

Molecular Programming

10.02.2022 - Due on Thu. 24/02 before 08:45

You are asked to complete the exercise marked with a $[\star]$ and to send me your solutions to: nicolas.schabanel@ens-lyon.fr

as a PDF file named HW3-Lastname.pdf on Thu. 24/02 before 08:45.

[★] Exercise 1 (Oritatami — Impossible triangle path). We want to prove that no deterministic oritatami system with delay $\delta\leqslant 2$ can fold according to the infinite triangular spiral below. Recall that the transcript t of an oritatami system (t is the sequence of bead types) is ultimately periodic, i.e. there is an i_0 and a period T such that for all $i \geqslant 0$, $t_{i_0+i} = t_{i_0+T+i}$.

▶ **Question 1.1)** Prove than no deterministic delay-1 oritatami system can fold according to this spiral.

Let us consider now a deterministic delay-2 oritatami system that would fold according to the infinite triangular spiral.

- ▶ Question 1.2) Prove that 2 bonds are required to place the bead correctly at each corner.
- \blacktriangleright **Question 1.3)** Show that there are 4 consecutive bead types a,b,c,d in the transcript that get placed as follows:

- \blacktriangleright **Question 1.4)** Show that in order to stabilize c in the lower left corner, c must bind with a.
- \blacktriangleright **Question 1.5)** Conclude that c cannot be placed deterministically at the top corner.
- ightharpoonup Question 1.6 (ightharpoonup What about deterministic oritatami systems with larger delays?

