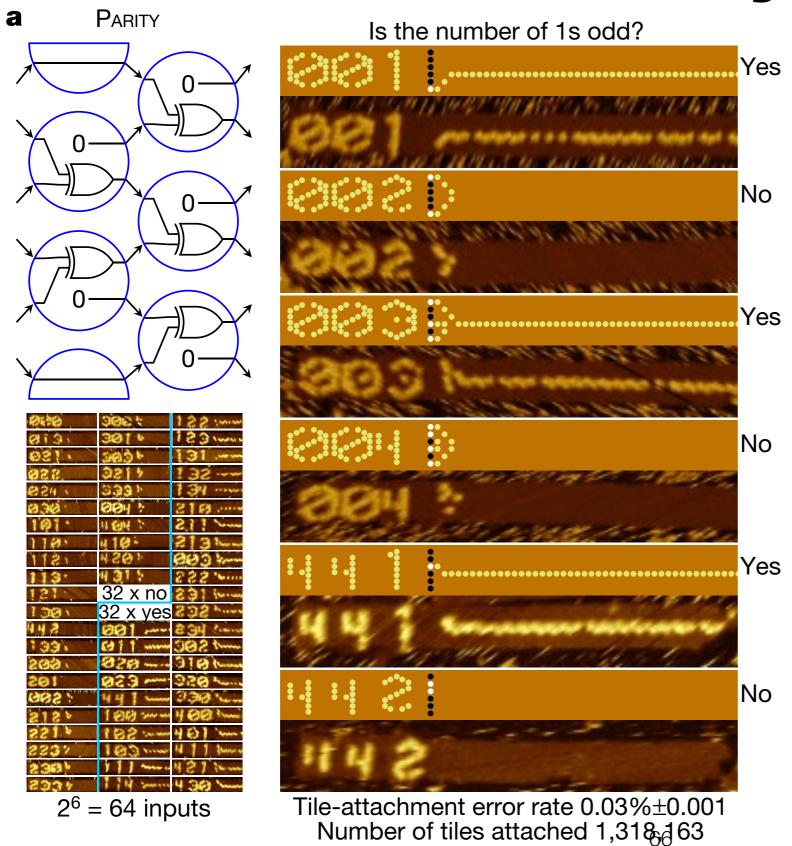


Lazy sorting



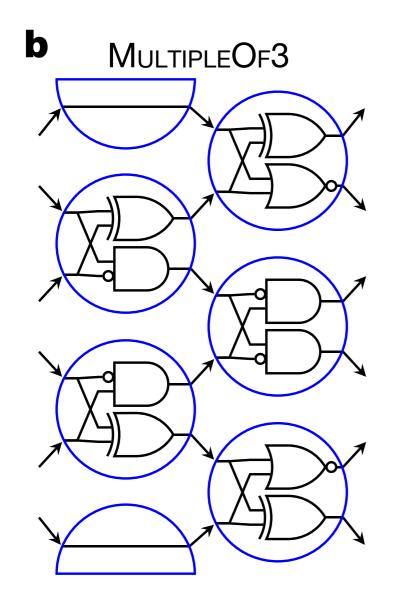
Tile-attachment error rate 0.03%±0.005

Parity

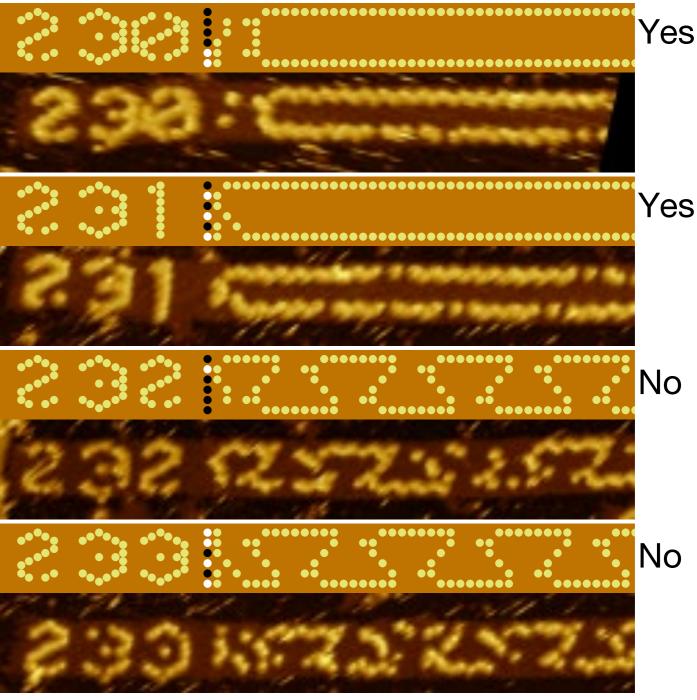


 $2^6 = 64$ inputs

Wultiple of 3?

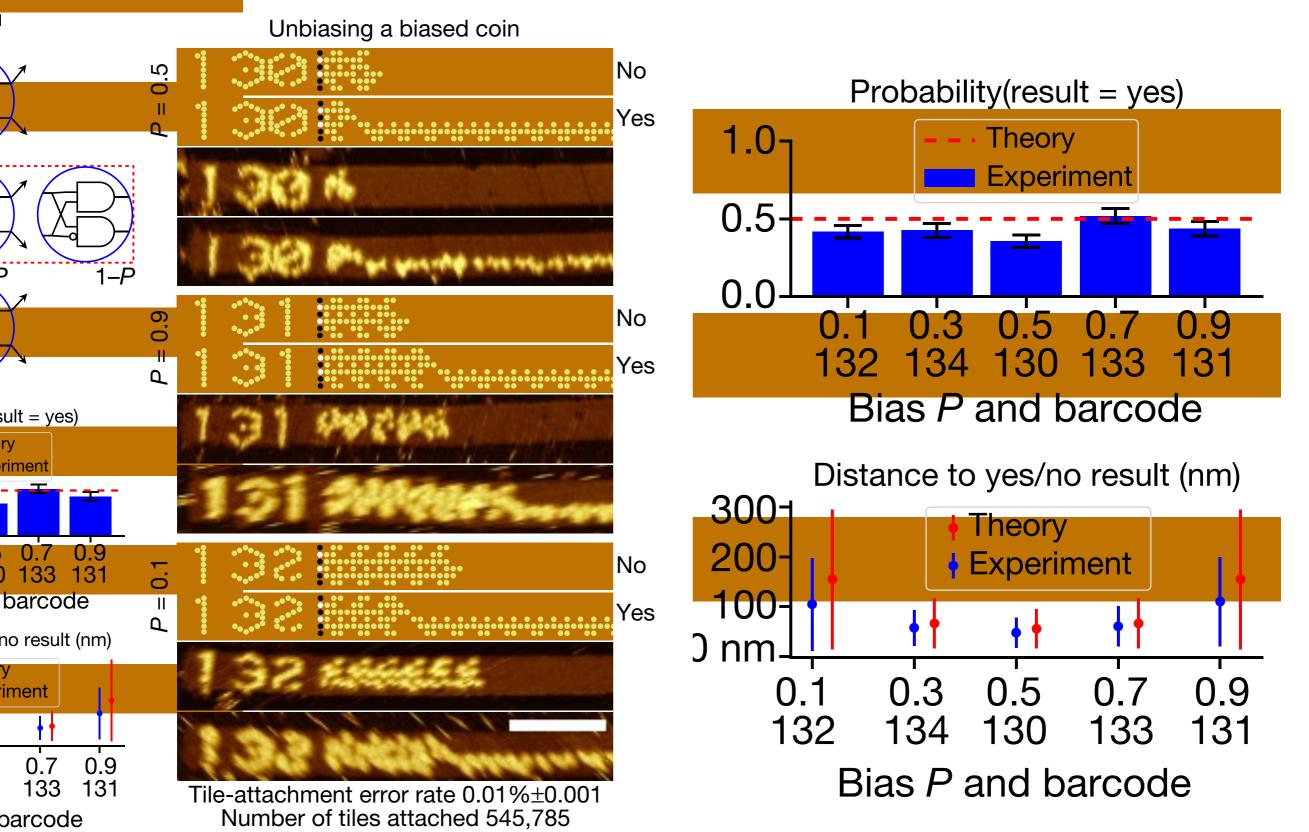


Is the input binary number a multiple of 3?



Tile-attachment error rate 0.03%±0.002 Number of tiles attached 354,355

Unbiasing a biaised coin



Conclusion

- A 6-bits universal "efficient" DNA computer based on CA rule 110
- 3-5 years of hard work
- Beautiful results
- OPEN: interface computation for other circuits? reduce errors? have the circuits react to something?