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Abstract. The data broadcast problem consists in finding an infinite schedule to broadcast a given

set of messages so as to minimize the average response time to clients requesting messages, and

the cost of the broadcast. This problem also models the maintenance scheduling problem and the

multi-item replenishment problem.

Previous work concentrated on a discrete-time restriction where all messages have transmission

time equal to 1. Here, we study a generalization of the model to the more realistic setting of

continuous time and messages of non-uniform transmission times. The structural properties of

the optimal solutions appear to be very different from the uniform case. We prove that the data

broadcast problem is NP -hard, even if the broadcast costs are all zero, and give a randomized

3-approximation algorithm for broadcasting messages on a single channel.

1 Introduction

1.1 Motivation

This paper studies an optimization problem which
arises in three contexts: Data broadcasting, Schedul-
ing maintenance service, and Multi-item replenish-
ment.

Broadcasting is an efficient means of disseminat-
ing data in wireless communication environments,
where there is a much larger communication capac-
ity from the information source to the recipients than
in the reverse direction, such as happens when mo-
bile clients retrieve information from a server bases-
tation through a wireless medium. In broadcasting
protocols, items are scheduled over the infinite time-
horizon. The requests do not propagate in the sys-
tem, but wait for the requested items to be broad-
cast, thus making the system pseudointeractive : the
schedule is independent of the incoming requests,
since it is oblivious to them. An efficient broadcast
scheme seeks to minimize the average response time,
(i.e. the amount of time spent by a mobile client to
obtain a desired piece of information in the broad-
cast), while also minimizing the resulting broadcast
cost (e.g. in the context of data transfers on the
World Wide Web, each message has a broadcast cost,
the required bandwidth, which is proportional to its

length). While most previous work made the simpli-
fying assumption that all items had the same trans-
mission time, our main focus in this paper is to deal
rigorously with non-uniform transmission times.

The maintenance service problem schedules m ma-
chines for maintenance over an infinite time horizon
and seeks to minimize both the costs associated with
each maintenance and the operation costs of the ma-
chines, where the operation costs of the machines are
assumed to increase with the time elapsed since the
last maintenance. Here again it seems reasonable to
consider the case where sophisticated machines have
longer maintenance time than others.

The multi-item replenishment problem consists in,
given m items types, deciding over time which item
stock needs to be replenished given holding costs, or-
dering costs, and the rate at which each item is con-
sumed.

All three problems can be modelled similarly.

1.2 Problem definition

In this paper we will adopt the Data-broadcast ter-
minology. Given C broadcast channels, the input
consists of m messages Mi, i = 1..m, defined by
their lengths �i (the time required to broadcast Mi),
their request probabilities or popularities pi, and their



broadcast cost ci. The problem is to decide in what
sequence S to schedule the broadcast messages over
the infinite time-horizon, so as to minimize the sum
of the average response time to Poisson requests and
of the average broadcast cost, i.e. so as to mini-
mize lim supT→∞ ART(S, [0, T ])+BC(S, [0, T ]); here
ART(S, [0, T ]) denotes the average response time to
a request which is generated at a random uniform
instant between 0 and T , requests message Mi with
probability pi, and must then wait until the start of
the next broadcast of Mi; and BC(S, [0, T ]) is the
average broadcast cost of the messages whose broad-
cast starts between the dates 0 and T . As remarked
above, the broadcast scheme is pseudointeractive: the
actual requests do not propagate beyond the client,
and the schedule is oblivious to the actual sequence
of requests. Note that when this definition is spe-
cialized to the uniform-lengths setting, our definition
agrees with the litterature on data broadcasting (see
Lemma 1). In this paper, we mostly treat the single
channel case (C = 1).

In the Maintenance Scheduling problem, given C
independent operators, the input consists of m ma-
chines Mi, i = 1..m, defined by the length of their
maintenance �i, their operation cost rate pi, and their
maintenance cost ci. The instantaneous operation
cost of a machine is an affine function of the time
elapsed since its last maintenance, with linear rate
pi and constant b · pi (the cumulated cost since the
last maintenance thus increases quadratically). The
problem is to find an maintenance schedule over the
infinite time-horizon, so as to minimize the total costs
incurred, i.e. the sum of the operation costs and of
the maintenance cost. This problem is, as we will see
in Lemma 1, identical to the Data Broadcast prob-
lem.

The Multi-item Replenishment problem is a special
case of the maintenance scheduling problem [4].

1.3 Background

As far as we know, almost all previous work focused
on the uniform-lengths and discrete-time model,
when all messages (or machines) have length equal
to 1.

Let us first review results on the single-channel
discrete-time and uniform-lengths Data Broadcast
problem without broadcast costs. This problem was
first studied in the context of Teletext. In [8], Gec-
sei analyzes the mean response time of memoryless
randomized algorithms and proves that any optimal
algorithm from this class should choose the next mes-
sage to broadcast with probability proportional to

the square root of its popularity. In [2], Ammar and
Wong study periodic broadcast schedules. They de-
rive an algebraic expression for the average response
time (which is essentially Lemma 1 below), and prove
a lower bound (essentially the one in Lemma 5 be-
low), from which they get inspiration to derive a
greedy-type algorithm. They provide numerical evi-
dence that their algorithm is efficient by studying it
when the message popularities follow the Zipf distri-
bution, which is claimed to closely approximate real
user behavior. In [3], they define the mean response
time of arbitrary (not necessarily periodic) sched-
ules, analyze structural properties of optimal sched-
ules and prove that there exists an optimal schedule
which is periodic. From this, they deduce a finite-
time algorithm for computing the optimal solution.
They also present an algorithm for constructing a
good schedule, which uses the golden ratio and is
based on [12] and [15, pp.510–511]. (They do not pro-
vide a performance ratio analysis). Further work [1]
attacks a model where successive requests are not
independant and prefetching may be used. Greedy
heuristics for the same problem are empirically tested
in [16, 4]. This study on the single-channel uniform-
length case, was pursued by [4], who obtained a deter-
ministic 2.5-approximation algorithm, and moreover
by [5] who obtained a deterministic 2-approximation
algorithm and proved that the golden ratio heuristic
of [3] has approximation ratio 9/8. Finally in [14],
the authors study indexed data broadcast where the
objective function to minimize is a combination of
response time and tuning time.

Even in the uniform length model, very few ar-
ticles consider the multi-channel problem. Previ-
ous work for the general uniform-length Maintenance
Scheduling problem can be found in [5]. There,
the authors prove that there is an optimal sched-
ule which is periodic. Using the operation costs ci,
they prove that the Maintenance Scheduling Prob-
lem is NP -hard (but are unable to prove the NP -
hardness of the Data Broadcast problem). They de-
sign a O(1)-approximation algorithms for the Data
Broadcast and the Maintenance Scheduling problems,
even when there is more than one channel.

[17, 18] are the only references which considers non-
uniform length messages: they report some experi-
mental results for heuristics on one or two channels.

Related work can also be found in [6, 7, 11, 10, 9,
13].
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1.4 The results

The main results of this paper concern the one-
channel case when the message lengths (transmission
times) are not all equal. This generalization is sig-
nificantly harder: in [3], the authors justify their
uniform-length assumption in those terms: “This
[uniform lengths] assumption [...] is required to ren-
der the problem under consideration tractable”. In
fact, there are some important structural differences
between our model and the uniform-length model:
for example, in our model, an optimal schedule need
no longer be periodic (see Example in Section 4.2);
furthermore as opposed to the uniform length case
studied in [5], the ratio of the costs of two optimal
schedules of the same set of messages on C and C +1
channels is no more bounded by (C + 1)/C but can
be arbitrarly large (See example page 6). In general
it is not even clear a priori whether the optimal solu-
tion exists or can be described in finite time ! Thus
we try to provide a careful definition and treatment
of this model. After proving that periodic schedules
are arbitrarily close to optimal, our results are then
obtained “by density”.

First, we prove that when there are no broadcast
costs, there exists an optimal schedule which is pe-
riodic; however, we then show that, even in that
simpler setting, the problem is NP -hard (Note that
in [5] NP -hardness is proved only when broadcast
costs are present.) One delicate point in the NP -
hardness proof is that the input parameters are real
numbers. Thus, in order to stay with the standard
Turing machine computation model, we prove NP -
hardness assuming that the parameters are rational
numbers.

Then, we present a randomized polynomial approx-
imation for the problem whose asymptotic perfor-
mance ratio is 3, and whose absolute performance
ratio is 3+ε (where ε can be made arbitrarily small).
To design that algorithm, we first observe that, as
stated by the authors of [5], the natural extension
of the lower bound of [2] to our model is no longer
tight in the non-uniform-length case, and can, in fact,
be arbitrarily bad. One important ingredient of our
algorithm here consists in designing a second lower
bound which, when suitably combined with the one
derived from [2], yields a lower bound which is tight
up to a constant factor. This is the key to finding a
constant-factor approximation.

1.5 Organization of the paper

The paper is organized as follows. Section 2 presents
the notations and facts about the cost of a schedule.

In Section 3, we prove structural properties of optimal
solutions which will be useful for the following. Sec-
tion 4 concentrates on the one-channel case which is
proved to be NP -complete even if zero broadcast cost
are assumed. It also shows that there exists a periodic
optimal solution, if zero broadcast costs are assumed,
and gives a finite-time algorithm for constructing it.
We finally give in Section 5 a 3-approximation algo-
rithm for the one-chanel case.

We are optimistic on the possibility of designing a
deterministic algorithm and are currently working on
extending our work to the multi-channel setting.

2 Definitions and Notations

The input. The messages Mi, i = 1 . . .m, are de-
fined by their lengths �i > 0, their request probabilities
pi � 0 such that p1+· · ·+pm = 1, and their broadcast
costs ci � 0.

The schedule. A schedule S of M1, . . . , Mm on
C channels is, formally, a set of ordered pairs
(sc(n), tc(n)), where 1 � c � C. For any n � 1, we
define sc(n) = i if Mi is the nth message broadcast
on channel c, and the starting date of this broadcast
is tc(n). Since channel c must finish broadcasting a
message before it can start broadcasting any other
message, we have:

(∀c) (∀n) tc(n + 1) � tc(n) + �sc(n)

The objective function. We are interested in
minimizing a combination of two quantities on S.
The first one, denoted by ART(S), is the average re-
sponse time to a random request (where the average
is taken over the moments when requests occur, and
the type Mi of message requested). If we define for
a time interval I, ART(S, I) as the average response
time of a random request arriving in I, ART(S) is
defined as:

ART(S) = lim sup
T→∞

ART(S, [T0, T ]) for any T0

The second quantity is the broadcast cost BC(S)
of the messages, defined as the asymptotic value of
the average broadcast cost of S over any time inter-
val (where the average is over time). By definition,
each broadcast of a message Mi costs ci. For a time
interval I, the broadcast cost of S over I, BC(S, I),
is defined as the sum of the cost of all the messages
whose broadcast begins in I, divided by the length of
I. BC(S) is then defined as:

BC(S) = lim supT→∞ BC(S, [T0, T ]) for any T0
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Remark that one could have chosen another defini-
tion for BC(S, I) by taking into account the messages
whose broadcast starts in I but ends outside I in a
different way ; but this is unimportant since it does
not affect BC(S). The quantity which we want to
minimize is the cost of a schedule S which we define
as follows:

COST(S) = ART(S) + BC(S)

Note that up to scaling the costs ci, any linear com-
binaison of ART and BC can be considered.

Lemma 1 introduces notations which will be used
throughout the paper and relates our definition of
cost to the algebraic definition given in previous
work [2, 5] for discrete time and uniform lengths on
either data-broadcasting or maintenance scheduling.

Lemma 1 (Algebraic definition of COST)
Consider a schedule S of m messages M1, . . . , Mm

and a time interval I. Take a request gen-
erated at a random uniform instant of I
and asking for Mi with probability pi. Then
the average response time to the request is:

ART(S, I) =
1

2|I|
m∑

i=1

pi

{ ni+1∑
j=1

(tij)
2 − (∆ti)2

}

and the broadcast cost of S over I is:

BC(S, I) =
1
|I|

m∑
i=1

nici

where (cf. Figure 1):
• ni is the number of broadcasts of Mi starting in

I according to S.
• ti1 is the time elapsed from the beginning of I to

the beginning of the first broadcast of Mi; and
tij�2 denotes the time elapsed from the (j − 1)th
to the jth broadcast of Mi since the beginning of
I.

• ∆ti is the length of the interval from the end of
I to the first broadcast of Mi starting after I.

Proof. The average response time to a request for
Mi in S is given by 1

|I|
∫
I
waiti(t)dt, where waiti(t)

is the interval from instant t to the next broadcast
of Mi. But for t ∈ [tij−1, t

i
j], waiti(t) = tij − t. Thus

waiti(t) is piecewise affine and a simple calculation
leads to the result. �

Corollary 2 If S is a periodic schedule of period T ,
then:

COST(S) =
1
T

m∑
i=1

nici +
1

2T

m∑
i=1

pi

ni∑
j=1

(tij)
2

where tij denotes the time elapsed from the (j − 1)st
to the jth broadcast of Mi in a period of S.

3 Technical results

3.1 Reductions

Previous work relied on the existence of a periodic op-
timal schedule. In our setting, this is no longer true
(with the exception of Lemma 8), and could in prin-
ciple make all the manipulations of infinite schedules
quite tricky. The way around this problem is given
by Lemma 3, below: periodic schedules approach op-
timal schedules to arbitrary accuracy. This kind of
density property will be used to focus on periodic
schedules, as it implies, first, that lower bounds on
the cost of periodic schedules are also lower bounds
on any schedule (see Lemma 5 and 6); second, that
the existence of an optimal schedule among periodic
schedules implies the existence of an optimal sched-
ule, which is periodic (see Lemma 8).

Lemma 3 (Density of periodic schedules) Let
S be a schedule of M1, . . . , Mm on C channels. For
any ε > 0, there exists a periodic schedule S′ whose
cost satisfies:

COST(S′) � COST(S) + ε

Proof sketch. Deferred to the Appendix page 11.
�

The next lemma shows that we can restrict our-
selves to schedules where every message is broadcast
fairly frequently.

Lemma 4 (Maximum interval) Let S be a peri-
odic schedule of M1, . . . , Mm on C channels. There
exists a periodic schedule S′ such that for any i, any
interval where Mi is not broadcast has length at most
Ki, where:

Ki =
3L
pi

+ 4L+
2 C
L , with L =

m∑
j=1

�j , C =
m∑

j=1

cj

and such that: COST(S′) � COST(S)

Proof sketch. Construction of S′. We denote
by T the period of S. By induction on i we just need
to show the result for M1. Let us consider 2 consec-
utive occurrences of M1 at distance greater than K1,
and let K = K1/2. W.l.o.g., the first broadcast of M1

starts at time t = 0. The idea is to insert a broadcast
of M1 on some channel at time K. This has to be
done a little bit carefully: first, every broadcast on
that channel after time K will be staggered by �1, so,
to keep the channels properly synchronized, we need
to insert a gap of length �1 in all the other channels
at time K. Second, we cannot do this at exactly
time K, since the channels may be in the middle of
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Figure 1: Illustration of the notations used in Lemma 1. Here, ni = 4.

broadcasting something, so we have to wait; third,
to avoid delaying the other messages unduly, we also
broadcast them at (or around) time K, in order of
first previous appearance. The construction of S′ is
illustrated on Figure 2. Its detailed construction and
analysis are somewhat technical and deferred to the
Appendix page 11. �

3.2 Lower bounds

Finding good lower bounds is a key point to designing
provably efficient algorithms for this problem. The
first lower bound below is a straightforward general-
ization of the one used in [5].

Lemma 5 (LB0) The following minimization prob-
lem is a lower bound to the cost of a schedule of
M1, . . . , Mm on C channels:

LB0




min
τ>0

1
2

∑
1�i�m

piτi +
2ci

τi

subject to
∑

i

�i

τi
� C

This minimization problem admits a unique so-
lution τ∗ verifying: τ∗

i =
√

2ci+λ∗�i

pi
for a certain

λ∗ � 0. Furthermore, this lower bound is realized by
a periodic schedule S if and only if Mi is scheduled
in S periodically at intervals of lengths exactly τ∗

i .

Proof. From Lemma 3, periodic schedules are
dense in the set of all schedules, therefore

infS periodic COST(S) = infS COST(S)

Band we can restrict ourselves to periodic sched-
ules. The proof is then along the lines of [5]. More
precisely, if S is a periodic schedule of period T , we
use Corollary 2. Given that

∑ni

j=1 tij = T , the sum of
the squares is minimized when all terms are equal, to
T/ni. Defining τi = T/ni, we obtain the lower bound
given in the first statement of the Lemma.

To solve the system, as in [5] we use La-
grangian relaxation. We explain this part in some

detail to justify rigorously the validity of the La-
grangian relaxation technique in this setting. Let
f(τ ) =

∑m
i=1 piτi + 2ci

τi
denote the objective function,

and g(τ ) = C−∑m
i=1

�i

τi
denote the (main) constraint

of the system. The constraints define a subdomain
D of Rm

+ . There are two cases.
• Either the minimum of f in D is reached in the

interior of D, in which case it is a critical point1

of f . However we note that the particular f in
our setting has a unique critical point τ# in Rm

+ ,

defined by τ#
i =

√
2ci

pi
, and which is the global

minimum of f in Rm
+ . Thus this case occurs if

and only if
∑m

i=1 �i

√
pi

2ci
< C. In this case, the

formula in the statement of the lemma holds for
λ∗ = 0.

• Or, the minimum of f in D is reached on the
boundary of D. Since f(τ ) → ∞ as soon as some
τi goes to 0 or to infinity, this minimum has to be
on the surface defined by the constraint g(τ ) = 0.
Then, according to classical minimization tech-
niques, the gradients of f and g are colinear, and
moreover they point in the same direction since
f increases when τ enters the domain g(τ ) > 0.
Thus τ∗ verifies two equations, for some λ∗ � 0:

(Σ)
{

gradf(τ∗) = λ gradg(τ∗)
g(τ∗) = 0

This system can be rewritten by defining
F (τ, λ) = f(τ ) − λg(τ ), as follow:
(Σ) ⇐⇒ (τ∗, λ) is a critical point of F

⇐⇒




(∀i)
∂F

∂τi
(τ∗, λ) = 0

∂F

∂λ
(τ∗, λ) = 0

We obtain the desired result after a simple alge-
braic manipulation which shows that F admits
a unique critical point τ∗ =

√
2ci+λ∗�i

pi
for some

1Recall that a critical point is a point τ# such that for all i,
∂f
∂τi

(τ#) = 0
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Figure 2: An example of the construction of S′ from S in Lemma 4

λ∗ � 0 satisfying
∑m

i=1 �i

√
pi

2ci+λ∗�i
= C.

We have shown that f admits a unique minimum
τ∗ on domain D. Then a periodic schedule whose cost
is equal to LB0, necessarily broadcasts Mi exactly
every τ∗

i . �

The corresponding lower bound was tight in the
setting of [5]. However, in our model where the mes-
sage lengths vary, this first lower bound is unsatis-
fying, since OPT/LB0 can be arbitrarily large, as
shown on the following example:

Example � Consider the problem of scheduling C+
1 messages M1, . . . , MC+1 on C channels. Mi has
length �i = Li−1, cost ci = 0, and request probability
pi = 1/Li−1 if i > 1, and p1 = 1 − ∑m

i=2 pi. In that
case, it can be shown by induction on C that as L

goes to infinity: OPT = Θ(L1/2C

) but LB0 = Θ(1).
�

Upon close examination, one realizes that the cost
of a schedule in this example is unavoidably high even
when C = 1 because, whenever a really long message
is broadcast, all incoming requests have to wait. This
observation led us to the following improved lower
bound for the one-channel case. We will see in The-
orem 10 that this improved lower bound is tight up
to a constant factor in the one-channel case.

Remark � Note that the cost of an optimal sched-
ule on C + 1 channels of these (C + 1) messages is
Θ(1) � Θ(L1/2C

). This emphasizes a big difference
with the uniform length case where the cost is only
reduced by a factor of C/(C + 1) from C to C + 1
channels. �

Lemma 6 (LBα) Let 0 < α < 1. The following
minimization problem is a lower bound to the cost of
a schedule of M1, . . . , Mm on one-channel:

LBα




min
τ>0

1
2

∑
1�i�m

(1 − α)piτi + α
�2i
τi

+
2ci

τi

subject to
∑

i

�i

τi
� 1

This minimization problem admits a unique solu-

tion τ∗ verifying: τ∗
i =

√
2ci+α�2i +λ∗�i

(1−α)pi
for a certain

λ∗ � 0. Furthermore, this lower bound is realized by
a periodic schedule S if and only if Mi is scheduled
in S periodically at intervals of lengths exactly τ∗

i .

Note that for α = 0, we obtain LB0.

Proof. As before we restrict ourself to periodic
schedules (on one channel). Let S be a periodic
schedule. We denote by T its period, and by ni the
number of broadcasts of Mi during a period. We de-
fine τi = T

ni
. According to the proof above we have:

ART(S) � 1
2

m∑
i=1

piτi and BC(S) =
m∑

i=1

ci

τi

We will show here another lower bound on ART(S).
Consider a random request. With probability ni�i

T
=

�i/τi, it arrives during the broadcast of Mi, and then
has to wait at least until Mi is finished broadcasting,
i.e. �i/2 on average. We conclude that:

ART(S) �
m∑

i=1

�i

2
�i

τi
=

1
2

m∑
i=1

�2i
τi

A linear (1 − α, α) combination of the two lower
bounds on the average response time ART(S) gives
us LBα. The remaining statements in the lemma are
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immediatly deduced from the proof of Lemma 6 by
substituting ci +α�2i /2 for ci, and (1−α)pi for pi. �

4 On finding an optimal solu-

tion

4.1 NP -hardness of the Data-
Broadcast problem

Theorem 7 is the first major result of this paper.
Here, we restrict ourselves to the case when there are
no broadcast costs. We show that even in this restric-
tive setting, and even when there is only one channel,
the Data Broadcast problem is already NP -hard.

Theorem 7 (NP -hardness) The decision problem
associated to the restriction of the Data Broadcast
problem to the case of messages of rational length and
zero cost on one channel is NP -hard.

Proof. Based on a reduction from N -Partition (See
Appendix page 11). �

4.2 The single channel problem with
no broadcast costs

In the rest of this section, we assume that all the
messages have zero broadcast cost and focus on the
single channel case. Since no broadcasts cost are as-
sumed, it never helps for a schedule to remain idle.
Consequently, we can restrict our search for optimal
schedules to schedules “without holes” (never idle).
(As we will see in some examples at the end of sec-
tion, this restriction is not valid in a more general
setting).

In this special setting, the situation is much better
understood, as demonstrated by the following results.
The first lemma states that in this situation, there is
an optimal schedule which is periodic.

Lemma 8 (Periodicity of an opt. schedule)
If the messages have no broadcast costs, then there
exists an optimal schedule S∗ of M1, . . . , Mm on one
channel, which is periodic.

Proof. We use Lemma 3 again. We will prove that
among periodic schedules, there exists a schedule S∗

of minimum cost. Then
COST(S∗) = infS periodic COST(S)

= infS COST(S) = OPT
and so S∗ is optimal among all schedules.

Moreover, thanks to Lemma 4, we can restrict our
search to periodic schedules without holes where any
interval and where Mi is not broadcast has length at
most Ki. Let us call such schedules periodic bounded
interval schedules without holes.

The existence of an optimal schedule S∗ among pe-
riodic schedules, relies on a graph construction simi-
lar to [3, 4]. We consider the following weighted la-
belled directed infinite graph G with costs. A vertex
of G is a m-tuple 〈a1, . . . , am〉 with 0 � ai � Ki.
There is an edge from 〈a1, . . . , ai, . . . , am〉 to ev-
ery vertex of the form 〈a1 + �i, . . . , �i, . . . , am + �i〉.
The label of this edge is Mi, its length is �i and
its cost is c(e) = 1

2 (pil
2
i +

∑m
j=1, j �=i pj{(aj + �i)2 −

(aj)2}) = �2i /2 +
∑m

j=1, j �=i pjaj�i. Semantically, be-
ing at node u = 〈a1, . . . , am〉 at time t means that for
all i, the last broadcast of Mi occured at time t− ai;
following an edge e with label Mi means that Mi is
currently broadcast; then the waiting time for Mj �=i

increases by �i and the waiting time for Mi is reduced
to �i; the extra-cost induced by the broadcast of Mi

is, according to Lemma 1, c(e); and the extra-length
of the schedule is �i.

More precisely, there is a natural surjection from
cycles of G passing through a vertex 〈0, a2, . . . , am〉
to the finite-cost periodic schedules where any inter-
val where Mi is not broadcast has length less than
Ki. To each cycle γ going through 〈0, a2, . . . , am〉,
we can associate the periodic schedule S(γ) which is
the sequence of labels of the edges of γ. This is clearly
surjective. Furthermore, our definition of edge cost
insures that:

COST(S(γ)) =

∑
e∈γ c(e)

length(γ)
=
def

COSTG(γ)

Finally, consider a vertex 〈a1, . . . , am〉 on cycle γ.
Every coordinate ai is a non-negative linear combi-
nation of �j ’s which sums to at most Ki, thus there
are only a finite number of such vertices, thus only
a finite number of such cycles. Thus, thanks to the
surjection, there are only a finite number of periodic
bounded interval schedules without holes. Then there
is an optimal cost schedule among them, which is op-
timal among all the schedules. �

An important point is that, unlike [5], this lemma
is not longer true if we consider schedule on more
than one channel.

Example � Consider the scheduling problem on
two channels of two messages M1 and M2, of lengths
�1 = 1 and �2 =

√
2, and request probabilities

p1 =
√

2
1+

√
2

and p2 = 1
1+

√
2
, and zero costs. Then

one can show that LB0(M1, M2) =
√

2
2(1+

√
2)

, and this
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lower bound is reached by the schedule which never
stops broadcasting M1 on the first channel and M2 on
the second. If there was a periodic optimal schedule,
it should, according to Lemma 5, broadcast M1 every
τ∗
1 = 1 time and M2 every τ∗

2 =
√

2 time: impossible
since 1/

√
2 is irrational. �

In fact, idle periods have to exist in the presence of
broadcast costs (for instance, a single message with
a large cost should not be scheduled too often), or if
more than one channel is available: it can be shown
that an optimal schedule over two channels for two
messages M1 and M2 with lengths �1 = 2 and �2 = 3,
request probabilities p1 = 1− ε and p2 = ε, and zero
broadcast cost, has to be idle after each broadcast of
M2 to allow synchronization. We do not currently
know how to take the idle periods into account in the
graph construction.

As a consequence of the proof of this last Lemma,
we have the theorem below.

Theorem 9 There exists a finite-time algorithm
for constructing the optimal schedule for the data-
broadcast messages of zero broadcast costs on one
channel.

Proof. According to the construction of Lemma 8,
the algorithm just consists in finding a cycle γ∗

of minimum cost in the subgraph of G restricted
to the reachable vertices, and reading off the la-
bels of the edges of γ∗. Note that in case of in-
teger (or rational) message lengths, the algorithm
of [19] for searching the minimum mean cycle can
be used, hence an exponential time complexity of
Θ

(
m(�maxL(4 + 3/pmin))2m+1

)
. �

5 A single channel constant fac-

tor approximation algorithm

We now turn back to the more general setting where
messages have non-zero broadcast costs. The theo-
rem below is the second major result in this paper.
It gives a randomized O(1)-approximation algorithm
for the Data Broadcast problem on one channel. We
denote by E[x] the expected value of the random vari-
able x.

Theorem 10 There exists a randomized polynomial-
time algorithm which, given α and ε, ouputs a sched-
ule S on one channel satisfying:

E[COST(S)] �
max

(
1
α , 2

1−α

) · LBα(M1, . . . , Mm) + ε

For α = 1
3 , this translates into:

E[COST(S)] � 3 LBα= 1
3

+ε

Thus the lower bound designed in Lemma 6 is tight:

Corollary 11 OPT � 3 LBα= 1
3

Remark � Thanks to the law of the large numbers,
one can prove that the expected value of COST(S) is
obtained with probability 1. �

Proof. Design of the algorithm. The algorithm
is based on the lower bound proved in Lemma 6. This
lower bound is quite informative since it can be used
to calculate the desirable frequency ni/T = 1/τ∗

i of
each message Mi. Our algorithm will use randomness
to produce a schedule according to these frequencies.

We now assume that we have managed to compute
a good approximation τ̃i of τ∗

i , so that
∑m

i=1 �i/τ̃i �
1. As in the proof of Lemmas 5 and 6, two cases
occur:

• if
∑m

i=1 �i/τ̃i = 1: this is the easy case. Con-
sider a schedule S which broadcasts each Mi with
frequency 1/τ̃i. The proportion of time spent
broadcasting Mi is �i/τ̃i. Then, in that case, S
never stops broadcasting messages: there is no
point in ever remaining idle.

• if
∑m

i=1 �i/τ̃i < 1: this means that a sched-
ule which broadcasts each Mi with frequency
1/τ̃i relative to the broadcasts of the messages
should sometimes stop broadcasting messages
and remain idle during a time proportional to
1−∑m

i=1 �i/τ̃i. Since we want the description of
the schedule to remain discrete and not contin-
uous, we introduce an artificial “ghost” message
M0 whose length �0 is a parameter of our algo-
rithm. Its frequency 1/τ̃0 will be adjusted as a
function of �0 so that its broadcasts correspond
to the idle times proposed by the lower bound.
Thus τ̃0 is chosen so that:

�0/τ̃0 = 1 −
m∑

i=1

�i/τ̃i > 0

Now, consider a schedule which broadcasts each
Mi with frequency 1/τ̃i. It never stops broad-
casting messages. The time periods spent in
broadcasting M0 correspond to required idle
time periods.

In the first case the ghost message M0 was not
needed. We introduce it for the sake of homogene-
ity, with a frequency 1/τ̃0 = 0.

8



Description of the algorithm. The algorithm
works in 3 steps.

1. We compute λ̃, an estimation of the desired λ∗

within ε accuracy, and the corresponding values

τ̃i such that τ̃i ≈
√

2ci+α�2i +λ̃�i

(1−α)pi
. This is easily

done by dichotomy, as suggested in [5]. We then
adjust τ̃0 so that �0/τ̃0 = 1 − ∑m

i=1 �i/τ̃i.
2. We compute the schedule frequency si

of each message Mi, for i = 0..m:

si =
1/τ̃i∑m

j=0 1/τ̃j

3. We construct the schedule on-the-fly in a ran-
domized fashion. Whenever the sender is ready
to broadcast a message, with probability s0 it re-
mains idle for an interval of length �0, and with
probability si�1 it broadcasts Mi.

Analysis of the performance ratio. A short cal-
culation shows that if:

�(λ) =
1
2

∑
1�i�m

(1 − α)piτi(λ) + α
�2i

τi(λ)
+

2ci

τi(λ)

with τi(λ) =
√

(2ci + α�2i + λ�i)
/
(1 − α)pi, then

we have 0 � F ′(λ) � 1/2 whenever λ � λ∗ � 0. Thus
if our estimation λ̃ is close to λ∗, the cost function
�(λ̃) will also be close to the optimum:

�(λ̃) � �(λ∗) +
1
2
(λ̃ − λ∗) for λ̃ � λ∗

In particular if λ̃ approximates λ∗ from above within
ε, then �(λ̃) � �(λ∗) + ε/2.

We will now analyze the cost of the schedule ob-
tained in step 3 of the algorithm.

Lemma 12 (Analysis of randomized sched.)
Consider the schedule S generated by the randomized
process described at step 3 of the algorithm. Then:

E[COST(S)] = 1Pm
j=0 sj�j

· 1
2

∑m
i=0 si�

2
i

+
∑m

i=1 pi

Pm
j=0, j �=i sj�j

si
+

∑m
i=1 ci

siPm
j=0 sj�j

Before proving the lemma, let us first see how it
implies the claimed performance ratio.

Since si is proportional to 1/τ̃i and
∑m

i=0 �i/τ̃i = 1,
we get that:

E[COST(S)] = 1
2

∑m
i=0

�2i
τ̃i

+
∑m

i=0 piτ̃i (1 − �i/τ̃i)︸ ︷︷ ︸
0� �1

+
∑m

i=0
ci

τ̃i

� �20
2 + max

(
1
α , 2

1−α , 1
)

�(τ̃ )

As the minimum of max( 1
α , 2

1−α , 1) is 3, obtained for
α = 1/3 then we get, for α = 1/3:

E[COST(S)] � 3 �(τ̃ ) +
�20
2

� 3 OPT +
ε + �20

2
�

Remark � Taking ε � η�(τ̃ ) and �0 �
√

η�(τ̃ )
yields the absolute performance ratio of 3 + η. �

Let us now turn to the proof of the lemma.

Proof. Consider Mi, 1 � i � m. Let us define the
random variable Ri(t) as the response time to a re-
quest for Mi arriving at time t. The average response
time is the weighted sum of E(Ri(t)), so we just need
to compute the expectation of Ri(t).

We decompose Ri(t) into two random variables
Ri(t) = X(t) + Yi: X(t) is the time until the end
of the message which is broadcast at time t, and Yi is
the time from then until Mi is broadcast; note that
X(t) is independent of i and that Yi is independent
of t.

We first compute E[X]. If the request is raised
during the broadcast of Mj , it will wait on average
�j/2. Thus:

E[X] =
m∑

j=0

�j

2
· Pr

{
request raised during
broadcast of Mj

}

But, Pr{request raised during Mj}
= �j · E

[
lim supT→∞

Nj(T )
T

]
= �j ·

∫
S

lim supT→∞
Nj(T )

T dPr{S}
where Nj(T ) is the number of broadcasts of Mj

during the time period [0, T ]. Since T � Nj(T )�j ,
Lebesgues’s bounded convergence theorem implies
that Pr{request raised during Mj}

= �j · lim supT→∞ E
[Nj(T )

T

]
But E

[Nj(T )
T

] ∼T→∞
sjPm

k=0 sk�k
, thus

Pr{request raised during Mj} = si�iPm
k=0 sk�k

. Fi-
nally:

E[X] =
1∑m

k=0 sk�k

m∑
j=0

sj�
2
j

2

Let us now compute E[Yi]. We define Zq as the
length of the qth message broadcast by the algorithm,
conditioned on being different from Mi. We have
then:

E[Yi] = E

[ ∑
q�0

(Z1 + · · ·+ Zq)(1 − si)qsi

]

But E[Z1] = . . . = E(Zq) =
∑m

j=0, j �=i
sj

1−si
�j , thus

an algebraic manipulation yields:
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E[Yi] =

∑m
j=0, j �=i sj�j

si

hence E(Ri) and E(ART(S)).

Finally BC(S, [0, T ]) =
∑m

i=1 ciNi(T )/T . Since the
expected frequence of Mi is E

[
lim supT→∞

Ni(T )
T

]
=

siPm
j=0 sj�j

, we get:

E[BC(S)] =
m∑

i=1

cisi∑m
j=0 sj�j

which finishes the proof of the lemma. �
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Appendix A: Omitted proofs

Lemma 3 (Density of periodic schedules) Let
S be a schedule of M1, . . . , Mm on C channels. For
any ε > 0, there exists a periodic schedule S′ whose
cost satisfies:

COST(S′) � COST(S) + ε

Proof sketch. If the cost of S is infinite, it is suffi-
cient to pick for S′ any periodic schedule in which all
messages are broadcast at least once. The interesting
part of the proof occurs when the cost of S is finite.

Construction of S′. Let T be such that all mes-
sages have been broadcast at least once before T and
such that for every t � T , we have:

{
ART(S, [0, t]) � ART(S) + ε/4

BC(S, [0, t]) � BC(S) + ε/2

Consider t � T , whose exact value will be given later;
let St denote the schedule obtained from S by remov-
ing all messages in the process of being broadcast at
time t, and let S′ denote the unique periodic sched-
ule of period t which is identical to St over the time
interval [0, t].

Analysis of S′. Clearly, the average response time
of S′ over [0, t] is the same as the average response
time of S over [0, t], except for boundary effects. In
fact, this can be quantified using Lemma 1, and one
can then show a bound of the following form:

ART(Mi, S
′) � ART(Mi, S, t) +

c√
t

where c is a constant which only depends on ART(S),
ti1, pi, and ε. Choosing t = max{T, 16/c2ε2} then
yields the result of the lemma. �

Lemma 4 (Maximum interval) Let S be a peri-
odic schedule of M1, . . . , Mm on C channels. There
exists a periodic schedule S′ such that for any i, any
interval where Mi is not broadcast has length at most
Ki, where:

Ki =
3L
pi

+ 4L +
2 C
L , with L =

m∑
j=1

�j , C =
m∑

j=1

cj

and such that: COST(S′) � COST(S)

Proof sketch. Detailed construction of S′.
The construction is illustrated on Figure 2. Let �max

denote the maximum message length, i.e. �max =
maxi �i. From S, we construct a periodic schedule
S′ of period T + L as follows. For every channel k,
1 � k � C, let Tk be equal to the time when channel
k finishes broadcasting the message being broadcast
at time K if there is one, and equal to K otherwise.
Note that K � Tk � K + �max. Suppose, w.l.o.g.,
that T1 = mink Tk.

S′ is obtained from S by doing the following: first,
for every 1 � k � C, introducing an hole of size L
at time Tk on channel k; second, inserting on chan-
nel 1 all the messages one after the other in order of
increasing ti, where, for all 1 � i � m, we define ti
as the date of the beginning of the last broadcast of
Mi on any channel before T1. This guarantees that
the intervals of time between two broadcasts of Mi,
i � 2, do not change by much.

Analysis of S′. Let us show that ∆(T COST(S)) =
(T +L)COST(S′)− T COST(S) � 0. Since T +L >
T , the lemma will follow.

Split the messages M2, . . . , Mm into two sets I
and J . In the first set, we put the messages
for which the insertion of all the messages in S′

may be bad: that is to say Mi ∈ I if i � 2
and the time elapsed between the last broadcast of
Mi before T1 and the next one, was less than K
in S. We define J as J = {M2, . . . , Mm} � I.
One can show then the following upper bounds:

∆(T COST(S))restricted to Mi ∈ I

�
∑

i∈I piL(K + L) + ci

∆(T COST(S))restricted to Mj ∈ J

�
∑

j∈J pjL(K + �max) + cj

∆(T COST(S))restricted to M1

� −p1(K −L)2 + p1L(K + �max) + c1

Thus, ∆(T COST(S))

� −p1(K −L)2 +
∑m

i=1 piL(K + L) + C
¿From there, it is easy to see that if K � 1

2
(L(4 +

3
p1

) + 2 C
L ), then ∆(T COST(S)) � 0.

Applying this scheme recursively to each pair of
consecutive occurrences of M1 completes the proof.
�

Theorem 7 (NP -hardness) The decision problem
associated to the restriction of the Data Broadcast
problem to the case of messages of rational length and
zero cost on one channel is NP -hard.
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Proof. We will reduce N -Partition to the Data-
Broadcast problem without costs as follows. Re-
call that N -Partition takes as input m integers
x1, . . . , xm and must decide whether there exists a
partition of {1, . . . , m} in N disjoint sets I1, . . . , IN

such that
∑

i∈I1
xi = · · · =

∑
i∈IN

xi. Let S =
x1 + · · ·+ xm.

We consider the following one-channel Data-
Broadcast instance: m+1 messages M0, M1, . . . , Mm

such that:


M0 : �0 = S/N2 and p0 = 1/2 (c0 = 0)

Mi�1 : �i = xi and pi =
xi

2S (ci = 0)

In that case, one can prove that LB0(M0, . . . , Mm) =
S/4 · (1 + 1

N )2. We consider the decision problem
“Does there exist a schedule with cost less than or
equal to S/4 · (1 + 1

N
)2?”.

Note that this reduction is clearly polynomial.
According to Lemmas 5 and 8, the answer to the
question is “yes” if and only if there exists a pe-
riodic schedule which broadcasts each Mi every τ∗

i

exactly. One can show that here: τ∗
0 = S/N + �0

and τ∗
i�1 = S + N�0. Such a schedule must then

be of the following form: between two consecutive
broadcasts of M0 a sequence of messages of total
length at most S/N can be broadcast. Then the
answer is “yes” if and only if the set of messages
M1, . . . , Mm can be split into N sets M1, . . . ,MN

such that
∑

Mi∈M1
�i = · · · = ∑

Mi∈MN
�i. �

Remark � This proof can easily be generalized to
prove the NP -hardness of the problem “Does there
exists a periodic schedule of m messages, with rational
lengths and probabilities, and zero broadcast costs,
on C channels whose cost is less or equal than x?”.
Taking the reduction above, it suffices to add C − 1
messages Mm+1 , . . . , Mm+C−1 of lengths �i>m = S+
2�0 and probabilities adjusted so that τ∗

i>m = S+2�0.
�

Appendix B: Brief analysis of the
time complexity of the single-

channel algorithm.

Let us estimate the computation time of λ̃. Two cases
occur. If

∑m
i=1 �i/τ∗

i < 1, then λ∗ = 0 and thus
λ̃ = 0. If

∑m
i=1 �i/τ∗

i = 1, then following [5], we get
that:

mini((m2(1 − α)pi − 1)�i − ci

�i
) � λ∗

� maxi((m2(1 − α)pi − 1)�i − ci

�i
)

Thus a O(log{pi, �i, ci/�i, 1/ε, m})-time dichotomy
gives an approximation λ̃ � λ∗ of λ within ε ac-
curacy. Since λ̃ � λ∗ and τ∗(λ) is an increasing
function, we ensure that

∑m
i=1 �i/τ∗

i (λ̃) � 1. A
O(log{pi, �i, ci/�i, 1/ε, m})-time square root compu-
tation gives then the desired approximation τ̃i �
τ∗(λ̃) within ε accuracy. Thus the τ̃i are obtained
by a linear time algorithm in the size of the entries.

Appendix C: A special case re-

solved

An exhaustive case-by-case analysis solves the prob-
lem completely in the single-channel zero-cost case
when there are only two messages.

Theorem 13 Let consider the case of the broadcast
of two messages M1 and M2 with respective lengths,
request probabilities and broadcast costs: �1 and �2, p1

and p2, c1 = c2 = 0. If β = �1/�2, then an optimal
schedule has the following form:

Condition Opt. Schedule

p1 � β
2(β+1) (M1M

n2
2 )ω, where n2 � 2

β
2(β+1)

� p1 � 2β+1
2(β+1)

(M1M2)ω

2β+1
2(β+1) � p1 (Mn1

1 M2)ω, where n1 � 2

where ni is equal to either Ni or Ni + 1, with Ni =⌊
�j

�i

(√
pi

pj

(
1 + �i

�j

)
− 1

) ⌋
, for j 
= i.
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