

Theory & Practice of DNA strand displacement circuits

October 8, 2018 @ DNA 24

Chris Thachuk Winfree Lab, California Institute of Technology

Molecular Programming Coat of Arms

Today's tutorial in a nutshell

Molecular Circuits Built upon DNA strand displacement cascades

Input	Computation	Output
5'-ACCACGATCACATTAC-3'		5'-GAGCTACATCAC-3'
5'-GCAACATACAT-3'	DNA strand displacement cascades	
5'-CCCATACATCACCAG-3'		5'-TAAATCATGATCAG-3'
5'-TACCACATGAGCAGCA-3'		

Molecular Circuits Built upon DNA strand displacement cascades

Input	Computation	Output
5'-ACCACGATCACATTAC-3'		5'-GAGCTACATCAC-3'
5'-GCAACATACAT-3'	DNA strand displacement cascades	
5'-CCCATACATCACCAG-3'		5'-TAAATCATGATCAG-3'
5'-TACCACATGAGCAGCA-3'		

Molecular Circuits Built upon DNA strand displacement cascades

Tutorial Outline

- Review of strand displacement
- Building and composing logic gates
- Tools for designing and verifying circuits
- Robustness of strand displacement

Review of DNA Strand Displacement (DSD)

B. Yurke, A. J. Turberfield, A. P. Mills Jr., F. C. Simmel, J. L. Neumann, Nature 406, 605 (2000). A. J. Turberfield et al., Phys. Rev. Lett. 90, 118102

Review of DNA Strand Displacement (DSD)

B. Yurke, A. J. Turberfield, A. P. Mills Jr., F. C. Simmel, J. L. Neumann, Nature 406, 605 (2000). A. J. Turberfield et al., Phys. Rev. Lett. 90, 118102

Strand Displacement Cascades =

Three Rules

Rule 1: Bind

Example

1

Rule 1: Bind

Example

single-stranded complementary domains

Rule 1: Bind

Rule 1: Bind

Two single-stranded complementary domains can bind

Rule 2: *Release*

Rule 2: *Release*

Rule 2: Release

Rule 2: Release

Example

<u>1</u>

Rule 2: *Release*

Any strand bound by only a short domain can release

Rule 3: Displace

Rule 3: **Displace**

Rule 3: **Displace**

Rule 3: Displace

Rule 3: **Displace**

A domain can **displace** an identical domain of another strand, if neighboring domains are already bound

Why do we use toeholds?

Why do we use toeholds?

Toehold-mediated DNA strand displacement

T: toehold domain (typically 3-7 nucleotides)

S: branch migration domain (typically 15-20 nucleotides)

$$A + B \xrightarrow{k} C + D$$

The rate of strand displacement grows exponentially with toehold length for short toeholds.

Toehold-mediated DNA strand displacement

T: toehold domain (typically 3-7 nucleotides)

S: branch migration domain (typically 15-20 nucleotides)

The rate of strand displacement grows exponentially with toehold length for short toeholds.

Zhang and Seelig, Nature Chemistry 2011

Kinetics of toehold-mediated strand displacement

Kinetics of toehold-mediated strand displacement

Kinetics of toehold-mediated strand displacement

Kinetics of toehold-mediated strand displacement

Kinetics of toehold-mediated strand displacement

simplify:
$$A + B \xrightarrow{k_{eff}} C + D$$

$$k_{eff} = ?$$

$$\frac{1/s}{1/s + 10^{6-L}/s}$$

net rate of success:
$$10^6 \cdot \frac{1}{1 + 10^{6-L}} [A][B]$$

simplify: $A + B \xrightarrow{k_{eff}} C + D$ $k_{eff} = ?$ $k_{eff} \approx 10^L/\text{M/s} \text{ when } L \leq 6$ otherwise $k_{eff} \approx 10^6/\text{M/s}$ collision success probability: $\frac{1/\text{s}}{1/\text{s} + 10^{6-L}/\text{s}}$

Zhang et al, JACS 2009 Srinivas et al, NAR 2013

This approximation is valid for low concentrations of A and B (e.g. [A]=[B]=100nM) such that the unimolecular reaction is sufficiently faster than the bimolecular reaction.

Kinetics of toehold-mediated strand displacement

$$A + B \longleftrightarrow AB \longrightarrow C + D$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

simplify:
$$A + B \xrightarrow{k_{eff}} C + D$$
 $k_{eff} = ?$ collision rate: $10^6 [A][B]$

$$k_{eff} = ?$$

collision rate: $10^6[A][B]$

collision success probability: $\frac{1/s}{1/s + 10^{6-L}/s}$

$$\frac{1/\mathsf{s}}{1/\mathsf{s} + 10^{6-L}/\mathsf{s}}$$

net rate of success:
$$10^6 \cdot \frac{1}{1 + 10^{6-L}}[A][B]$$

 $k_{eff} \approx 10^L/\text{M/s}$ when $L \leq 6$ otherwise $k_{eff} \approx 10^6/\text{M/s}$ L: toehold length |T1|

> Zhang et al, JACS 2009 Srinivas et al, NAR 2013

This approximation is valid for low concentrations of A and B (e.g. [A]=[B]=100nM) such that the unimolecular reaction is sufficiently faster than the bimolecular reaction.

molecular logic circuits

• Large autonomous biochemical networks built from scratch

Qian, Winfree, Science 2011

molecular logic circuits

 Large autonomous biochemical networks built from scratch

Qian, Winfree, Science 2011

molecular artificial neural networks

• Biochemical system doing inference

Qian, Winfree, Bruck Nature 2011

molecular logic circuits

• Large autonomous biochemical networks built from scratch

Qian, Winfree, Science 2011

molecular artificial neural networks

• Biochemical system doing inference

Qian, Winfree, Bruck Nature 2011

controlling assembly of nanoscale structures

I0nM

• Prescribed nanoscale structures seen under atomic force microscope

Yin, Choi, Calvert, Yurke, Pierce Nature 2008

molecular logic circuits

 Large autonomous biochemical networks built from scratch

Qian, Winfree, Science 2011

strand displacement cascades

controlling assembly of nanoscale structures

 Prescribed nanoscale structures seen under atomic force microscope molecular artificial neural networks

• Biochemical system doing inference

Qian, Winfree, Bruck Nature 2011

strand displacement in vivo

Logic on biological signals

Hemphill, Deiters J Am Chem Soc 2013

molecular artificial neural networks

• Biochemical system doing inference

Qian, Winfree, Bruck Nature 2011

strand displacement in vivo

Hemphill, Deiters J Am Chem Soc 2013

• Logic on biological signals

controlling assembly of nanoscale structures

• Prescribed nanoscale structures seen under atomic force microscope

Yin, Choi, Calvert, Yurke, Pierce Nature 2008

Tutorial Outline

- Review of strand displacement
- Building and composing logic gates
- Tools for designing and verifying circuits
- Robustness of strand displacement

AND gate

AND gate

AND gate

Composing AND gates

Composing AND gates

We need a "wire"

Translator (a "wire"): X→Y

input X

output Y

Translator (a "wire"): X→Y

Translator (a "wire"): X→Y

bind bind

Translator (a "wire"): X→Y

Translator (a "wire"): X→Y

Reading Output

Reading Output

A reaction gate

$$A_1 + B_1 \rightarrow X_1 + Y_1$$

This *universal component* can realize a number of logic gates

A reaction gate

$$A_1 + B_1 \rightarrow X_1 + Y_1$$

This *universal component* can realize a number of logic gates

To implement this:

We start with large excess of DNA complexes (fuels) that mediate the reaction:

AND gate

Signal Fanout Gates

5'-ACAGATCACCAGATCATTATCAGAG-3' strand representing signal S

Signal Fanout Gates

5'-ACAGATCACCAGATCATTATCAGAG-3' strand representing signal S

AND(A1, OR(B1, AND(A2, B2))

Dual rail logic

With reaction gates, wires, and dual-rail encoding, we can build any combinatorial circuit

Tutorial Outline

- Review of strand displacement
- Building and composing logic gates
- Tools for designing and verifying circuits
- Robustness of strand displacement

Inputs			Outputs	
A	В	<i>C</i> in	C out	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

☑ Find minimized AND-OR-NOT circuit using ABC

Brayton, R., & Mishchenko, A. (2010, July). **ABC**: An academic industrial-strength verification tool. In *International Conference on Computer Aided Verification* (pp. 24-40). Springer, Berlin, Heidelberg.

Brayton, R., & Mishchenko, A. (2010, July). **ABC**: An academic industrial-strength verification tool. In *International Conference on Computer Aided Verification* (pp. 24-40). Springer, Berlin, Heidelberg.

How do you design the circuit?

How do you design the circuit?

- Find minimized AND-OR-NOT circuit using ABC
- ☑ Push negations to literal level (dual-rail inputs)

How do you design the circuit?

- Find minimized AND-OR-NOT circuit using ABC
- ✓ Push negations to literal level (dual-rail inputs)

Circuit now using dual-rail input

Brayton, R., & Mishchenko, A. (2010, July). ABC: An academic industrial-strength verification tool. In *International Conference on Computer Aided Verification* (pp. 24-40). Springer, Berlin, Heidelberg.

From circuit to DSD system

DSD: formal language for describing and modeling strand displacement cascades

http://lepton.research.microsoft.com/webdna/

From circuit to DSD system

DSD: formal language for describing and modeling strand displacement cascades

http://lepton.research.microsoft.com/webdna/

From circuit to DSD system

Soloveichik et al. (2010)

Lakin et al. (2012)

Cardelli (2011)

Qian et al. (2011)

Chen et al. (2012), Cardelli (2013), Srinivas (2015), Lakin et al. (2016), ...

Images drawn using VisualDSD, Lakin et al. (2012)

The Nuskell compiler framework

Badelt et al. (2017) - Nuskell Grun et al. (2014) - Peppercorn Shin et al. (2017) - CRN pathway decomposition equivalence Johnson et al. (2018) - CRN bisimulation equivalence Berleant et al. (submitted) - KinDA

The Nuskell compiler framework

Badelt et al. (2017) - Nuskell Grun et al. (2014) - Peppercorn Shin et al. (2017) - CRN pathway decomposition equivalence Johnson et al. (2018) - CRN bisimulation equivalence Berleant et al. (submitted) - KinDA

Reaction Enumeration

formal input CRN

enumerated CRN 360 species 668 reactions

```
3 species
7 reactions
A -> A + A
A + A -> A
A + B -> B + B
B ->
A + C ->
C -> C + C
C + C -> C
```

formal input CRN

```
3 species
7 reactions
A -> A + A
A + A -> A
A + B -> B + B
B ->
A + C ->
C -> C + C
C + C -> C
```

enumerated CRN 360 species 668 reactions

formal input CRN

```
3 species
7 reactions
A -> A + A
A + A -> A
A + B -> B + B
B ->
C -> C + C
C + C -> C
```

Are these networks equivalent?

condensed CRN enumerated CRN 42 species 360 species 32 reactions 668 reactions f14 + C -> e1428 + f15e853 + f12 -> C + f13 A + f4 -> f3 + e71f2 + e25 -> A + f1A + e25 -> f2 + e7e996 + f3 -> A + f10e1428 + f15 -> f14 + Cf3 + e71 -> A + f4e465 + B -> e418 + f6e614 + f9 -> e611 + e730 e996 + C -> e1040 + f12e465 + f5 -> e514 + e368 e308 + f7 -> f8 + Be418 + B -> e371 + f6C + f13 -> e853 + f12A + f1 -> f2 + e25B + e71 -> e319 + f7f2 + e7 -> A + e25e1040 + f11 -> e1162 + e1163 + e1158 e319 + f7 -> B + e71e308 + f9 -> e614 + e615 + e611 e371 + f6 -> e418 + Be1040 + f12 -> e996 + Cf8 + B -> e308 + f7e319 + f5 -> e372 + e371 + e368 f3 + e7 -> A + f0e853 + f15 -> e1428 + C e1428 + C -> e853 + f15 A + f10 -> e996 + f3e1163 + f11 -> e1158 + e1246 e418 + f6 -> e465 + BA + f0 -> f3 + e7

translation scheme: qian2011_3D_var1.ts

formal input CRN

3 species 7 reactions -> A + A

 $A + A \rightarrow A$ $A + B \rightarrow B + B$ ->

 $A + C \rightarrow$ -> C + C $C + C \rightarrow C$

interpreted CRN

3 species 7 non-trivial reactions

-> C

 $C + C \rightarrow C$ -> A -> A $A + A \rightarrow A + A$ A -> A C -> C A -> A -> B -> $A + C \rightarrow A + C$ -> -> B

 $B + B \rightarrow B + B$ -> C + C

-> A B + A -> A + B $A + A \rightarrow A + A$

 $A + C \rightarrow$

 $A + B \rightarrow B + A$ ->

 $B + B \rightarrow B + B$ $A + C \rightarrow A + C$

-> B $A + B \rightarrow B + B$

 $C + C \rightarrow C + C$

 $C + C \rightarrow C + C$ -> A

->

 $A + A \rightarrow A$

-> B

-> A + A

condensed CRN

enumerated CRN

42 species 360 species 668 reactions

32 reactions f14 + C -> e1428 + f15e853 + f12 -> C + f13 A + f4 -> f3 + e71f2 + e25 -> A + f1A + e25 -> f2 + e7e996 + f3 -> A + f10e1428 + f15 -> f14 + Cf3 + e71 -> A + f4e465 + B -> e418 + f6e614 + f9 -> e611 + e730 e996 + C -> e1040 + f12e465 + f5 -> e514 + e368e308 + f7 -> f8 + Be418 + B -> e371 + f6C + f13 -> e853 + f12A + f1 -> f2 + e25B + e71 -> e319 + f7f2 + e7 -> A + e25e1040 + f11 -> e1162 + e1163 + e1158 e319 + f7 -> B + e71e308 + f9 -> e614 + e615 + e611 e371 + f6 -> e418 + Be1040 + f12 -> e996 + Cf8 + B -> e308 + f7 $e319 + f5 \rightarrow e372 + e371 + e368$ f3 + e7 -> A + f0e853 + f15 -> e1428 + Ce1428 + C -> e853 + f15 A + f10 -> e996 + f3e1163 + f11 -> e1158 + e1246 e418 + f6 -> e465 + BA + f0 -> f3 + e7

Johnson et al. (2016) - CRN bisimulation equivalence translation scheme: qian2011_3D_var1.ts

formal input CRN

3 species 7 reactions -> A + A $A + A \rightarrow A$ $A + B \rightarrow B + B$ -> $A + C \rightarrow$ -> C + C

 $C + C \rightarrow C$

interpreted CRN 3 species

7 non-trivial reactions

```
-> C
C + C \rightarrow C
        -> A
         -> A
A + A \rightarrow A + A
        -> A
        -> C
        -> A
        -> B
         ->
A + C \rightarrow A + C
         ->
         -> B
B + B \rightarrow B + B
         -> C + C
         -> A
B + A -> A + B
A + A \rightarrow A + A
A + C \rightarrow
A + B \rightarrow B + A
         ->
   + B -> B + B
A + C \rightarrow A + C
         -> B
A + B \rightarrow B + B
C + C \rightarrow C + C
C + C \rightarrow C + C
         -> A
         ->
        -> B
```

-> A + A

condensed CRN

enumerated CRN

42 species 360 species 668 reactions

```
32 reactions
f14 + C -> e1428 + f15
e853 + f12 -> C + f13
A + f4 -> f3 + e71
f2 + e25 -> A + f1
A + e25 -> f2 + e7
e996 + f3 -> A + f10
e1428 + f15 -> f14 + C
f3 + e71 -> A + f4
e465 + B -> e418 + f6
e614 + f9 -> e611 + e730
e996 + C -> e1040 + f12
e465 + f5 -> e514 + e368
e308 + f7 -> f8 + B
e418 + B -> e371 + f6
C + f13 -> e853 + f12
A + f1 -> f2 + e25
B + e71 -> e319 + f7
f2 + e7 -> A + e25
e1040 + f11 -> e1162 + e1163 + e1158
e319 + f7 -> B + e71
e308 + f9 \rightarrow e614 + e615 + e611
e371 + f6 -> e418 + B
e1040 + f12 -> e996 + C
f8 + B -> e308 + f7
e319 + f5 \rightarrow e372 + e371 + e368
f3 + e7 -> A + f0
e853 + f15 -> e1428 + C
e1428 + C -> e853 + f15
A + f10 -> e996 + f3
e1163 + f11 -> e1158 + e1246
e418 + f6 -> e465 + B
A + f0 -> f3 + e7
```

Johnson et al. (2016) - CRN bisimulation equivalence translation scheme: qian2011_3D_var1.ts

formal input CRN

3 species 7 reactions -> A + A $A + A \rightarrow A$ $A + B \rightarrow B + B$ -> $A + C \rightarrow$ -> C + C

 $C + C \rightarrow C$

interpreted CRN 3 species

7 non-trivial reactions

```
-> C
C + C \rightarrow C
        -> A
         -> A
A + A \rightarrow A + A
        -> A
        -> C
        -> A
        -> B
         ->
A + C \rightarrow A + C
         ->
         -> B
B + B \rightarrow B + B
         -> C + C
         -> A
B + A -> A + B
A + A \rightarrow A + A
A + C \rightarrow
A + B \rightarrow B + A
         ->
   + B -> B + B
A + C \rightarrow A + C
         -> B
A + B \rightarrow B + B
C + C \rightarrow C + C
C + C \rightarrow C + C
         -> A
         ->
        -> B
```

-> A + A

condensed CRN

enumerated CRN

42 species 360 species 668 reactions

```
32 reactions
f14 + C -> e1428 + f15
e853 + f12 -> C + f13
A + f4 -> f3 + e71
f2 + e25 -> A + f1
A + e25 -> f2 + e7
e996 + f3 -> A + f10
e1428 + f15 -> f14 + C
f3 + e71 -> A + f4
e465 + B -> e418 + f6
e614 + f9 -> e611 + e730
e996 + C -> e1040 + f12
e465 + f5 -> e514 + e368
e308 + f7 -> f8 + B
e418 + B -> e371 + f6
C + f13 -> e853 + f12
A + f1 -> f2 + e25
B + e71 -> e319 + f7
f2 + e7 -> A + e25
e1040 + f11 -> e1162 + e1163 + e1158
e319 + f7 -> B + e71
e308 + f9 -> e614 + e615 + e611
e371 + f6 -> e418 + B
e1040 + f12 -> e996 + C
f8 + B -> e308 + f7
e319 + f5 \rightarrow e372 + e371 + e368
f3 + e7 -> A + f0
e853 + f15 -> e1428 + C
e1428 + C -> e853 + f15
A + f10 -> e996 + f3
e1163 + f11 -> e1158 + e1246
e418 + f6 -> e465 + B
A + f0 -> f3 + e7
```

Johnson et al. (2016) - CRN bisimulation equivalence translation scheme: qian2011_3D_var1.ts

Designing Sequences

Designing Sequences

Analysis Design Utilities Downloads

NUPACK is a growing software suite for the analysis and design of nucleic acid structures, devices, and systems.

The NUPACK web application enables analysis and design of the equilibrium base-pairing properties of one or more test tubes of interacting nucleic acid strands:

Please cite the web application and algorithms appropriately; usage statistics are an important component in helping to secure funding for NUPACK development. We are happy to provide advice and technical support.

— The NUPACK Team

News: Constrained multistate test tube design for reaction pathway engineering is now published! (pdf, supp info, source code, user guide)

Designing Sequences

Mulitstrand.org to determine reaction rates

Key Features

- Kinetic simulations of nucleic acids as random walk on thermodynamic energy model
- Supports multiple interacting strands
- Equilibrium consistent with <u>NUPACK</u>
- Various usage modes to study kinetic trajectories
- Distributed as a Python package
- MIT License

Tutorial Outline

- Review of strand displacement
- Building and composing logic gates
- Tools for designing and verifying circuits
- Robustness of strand displacement

Why is this circuit not robust?

What causes signal leak?

Imperfect strands from imperfect synthesis

Imperfect strands from imperfect synthesis

0	1	2	3
0	1	2	3
0	1	2	3
0	1	2	3
0	1	2	3 X
_	1	2	3
0	1	2	3
0	1	2	

translator cascade with perfect molecules

translator cascade with perfect molecules

F2

translator cascade with imperfect molecules

F2

translator cascade with perfect molecules

translator cascade with imperfect molecules

(Partial) solution to Problem 1

(Partial) solution to Problem 1

(Partial) solution to Problem 1

Problem 2: Spurious reactions occur

(even with perfect molecules)

$$X \rightarrow Y$$

Some rough energy accounting

Some rough energy accounting

A Motivating Question

Can we rationally design composable, leakless DSD gates?

A Motivating Question

Can we rationally design composable, leakless DSD gates?

A Motivating Question

Can we rationally design composable, leakless DSD gates?

What do we mean by leakless?

"Golf funnel with deep groove" pathway

K. Dill & Bromberg (2002). Molecular Driving Forces.

(Partial) solution to Problem 2

For a redundancy parameter **N**, there exist translator and AND gates using **N** long domains that have the following property:

even at thermodynamic equilibrium,

the net leak decreases exponentially with N.

Thachuk, Winfree, David Soloveichik. (2015) Leakless DNA strand displacement. DNA 21.

Typical translator using "Single Long Domain" (SLD)

- Designed pathways: bimolecular
- Leak pathways: bimolecular

DLD translator using "Double Long Domain" (DLD)

- Designed pathways: bimolecular
- Leak pathways: trimolecular

Typical translator using "Single Long Domain" (SLD)

- Designed pathways: bimolecular
- Leak pathways: bimolecular

DLD translator using "Double Long Domain" (DLD)

- Designed pathways: bimolecular
- Leak pathways: trimolecular

Typical translator using "Single Long Domain" (SLD)

- Designed pathways: bimolecular
- Leak pathways: bimolecular

Lengthening recognition domains does not help

DLD translator using "Double Long Domain" (DLD)

- Designed pathways: bimolecular
- Leak pathways: trimolecular

DLD translators are intrinsically less "leaky"

DLD translators are intrinsically less "leaky"

DLD translators are intrinsically less "leaky"

R	Y _{1bc}	Y ₂	J
``	Y1*	Y2*	0

Can we generalize the DLD motif?

Translator using Triple Long Domain (TLD) motif

Three fuel complexes must combine to activate output signal.

△Energy

0 bound long domains
-2 units of entropy

Translator using N Long Domain (NLD) motif

N fuel complexes must combine to activate output signal.

△Energy to leak state

0 bound long domains

-(N-1) units of entropy

Building OR circuits from DLD translators

[fuel]=[input]=1000nM [reporter]=500nM

Building OR circuits from DLD translators

Boya Wang, Thachuk, Ellington, Winfree, **David Soloveichik**. (In Review) Effective Design Principles for Leakless Strand Displacement Systems

Tutorial Outline

- Review of strand displacement
- Building and composing logic gates
- Tools for designing and verifying circuits
- Robustness of strand displacement
- (Bonus) DSD circuits the easy way

Does it need to be this difficult to build a circuit?

input signals		
A1	B1	
A2	B2	
A 3	B3	
A4	B4	
A7	В7	

reporters

Built using leakless moti

input signals

A1 B1 **A2 B2**

B3

A4 B4

A3

A7 B7

reaction gates

Load breadboard components onto 384-well plate

wires

Y3.....A2 X1.....R1 Y1.....R2 Y3----B2 X2----B1 X4----B1

X2------B2

Y4.....A2 Y2----R1

X3------B1 Y4------R2

X3-----A1 X3-----R2

reporters

Built using leakless motif

Breadboard plate

input signals reaction gates **A1 B**1 **A2 B2 A3 B**3 **A4 B4 A7 B7**

Load breadboard components onto 384-well plate

wires Y3.....A2 X1.....R1 Y1.....R2 Y3.....B2 X2----B1 X4----B1 X2------B2 Y4.....A2 Y2----R1 X3------B1 Y4------R2 X3-----A1

reporters

Built using leakless motif

Breadboard plate

circuit 1

X3-----R2

input signals

A1 B1

A2 B2

A3 B3

A4 B4

A7 B7

reaction gates

wires

Y3.....A2 X1.....R1

Y1.....R2 Y3----B2

X2----B1 X4----B1

X2------B2

Y4.....A2 Y2----R1

X3------B1 Y4------R2

X3-----A1

X3-----R2

reporters

Built using leakless motif

Load breadboard components onto 384-well plate

Breadboard plate

circuit 2

circuit 1

Testing breadboard components

▶ Typical DSD circuits are 50nM - 200nM concentration

(our circuits can operate at these concentrations)

▶To demonstrate *robustness*, all experiments will be at 2uM

(~20x higher than typical concentrations)

AND gate

AND gate @ 2 µM

[fuel]=[input]=2uM, [reporter]=1uM

AND gate @ 2 µM

[fuel]=[input]=2uM, [reporter]=1uM

AND gate @ 2 µM (12 hours)

[fuel]=[input]=2uM, [reporter]=2.5uM

AND gate @ 2 µM (12 hours)

[fuel]=[input]=2uM, [reporter]=2.5uM

Multiplexer-Demultiplexer

Multiplexer-Demultiplexer

Multiplexer-Demultiplexer

Multiplexer-Demultiplexer

Multiplexer-Demultiplexer

Multiplexer-Demultiplexer

Qian & Winfree 2011 A $y_2y_1 = [\sqrt{x_4x_3x_2x_1}]$ x_2 x_3 x_4 C All 16 inputs $y_1 - y_1 - y_2 - y_2$ y_2 y_3 y_4 y_5 y_6 y_1 y_2 y_2 y_3 y_4 y_5 y_6 y

Large circuits that are fast

Reaction half-time improved from ~6 hours to < 6 minutes

Y2

First measurement 6 minutes after mixing start time

Molecular Circuit Breadboard

Roadmap

Molecular Breadboard 2.0:

More components

Molecular Breadboard 2.0:

More circuits

Breadboard 2.0 can realize > 130 K circuits

Molecular Breadboard 2.0:

Larger circuits

Building circuits with feedback loops

Chemical Reaction Networks

Asynchronous Sequential Logic Circuits

Finite state machines

Providing input amplifiers & output signal restoration

Linear input amplifier

Exponential input amplifier

Output signal restoration

http://DSDbreadboard.org

Increased speed

Robustness to error

Automation

Related talks & posters @ DNA 24

Dominic Scalise, Nisita Dutta and Rebecca Schulman DNA strand-displacement buffers

Si-Ping Han, Lisa Scherer, Matt Gethers, Marwa Ben Hadj Salah, Rebecca Mancusi, Sahil Sagar, Robin Hu, Julia Derogatis, Ya-Huei Kuo, Guido Marcucci, John Rossi and William A. Goddard Iii

Development and optimization of strand displacement based conditional small interfering RNAs for operation inside mammalian cells

Eyal Nir, Yaron Berger and Miran Liber

Computer Controlled DNA Bipedal Walker that Perform Several Steps a Minute

Abhinav Singh and Manoj Gopalkrishnan

EM Algorithm with DNA Molecules

Wooli Bae, Thomas Ouldridge and Guy-Bart Stan

Autonomous generation of multi-stranded RNA complexes for synthetic molecular circuits

Yan Shan Ang and Lin-Yue Lanry Yung

Design of Split Proximity Circuit as a Plug-and-Play Translator for Discriminating Single Nucleotide Mutation

Yan Shan Ang and Lin-Yue Lanry Yung

Dynamically Elongated Association Toehold for Tuning Circuit Kinetics and Thermodynamics

Patrick Irmisch and Ralf Seidel

Modelling DNA-strand displacement reactions in the presence of base-pair mismatches

Boya Wang and David Soloveichik

Experimentally characterizing the design space of strand displacement translators with toehold-size clamps

Allison Tai and Anne Condon

Error-free stable computation with stack-supplemented chemical reaction networks

Kevin Cherry, Gokul Gowri and Lulu Qian

DNA-based neural networks that learn from their molecular environment

Robert F. Johnson and Erik Winfree

Using Bisimulation for Verification of Polymer Reaction Networks

Acknowledgments

- Winfree lab (Caltech)
- Soloveichik lab (University of Texas at Austin)
- Qian lab (Caltech)
- Murray lab (Caltech)
- Thanks to DNA 24 organizers for the invitation

Tools discussed in tutorial

ABC: logic synthesis and verification

https://people.eecs.berkeley.edu/~alanmi/abc

VisualDSD

https://lepton.research.microsoft.com/webdna

Nuskell compiler framework

https://github.com/DNA-and-Natural-Algorithms-Group

DSD breadboard

http://dsdbreadboard.org (online later this year)

