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The Data Broadcast Problem with Non-Uniform
Transmission Times1

Claire Kenyon2 and Nicolas Schabanel3

Abstract. The Data Broadcast Problem consists of finding an infinite schedule to broadcast a given set of
messages so as to minimize a linear combination of the average service time to clients requesting messages, and
of the cost of the broadcast. This problem also models the Maintenance Scheduling Problem and the Multi-Item
Replenishment Problem. Previous work concentrated on a discrete-time restriction where all messages have
transmission time equal to 1. Here, we study a generalization of the model to a setting of continuous time and
messages of non-uniform transmission times. We prove that the Data Broadcast Problem is strongly NP-hard,
even if the broadcast costs are all zero, and give 3-approximation algorithms.

Key Words. Approximation algorithms, Scheduling, Randomized algorithms, NP-Completeness, Data
broadcasting.

1. Introduction

1.1. Motivation. This paper studies an optimization problem which arises in three con-
texts: data broadcasting, scheduling maintenance service, and multi-item replenishment.

Broadcasting is an efficient means of disseminating data in wireless communication
environments, where there is a much larger communication capacity from the informa-
tion source to the recipients than in the reverse direction. A typical example is satellite
access to the Internet: the down link (from the satellite to personal computers equipped
with special antenna) is much wider and faster than the up link (using usually phone
lines). Another typical situation is mobile clients (e.g., car navigation systems) retriev-
ing information (e.g., traffic information) from a server base-station (e.g., the emitter)
through a wireless medium (see [2] and [19]). In these situations, broadcasting proto-
cols reduce the server and up link loads (by eliminating client requests management)
and take advantage of the broadcasting media to reduce the down link load (by serving
all the clients waiting for the same information at the same time for no extra cost). In
broadcasting protocols, items are scheduled continuously, over an infinite time-horizon,
thatis to say, the schedule as well as the sequence of requests never terminate, and each
request will eventually be served by the broadcast server. The requests do not propagate
in the system, but the clients wait for the requested items to be broadcast, thus making
the system pseudo-interactive or push-based (as opposed to pull-based): the schedule is
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independent of the incoming requests, since it is oblivious to them. Push-based systems
allows us to save bandwidth and to reduce service time by unloading the server from
treating the request and by reducing the bandwidth occupied by the most popular items
[11], [1]. Acharya [2] and Schabanel [19] present a very complete history of the field. An
efficient broadcast scheme seeks to minimize the average service time (i.e., the amount
of time spent by a mobile client to obtain a desired piece of information in the broadcast),
while also minimizing the resulting broadcast cost (e.g., in the context of data transfers
on the World Wide Web, each message has a broadcast cost, the required bandwidth,
which is proportional to its length). While most previous work made the simplifying
assumption that all items had the same transmission time, our main focus in this paper
is to deal rigorously with non-uniform transmission times.

The Maintenance Service Problem schedules m machines for maintenance over an
infinite time horizon and seeks to minimize both the costs associated with each mainte-
nance and the operation costs of the machines, where the operation costs of the machines
are assumed to increase with the time elapsed since the last maintenance. Here again it
seems reasonable to consider the case where sophisticated machines have longer main-
tenance time than others.

The Multi-Item Replenishment Problem consists of, given m items types, deciding
over time when to reorder which item given holding costs, ordering costs, and the rate
at which each item is consumed.

All three problems can be modeled similarly.

1.2. Problem Definition. In this paper we adopt the data broadcast terminology. The
input consists of m messages Mi , i = 1, . . . , m, defined by their lengths �i (the time
required to broadcast Mi ), their request probabilities (or popularities) pi , and their broad-
cast costs ci . The problem is to decide in what sequence S to schedule the broadcast mes-
sages over an infinite time-horizon, so as to minimize the sum of the average service time
and of the average broadcast cost, i.e., so as to minimize the lim sup of {AST(S, [0, T ])+
ABC(S, [0, T ])} when T tends to infinity; here AST(S, [0, T ]) denotes the average ser-
vice time to any request which (1) is generated at a random uniform instant between 0
and T , (2) requests message Mi with probability pi , and (3) must then wait until the
start of the next broadcast of Mi to (4) start downloading Mi (which takes time �i );4 and
ABC(S, [0, T ]) is the average broadcast cost of the messages whose broadcast starts
between the dates 0 and T . This definition can be translated into an algebraic formula,
see Lemma 1. As remarked above, the broadcast scheme is pseudo-interactive: the actual
requests do not propagate beyond the client, and the schedule is oblivious to the actual
sequence of requests. Note that when this definition is specialized to the uniform-lengths
setting, our definition agrees with the literature on data broadcasting (see Lemma 1).

In the Maintenance Scheduling Problem [7], [8] the input consists of m machines
Mi , i = 1, . . . , m, defined by the length �i of their maintenance, their operation cost

4 Note that AST(S, [0, T ]) is independent of the number of requests arriving in [0, T ]. If there is only one
request, its average service is AST(S, [0, T ]); if there are many requests, each of them has average service
time AST(S, [0, T ]). Thus our objective function is independent of the density of requests. The only important
property is that the request arrival times are uniform in [0, T ]. This is realized in particular if the requests
arrival times are generated by a Poisson process [13].
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rate pi , and their maintenance cost ci . The instantaneous operation cost of a machine
is an affine function of the time elapsed since its last maintenance, with linear rate pi

and constant b · pi for some b ≥ 0 (the cumulated cost since the last maintenance thus
increases quadratically). The problem is to find a maintenance schedule over an infinite
time-horizon, so as to minimize the total costs incurred, i.e., the sum of the operation costs
and of the maintenance cost. This problem is, as we will see in Proposition 3, identical to
the Data Broadcast Problem. The Multi-Item Replenishment Problem consists of, given
m items types, deciding when to reorder which items, given holding costs, ordering
costs, and the rate at which each item is consumed. Bar-Noy et al. [8] and Anily et al. [7]
prove that the Multi-Item Replenishment Problem is a special case of the Maintenance
Scheduling Problem.

1.3. Background. As far as we know, almost all previous work focused on the uniform-
lengths and discrete-time model, when all messages (or machines) have length (or oper-
ating time) equal to 1.

We first review results on the discrete-time and uniform-lengths Data Broadcast Prob-
lem without broadcast costs. This problem was first studied in the context of Teletext.
In [15] Gecsei analyzes the mean response time of memoryless randomized algorithms
and proves that any optimal algorithm from this class should choose the next message to
broadcast with probability proportional to the square root of its popularity. In [5] Am-
mar and Wong study periodic broadcast schedules. They derive an algebraic expression
for the average service time (which is essentially Lemma 1 below), and prove a lower
bound (essentially the one in Lemma 7 below), from which they get inspiration to derive
a greedy-type algorithm. They provide numerical evidence that their algorithm is effi-
cient by studying it when the message popularities follow the Zipf distribution, which is
claimed to approximate closely real user behavior. In [6] they define the mean response
time of arbitrary (not necessarily periodic) schedules, analyze structural properties of
optimal schedules, and prove that there exists an optimal schedule which is periodic.
From this, they deduce a finite-time algorithm for computing the optimal solution. They
also present an algorithm for constructing a good schedule, which uses the golden ratio
sequence [6] (they do not provide a performance ratio analysis). Further work [4] attacks
a model where successive requests are not independent and prefetching may be used.
Greedy heuristics for the same problem are empirically tested in [21] and [7]. This study
on the uniform-length case was pursued by Anily et al. [7], who obtained a deterministic
2.5-approximation algorithm, and moreover by Bar-Noy et al. [8] who obtained a deter-
ministic 2-approximation algorithm and proved that the golden ratio heuristic of [6] has
approximation ratio 9/8. In [17] the authors improve this result by giving a polynomial
time approximation scheme ((1 + ε)-approximation for any ε > 0) for this uniform
length case. Finally, in [18] the authors study indexed data broadcast where the objective
function to minimize is a combination of response time and tuning time. Note that in the
middle 1990s Acharya et al. [3] introduced a simplified model: the broadcast disks. In
this model the goal is to partition the set of messages. Each subset is seen as a rotating
disk. On each disk the messages are scheduled in round robin order. The rotation speed
of each disk is determined according to the popularities of its items. The schedules are
obtained by merging the output of the disks. This restrictive setting simplifies the model
to study prefechting and caching strategies [2] but prevents one from approaching the
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optimal strategy. An extension of this approach has been recently proposed by Bar-Noy
et al. [9]. They study perfectly periodic schedules in which every message is broadcast at
regular fixed time intervals. Note that, again, this restriction to perfect periodic schedules
prevents one from closely approaching the optimal strategy.

Even in the uniform-length model, very few articles consider a multi-channel variant
of the problem where up to W (the number of channels) messages can be broadcast
at the same time. Previous work for the general uniform-length Maintenance Schedul-
ing Problem can be found in [8]. There, the authors prove that there is an optimal
schedule which is periodic. Using the operation costs ci , they prove that the Mainte-
nance Scheduling Problem is NP-hard (but are unable to prove the NP-hardness of the
Data Broadcast Problem). They design a 9/8-approximation algorithms for the Data
Broadcast and the Maintenance Scheduling problems, even when there is more than one
channel.

The only references which considers non-uniform length messages are [22] and [23].
There a first lower bound (basically our LB0 in Section 4) is proposed and experimental
results are reported for several heuristics on one or two channels in comparison with
this lower bound. More recently, Schabanel has proposed another way to deal with
non-uniform-length messages by allowing preemption, which significantly changes the
solution [20]. Besides theoretical motivation, the present paper applies to settings where
preemption is not allowed.

1.4. The Results. This paper focuses on the case where the message lengths (transmis-
sion times) are not equal. This non-uniform-length case is significantly different from
the uniform-length case: in [6] the authors justify their uniform-length assumption in
those terms: “This [uniform lengths] assumption [. . .] is required to render the problem
under consideration tractable.” In fact, there are some important structural differences
between our model and the uniform-length model: for example, in our model an optimal
schedule need no longer be periodic (see Section 7). In general it is not even clear a priori
whether an optimal solution can be described in finite time! Thus we try to provide a
careful definition and treatment of this model. After proving that periodic schedules are
arbitrarily close to optimal, our results are then obtained “by density” of the periodic
schedules.

We show that even when there are no broadcast costs, the problem is NP-hard (note
that in [8] NP-hardness is proved only when broadcast costs are present).

Then we present a polynomial 3-approximation for the problem. To design that al-
gorithm, we first observe that, as stated by the authors of [8], the natural extension of
the lower bound of [5] to our model is no longer tight in the non-uniform-length case,
and can, in fact, be arbitrarily bad and can yield arbitrarily bad approximations. One
important ingredient of our algorithm here consists in designing a second lower bound
which is tight up to a constant factor. This is the key to finding a constant-factor approx-
imation. Our approximation outputs a periodic schedule with quadratic period. It relies
on a randomized algorithm that is derandomized.

At the end of the paper we introduce a multi-channel framework. Very little is known
about this extension. This last section presents only a tour by examples of some of the
differences with the single channel case and with the multiple channel case with uniform
transmission times.
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1.5. Organization of the Paper. The paper is organized as follows. Section 2 presents
the notations and facts about the cost of a schedule. It also shows that our definition
of the cost function is equivalent to the definition from [4]–[8]. In Section 3 we prove
that the cost of periodic schedules is arbitrarily close to the optimal cost, allowing us
to manipulate only periodic schedules. Section 4 presents a known lower bound for the
problem which is shown to be arbitrarily far from the optimal cost. All the same this
lower bound is used in Section 5 to prove that the problem is strongly NP-hard even if
zero broadcast costs are assumed. We give in Section 6 a new lower bound from which
we design a randomized and a deterministic 3-approximation algorithm. Section 7 finally
presents a multiple channel framework where several messages can be broadcast at the
same time. The last section concludes by giving some directions for further research on
that subject.

2. Definitions and Notations

2.1. The Problem

The Input. The messages Mi , i = 1, . . . , m, are defined by their lengths �i > 0, their
request probabilities or popularities pi > 0 such that p1 + · · · + pm = 1, and their
broadcast costs ci ≥ 0.

The Schedule. A schedule S of M1, . . . , Mm is an infinite sequence Ms(1)Ms(2) · · ·,
where 1 ≤ s(i) ≤ m. We denote by t (n) the starting time of the broadcast of Ms(n),
which must satisfy t (n + 1) ≥ t (n) + �s(n).

A schedule S is periodic with period T > 0, if there exists N > 0 such that for any
n ≥ 1, s(n + N ) = s(n) and t (n + N ) = t (n) + T . Because of their lack of structure,
non-periodic schedules are hard to handle as opposed to periodic schedules. Periodic
schedules are a useful tool to obtain properties of optimal schedules.

The Objective Function. We are interested in minimizing a combination of two quan-
tities on S. The first one, denoted by AST(S), is the average service time to a random
request (where the average is taken over the moments when requests occur and over
the type Mi of message requested). If we define for a time interval I , AST(S, I ) as the
average service time of a random request arriving in I , AST(S) is defined as

AST(S) = lim sup
T →∞

AST(S, [0, T ]).

Note that Lemma 1 gives an algebraic expression for AST(S, I ) in terms of S, I , and
the pi ’s.

The second quantity is the average broadcast cost ABC(S) of the messages, defined
as the asymptotic value of the average broadcast cost of S over any time interval (where
the average is over time). By definition, each broadcast of a message Mi costs ci . For a
time interval I , the average broadcast cost of S over I , ABC(S, I ), is defined as the sum
of the cost of all the messages whose broadcast begins in I , divided by the length of I .
ABC(S) is then defined as

ABC(S) = lim sup
T →∞

ABC(S, [0, T ]).
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The quantity which we want to minimize is the cost of a schedule S which we define as
follows:

COST(S) = AST(S) + ABC(S).

General Notations. We adopt the following notations for the rest of the paper:

• xmax =def maxi xi is the maximum value of the xi ’s (similarly, xmin =def mini xi ).
• Eπ [x] =def

∑
i πi xi is the expected value of the xi ’s given the discrete distribution

(πi ). For example, Ep[�] is the average downloading time because message Mi is
requested (and downloaded) with probability pi .

• L =def �1 +· · ·+�m is the sum of the lengths of the messages and C =def c1 +· · ·+cm

is the sum of the broadcast costs of the messages.
• OPT is the optimal cost: OPT = infS COST(S).

2.2. An Algebraic Expression for the Cost. Lemma 1 introduces notations which are
used throughout the paper. Proposition 3 relates our definition of cost to the algebraic
definition given in previous work [5], [8] for discrete time and uniform lengths on either
data broadcasting or maintenance scheduling.

LEMMA 1 (Algebraic Definition of COST). Consider a schedule S of m messages M1,

. . . , Mm and a time interval I . Take a request generated at a random uniform instant of
I and asking for Mi with probability pi . Then the average service time to the request is

AST(S, I ) = Ep[�] + 1

2|I |
m∑

i=1

pi

{
ni +1∑
j=1

(t i
j )

2 − (
t i )2

}

and the average broadcast cost of S over I is

ABC(S, I ) = 1

|I |
m∑

i=1

ni ci ,

where (see Figure 1):

• ni is the number of broadcasts of Mi starting in I according to S.
• t i

1 is the time elapsed from the beginning of I to the beginning of the first broadcast of
Mi ; and ti

j , for j ≥ 2, denotes the time elapsed from the ( j − 1)st to the j th broadcast
of Mi since the beginning of I .

• 
t i is the length of the interval from the end of I to the first broadcast of Mi starting
after I .

PROOF. Consider a request Q in I . Q requests for Mi with probability pi . With prob-
ability t i

j /|I |, for 1 ≤ j ≤ ni , Q arrives in an interval of length t i
j and waits t i

j /2 on
average until the next broadcast of Mi and then �i more until the end of the down-
loading. With probability (t i

ni +1 − 
t i )/|I |, Q arrives in the last interval and waits
((t i

ni +1 − 
t i )/2 + 
t i ) = (t i
ni +1 + 
t i )/2 on average until the next broadcast of Mi ,

plus �i more until the end of the downloading. Summing over all the intervals and
messages yields the expression given for AST(S, I ).



152 C. Kenyon and N. Schabanel

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

��
��
��
��

�������������������������������
�������������������������������
�������������������������������
�������������������������������

������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������

�����
�����
�����
�����

������
������
������
������

������
������
������
������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

����
����
����
����

����
����
����
����

���
���
���

���
���
���

Wait Download

I

t
i

1
t
i

4

� � �

t
i

2
t
i

3

�t
i

t
i

5

Mi Mi Mi Mi MiMi

t

Fig. 1. Illustration of the notations and expression in Lemma 1. Here, ni = 3. The top of the figure shows the
broadcast sequence over time, with broadcasts of Mi singled out. The three black arrows indicate requests for
Mi . To each request is associated wait and download times, indicated by a black and grey line, respectively.
The triangles are such that at time t , the height of the triangle is proportional to the average number of requests
for Mi waiting to be served. The heavily shaded part of the triangles correspond to requests which originated
inside interval I . The cumulated wait of the requests for Mi can be seen as the sum of the areas of the triangles
whose bases are the intervals between consecutive broadcasts of Mi .

The average cost for broadcasting Mi during I is ni ci/|I |. Summing over all the
messages yields the expression given for ABC(S).

COROLLARY 2. If S is a periodic schedule of period T , then

AST(S) = Ep[�] + 1

2T

m∑
i=1

pi

ni∑
j=1

(t i
j )

2 and ABC(S) = 1

T

m∑
i=1

ni ci ,

where t i
j denotes the time elapsed from the ( j − 1)st to the j th broadcast of Mi in a

period of S.

PROOF. For ABC(S), the statement is clear. To calculate the average service time,
consider requests for Mi . We apply Lemma 1 to an interval I of length T starting exactly
at the beginning of a broadcast of Mi . By construction of I , taking the notation of
Lemma 1, we have 
t i = 0 and |I | = T . Lemma 1 then yields the claimed expression
for COST(S, I ). Since S is periodic with period T , we have COST(S) = COST(S, I ),
which concludes the proof.

2.3. An Equivalent Definition of the Cost. This section establishes that the problem
studied here is the same as in [8] and [7] by showing that the service time is equivalently
defined by the average time elapsed since the last broadcast, plus the message length. In
other terms, we show here that time is reversible for this problem. This is straightforward
for periodic schedules but requires some work for general, non-periodic schedules. This
proposition is used in particular to design the deterministic approximation algorithms in
Section 6.

DEFINITION. For any given schedule S and any time t , we define the penalty PE(S, t, Mi )

of a schedule S at time t for message Mi as pi multiplied by the time elapsed since the
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beginning of the last broadcast of Mi . Note that the penalty is proportional to the expected
number of unserved requests for Mi at time t .

If ti is the date of the beginning of the last broadcast of Mi before time t , we have
PE(S, t, Mi ) = pi (t − ti ) (we assume that a broadcast of Mi occurs at time t = 0 in the
definition). We define then the average penalty APE(S, I ) of S over a time interval I as
follows:

APE(S, I ) = 1

|I |
∫

I

m∑
i=1

PE(S, t, Mi ) dt;

and the average penalty of S as

APE(S) = lim sup
T →∞

APE(S, [0, T ]).

We then define a new cost ĈOST for schedule S as

ĈOST(S) = Ep[�] + APE(S) + ABC(S).(1)

This definition of the cost matches the one in [8] and [7]. The next claim proves that the
two cost functions COST and ĈOST are identical. (Note that this property is clear for
periodic schedules, since in that case both quantities (see Corollary 2) sum the squares
of the inter-broadcast lengths.)

PROPOSITION 3 (Time Reversibility). For any schedule S,

AST(S) = APE(S) + Ep[�].

PROOF. Consider a schedule S. We adopt the following notations:

• ni (T ) is the number of broadcasts of Mi that begin in [0, T ] in S.
• t i

j is the time elapsed between the ( j − 1)st and j th broadcasts of Mi (we assume that
a 0th broadcast of Mi occurs at time t = 0).

According to Lemma 1 and also Figure 2, we have

Ep[�]+ 1

2T

m∑
i=1

pi

ni (T )∑
j=1

(t i
j )

2 ≤ AST(S, [0, T ])≤Ep[�]+ 1

2T

m∑
i=1

pi

ni (T )+1∑
j=1

(t i
j )

2

and

Ep[�]+ 1

2T

m∑
i=1

pi

ni (T )∑
j=1

(t i
j )

2

︸ ︷︷ ︸
=def A(T )

≤Ep[�]+APE(S, [0, T ])≤Ep[�]+ 1

2T

m∑
i=1

pi

ni (T )+1∑
j=1

(t i
j )

2

︸ ︷︷ ︸
=def B(T )

.

We will prove that the lower and upper bounds, A(T ) and B(T ), above both have the
same lim sup. This will immediately imply that AST(S) = APE(S) + Ep[�].

If the lim sup of A(T ) is +∞, then clearly AST(S) = APE(S) = +∞.
Otherwise, take any κ such that for all T large enough, A(T ) ≤ κ . In particular, for

every i , take A(Ti ) with Ti = t i
1 + · · · + t i

ni (T )+1 ≤ T + t i
ni (T )+1, we have A(Ti ) ≤ κ and
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Fig. 2. Illustration of Proposition 3. Here, ni (T ) = 3.

thus

pi

2(t i
1 + · · · + t i

ni (T )+1)

ni (T )+1∑
j=1

(t i
j )

2 ≤ κ.

That is to say,

ni (T )+1∑
j=1

(t i
j )

2 ≤ 2
κ

pi
(t i

1 + · · · + t i
ni (T )+1) ≤ 2

κ

pi
(T + t i

ni (T )+1).(2)

Equation (2) implies two things:

• First, that for any i , (t i
ni (T )+1)

2 ≤ (2κ/pi )(T + t i
ni (T )+1), hence t i

ni (T )+1 = O(
√

T ).
• Second, (2) with this result yields that

B(T ) = 1

2T

m∑
i=1

pi

ni (T )+1∑
j=1

(t i
j )

2 ≤ κ

T

(
T + max

1≤i≤m
ti
ni (T )+1

)
≤ κ + O

(
1√
T

)
.

This is true for any κ such that A(T ) ≤ κ for all T large enough, it follows that the
lower and upper bounds, A(T ) and B(T ), have the same lim sup, and so AST(S) =
APE(S) + Ep[�].

3. A Reduction to Periodic Schedules. Previous work relied on the existence of a pe-
riodic optimal schedule. Although this statement still holds when there are no broadcast
costs (see Lemma 10), we do not currently know whether there is an optimal schedule
which is periodic in the case of broadcast costs. However, for the purpose of approxi-
mation, it is sufficient to consider periodic schedules, as the following lemma shows.

LEMMA 4 (Reduction to Periodic Schedules). For any set of messages M1, . . . , Mm ,

OPT = inf
S periodic

COST(S).

PROOF. It is enough to show that for any schedule S of the messages M1, . . . , Mm , and
for any ε > 0, their exists a periodic schedules S′ with cost COST(S′) ≤ COST(S) + ε.
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Let S be a schedule of M1, . . . , Mm and ε > 0. By definition of the cost of S, take T
so that for any t ≥ T , COST(S, [0, t]) ≤ COST(S) + ε/2. We choose t ≥ T , matching
the date of the end of the broadcast of some message in S, that will be fixed later. Let
S′ be the periodic schedule with period (t +L) which broadcasts the same messages as
S during [0, t], and then broadcasts during [t, t + L] the m messages in order of next
appearance in S after time t . This ensures that the requests which arise in S′ during [0, t]
are served no later than in S. A request that arises in S′ during [t, t +L] is served after at
most (L+ST(S, 0)) time, where ST(S, 0) denotes the average service time for a request
that arises at time 0 in S. Then

AST(S′) ≤ AST(S, [0, t]) + L(L + ST(S, 0))

t + L︸ ︷︷ ︸
a(t)=O(1/t)

.

As for the broadcast costs, we have

ABC(S′) ≤ ABC(S, [0, t]) + C
t + L︸ ︷︷ ︸

b(t)=O(1/t)

.

Hence,

COST(S′) ≤ COST(S, [0, t]) + (a(t) + b(t)) ≤ COST(S) + ε

2
+ (a(t) + b(t)),

and choosing t large enough (so that a(t) + b(t) = O(1/t) ≤ ε/2) yields the result.

4. About a Known Lower Bound. Finding good lower bounds is a key point to
designing provably efficient algorithms. The first lower bound LB0 below is a natural
generalization of the one from [22] and [8]. Unfortunately, this lower bound is not tight
when the messages have different lengths (see Fact 8), that is to say, it can take values
arbitrarily far from the optimal and then cannot be used to analyze the performances
of algorithms. This lower bound will however be used in the NP-hardness proof of
Theorem 11 and some other examples, which is why we present it in detail. In Section 6
we design a second tight lower bound.

We define LB0 as the following minimization problem:5

LB0


Ep[�] + min

τ>0

m∑
i=1

(
pi
τi

2
+ ci

τi

)
subject to

m∑
i=1

�i

τi
≤ 1.

Lemma 7 will show that its value is a lower bound for our problem. However, first we
see how to solve this minimization problem.

5 Note that the minimum within the optimization domain {τ : τ > 0 and
∑m

i=1(�i /τi ) ≤ 1} is well defined,

since whenever a τi tends to zero or to infinity, the objective function tends to infinity.
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LEMMA 5. The minimization problem LB0 admits a unique solution τ ∗ verifying

τ ∗
i =

√
2ci + λ∗�i

pi

for a certain λ∗ ≥ 0 (independent of i), such that λ∗ = 0 if
∑m

i=1 �i
√

pi/2ci ≤ 1;
otherwise, λ∗ is the unique positive solution to

∑m
i=1 �i

√
pi/(2ci + λ∗�i ) = 1.

With a slight abuse of notation, we use LB0 to denote both the problem and its optimal
value; the meaning should be clear from the context.

Newton’s algorithm can be used to compute efficiently the numerical approximation
of τ ∗ within arbitrary accuracy. Section 6.5 at the end of the algorithmic section presents
some of these implementation aspects.

PROOF. As in [8] we use Lagrangian relaxation. We explain this part in some detail
to justify rigorously the validity of the Lagrangian relaxation technique in this setting.
Let f (τ) = ∑m

i=1(piτi + 2ci/τi ) denote the variable term of the objective function, and
let g(τ) = 1 −∑m

i=1(�i/τi ) denote the (main) constraint of the system. The constraints
define a subdomain D of Rm

+. There are two cases:

• The minimum of f in D is reached in the interior of D, in which case it is a critical
point6 of f . Note that the particular f has a unique critical point τ # in Rm

+, defined by
τ #

i = √
2ci/pi , and which is the global minimum of f in Rm

+. Thus this case occurs
if and only if

∑m
i=1 �i

√
pi/2ci < 1. In this case the formula in the statement of the

lemma holds for λ∗ = 0.
• The minimum of f in D is reached on the boundary of D. Since f (τ) → ∞ as soon

as some τi goes to zero or to infinity, this minimum has to be on the surface defined
by the constraint g(τ) = 0. Then, according to classical minimization results, the
gradients of f and g are collinear, and moreover they point in the same direction since
f increases when τ enters the domain g(τ) > 0. Thus τ ∗ verifies two equations, for
some λ∗ ≥ 0:

(�)

{
grad f (τ ∗) = λ∗ grad g(τ ∗),
g(τ ∗) = 0.

Classically, this system can be rewritten by defining F(τ, λ) = f (τ) − λg(τ), as
follow:

(�) ⇐⇒ (τ ∗, λ∗) is a critical point of F

⇐⇒


∂ F

∂τi
(τ ∗, λ∗) = 0, for all i,

∂ F

∂λ
(τ ∗, λ∗) = 0.

6 Recall that a critical point is a point τ # such that for all i , (∂ f/∂τi )(τ
#) = 0.
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However,

∂ F

∂τi
(τ, λ) = pi − 2ci

τ 2
i

− λ�i

τ 2
i

and
∂ F

∂λ
(τ, λ) =

m∑
i=1

�i

τi
− 1.

So (�) has a unique solution (τ ∗, λ∗) verifying τ ∗
i = √

(2ci + λ∗�i )/pi , λ∗ ≥ 0, and∑m
i=1 �i

√
pi/(2ci + λ∗�i ) = 1. We conclude that F admits a unique critical point

τ ∗
i = √

(2ci + λ∗�i )/pi for some λ∗ ≥ 0 satisfying
∑m

i=1 �i
√

pi/(2ci + λ∗�i ) = 1.
This is then the unique minimum for f on domain D.

In both cases we have shown that the objective function f in LB0 admits a unique
minimum τ ∗ with the claimed value.

Note that when all messages have zero broadcast cost, Corollary 6 gives the “square-
root rule” in [22] inspired from the analysis of the uniform-length case in [5].

COROLLARY 6 (Square-Root Rule). If all the messages have zero broadcast cost (ci =
0, for all i), then

LB0 = Ep[�] + 1

2

(
m∑

i=1

√
pi�i

)2

and τ ∗
i =

√
�i

pi
λ∗

with λ∗ = (
∑m

j=1

√
pj�j )

2.

PROOF. According to Lemma 7, when all messages have zero broadcast cost, τ ∗ verifies

m∑
i=1

�i

τ ∗
i

= 1.(3)

Indeed, if the constraint was not an equality in LB0, one could decrease one of the τ ∗
i ’s

and then decrease the objective function in LB0.
Now, τ ∗

i = √
�iλ∗/pi for some λ∗ ≥ 0. Putting this expression in (3) then gives the

claimed value of λ∗, from which we compute the values of τ ∗
i and LB0.

LEMMA 7 (LB0). LB0 is a lower bound to the cost of any schedule of M1, . . . , Mm .
Furthermore, a periodic schedule S has cost LB0 if and only if S schedules each mes-
sage Mi periodically at intervals of lengths exactly τ ∗

i , where τ ∗ is the unique solution
to LB0.

PROOF. Without loss of generality (from Lemma 4), we restrict ourselves to periodic
schedules. The proof is then along the lines of [5] and [8], relaxing the problem by
allowing message broadcasts to overlap. Consider a periodic schedule S with period T .
We use the results and notations in Corollary 2. The contribution of each message Mi to
the cost is COST(S, Mi ) = pi�i + (

∑ni
j=1 pi ((t i

j )
2/2T )) + (ni/T )ci .
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For every given ni , since
∑ni

j=1 t i
j = T , the sum of the squares is minimized if and

only if all terms t i
j are equal: if t i

j = T/ni for all j . We define τi = T/ni , we get
that

COST(S, Mi ) ≥ pi�i + pi
τi

2
+ ci

τi
.

Summing up the different contributions then yields a lower bound on the cost of S:

COST(S) ≥ Ep[�] +
m∑

i=1

(
pi
τi

2
+ ci

τi

)
.(4)

Since the total available bandwidth over a period is T , we have
∑m

i=1 ni�i ≤ T , which
yields the constraint on the τi ’s. LB0 is thus a lower bound on the cost of S.

Realizability of the lower bound. According to the proof above, a periodic schedule S
has cost ≤ ∑m

i=1(piτi/2 + ci/τi ) where τi = T/ni if and only if it schedules message
Mi exactly every τi . Since LB0 has a unique solution τ ∗ (Lemma 5), a periodic schedule
whose cost is equal to LB0, necessarily broadcasts Mi exactly every τ ∗

i .

We say that a lower bound LB for a minimization problem is tight if the ratio OPT / LB
is bounded. The lower bound above was tight in the setting of [8]. However, in our model
where the message lengths vary, this is no longer the case: OPT / LB0 can be arbitrarily
large; moreover, using the frequencies 1/τ ∗

i as in [5] and [8] to broadcast the messages
(Mi ) can generate arbitrarily bad schedules.

FACT 8. LB0 is not tight, even when messages have zero broadcast cost.

PROOF. Consider the following two messages M1 and M2 with zero broadcast cost: M1

has length 1 and popularity L/(L + 1); and M2 has length L and popularity 1/(L + 1).
Lemma 6 gives LB0 = 4L/(L + 1) (τ ∗

1 = 2 and τ ∗
2 = 2L). Then LB0 = �(1), when L

goes to infinity. However, according to [10], the optimal schedule alternates scheduling
message M1 �(L

√
L) times and message M2 once, and has cost OPT = √

L + O(1) �
�(1) = LB0.

Furthermore, note that if one tries to schedule message M1 with frequency proportional
to 1/τ∗

1 = �(1) and message M2 with frequency proportional to 1/τ∗
2 = �(1/L),

broadcasting M2 occupies L ·�(1/L) = �(1) of the channel. Then �(1) of the requests
for M1 arise during a broadcast of M2 and then wait on average L/2. The cost of the
resulting schedule S is then at least (L/2)�(1) = �(L) and

COST(S) = �(L) � OPT = �(
√

L) � LB0 = �(1).

The next section uses this lower bound to prove that the Data Broadcast Problem with
non-uniform lengths is NP-hard. In Section 6 we design a new lower bound which is
tight and use it to design an algorithm with constant approximation ratio.
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5. NP-Hardness of the Data-Broadcast Problem. We will show that even when there
are no broadcast cost, the Data Broadcast Problem is already strongly NP-hard. In all of
this section we assume that all broadcast costs are equal to zero.

5.1. Structural Properties of an Optimal Solution

LEMMA 9 (Maximum Interval). Let S be a periodic schedule of M1, . . . , Mm . There
exists a periodic schedule S′ with COST(S′) ≤ COST(S) and such that for any i , the
intervals between two broadcasts of Mi all have length at most K:

K = 5�max

pmin
.

PROOF. The proof works by induction.

Construction of S1. Consider in S an interval with maximum length, A1, between two
consecutive broadcasts of the same message. Without loss of generality, this message
is M1 and the first of those two broadcasts of M1 occurs at time 0. Assume A1 ≥
K. We construct a periodic schedule S1 by inserting in S a broadcast of M1 at time
(A1 + �1 − �max)/2, or as soon as possible after that time (that is, if there is a message
being broadcast, we wait until the broadcast is finished before inserting M1); let t1 be
this date: (A1 + �1 − �max)/2 ≤ t1 < (A1 + �1 + �max)/2.

Analysis of S1. If T is the period of S, then S1 has period T + �1. We show that
the cumulated cost of S1 is smaller than the cumulated cost in S, i.e., 
 =def (T +
�1) COST(S′) − T COST(S) ≤ 0.

• According to Lemma 1, in S the cumulated service time for M1 has a term p1(A2
1/2),

accounting for the interval in which M1 is inserted. In S1 that term disappears and is
replaced by

p1

2
(t2

1 + (A1 + �1 − t1)
2) ≤ p1

(
A1 + �1 + �max

2

)2

since the insertion time t1 of M1 satisfies (A1+�1−�max)/2 ≤ t1 < (A1+�1+�max)/2.
• For i ≥ 2, let Ai denote the length of the interval in S between two broadcasts of

Mi , in which M1 is inserted. In S the cumulated service time for Mi (i ≥ 2) has a
term pi (A2

i /2), accounting for the interval in which M1 is inserted. In S1 that term
disappears and is replaced by pi ((Ai + �1)

2/2).

The overall variation 
 is thus bounded by


 ≤ p1

4
((A1 + �1 + �max)

2 − 2A2
1) +

m∑
i=2

pi

2
((Ai + �1)

2 − A2
i )

= p1

4
(−A2

1 + 2A1(�1 + �max) + (�1 + �max)
2) +

m∑
i=2

pi

2
(2�1 Ai + �2

1).

Using �1 ≤ �max and Ai ≤ A1, and replacing p2 + · · · + pm by 1 − p1, we get


 ≤ − p1

4
A2

1 + �max A1 + �2
max.



160 C. Kenyon and N. Schabanel

In terms of A1, this last expression is a polynomial of degree 2 with negative leading
coefficient. Since A1 ≥ K and K is larger than the maximum root of that polynomial,
we conclude that 
 is negative.

The induction. Repeating the construction, we note that any two insertions of the same
message must be at distance at least K/2 from each other, hence there can be only a
finite number of iterations, after which we obtain the requested schedule S′.

Note that Schabanel [19] extends the above lemma to the setting where there are
positive broadcast costs.

Since all the messages have zero broadcast cost, it never helps for a schedule to
remain idle: one can always decrease the service time of a schedule by skipping all the
idle periods. Consequently, we can restrict our search for optimal schedules to schedules
that never idle.

The following lemma states that in this situation, there is an optimal schedule which
is periodic (note that we currently do not know whether an optimal periodic schedule
exists if broadcast costs are present).

LEMMA 10. If the messages have no broadcast costs, then there exists an optimal
schedule S∗ which is periodic.

PROOF. Since there are no broadcast costs, we only consider schedules with no idle
times. We use Lemma 4 again. We will prove that among periodic schedules, there exists
a schedule S∗ of minimum cost. Since

COST(S∗) = inf
S periodic

COST(S) = OPT,

S∗ will be optimal among all schedules. Henceforth we only consider periodic schedules.
Moreover, thanks to Lemma 9, we can restrict our search to schedules in which any
interval where Mi is not broadcast has length at most K.

We use the penalty-based definition of the cost (see Section 2.3). By Proposition 3,

COST(S) = Ep[�] + APE(S).

We use a graph construction similar to that in [6] and [7]. We consider the following
weighted directed graph G with costs. A vertex of G is an m-tuple 〈a1, . . . , am〉 with 0 ≤
ai ≤ K. Semantically, being at that vertex at time t means that for all i , the last broadcast
of Mi started at time t − ai . Thus ai is a sum of values in {�1, �2, . . . , �m} bounded by
K, hence can only take a finite number of distinct values; G is thus a finite graph. For
every i , there is an edge e from 〈a1, . . . , ai , . . . , am〉 to 〈a1 +�i , . . . , �i , . . . , am +�i 〉, of
length �(e) = �i . Following that edge means that Mi is the next message broadcast. We
associate to that edge a cost c(e) which is the sum of the cumulated average downloading
time �iEp[�] and of the cumulated penalty over the corresponding period of time. During
this period, the average penalty for Mj is: pj (aj + �i/2), if j �= i , and pi (�i/2) if j = i .
So the cost of e is defined as

c(e) = �i ·
(

Ep[�] + �i

2
+

m∑
j=1, j �=i

pj aj

)
.
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The schedules we consider are in bijection with the cycles of G, and, by Proposition 3, the
cost of a schedule is exactly the mean cost of the corresponding cycle γ :

∑
e∈γ c(e)/

∑
e∈γ

�(e). Since the cost of every cycle γ of H is the weighted sum of the cost of the elementary
cycles composing it, and there are only a finite number of elementary cycles, the minimum
is reached by a particular cycle γ ∗. The corresponding schedule is optimal.

5.2. NP-Hardness. In order to stay in the Turing machine framework for the NP-
hardness proof, we restrict the input to rational numbers.

THEOREM 11 (NP-Hardness). The decision problem associated to the restriction of the
Data Broadcast Problem to the case of messages of rational length and popularity and
with zero broadacst cost is strongly NP-hard.

PROOF. We use a reduction of N -partition [14], which, given a sequence of m integers
x1, . . . , xm , decides whether there exists a partition of {1, . . . , m} into N sets I1, . . . , IN

such that
∑

i∈I1
xi = · · · = ∑

i∈IN
xi . Let S =def x1 + · · · + xm . Consider the following

instance of data broadcast: (m + 1) messages M1, . . . , Mm, Mm+1 with zero broadcast
costs such that 

Mi≤m : �i = xi and pi = xi

2S ,

Mm+1: �m+1 = S
N 2

and pm+1 = 1
2 .

Note that all the numbers are rational with polynomial sizes. We reduce N -partition to
the following decision problem: (A) “Does there exist a schedule with average service
time less than or equal to LB0?” First, we must calculate LB0.

According to Corollary 6, the solution τ ∗ of the lower bound LB0 verifies

τ ∗
i =

√
�i

pi
λ∗ with λ∗ =

(
m+1∑
i=1

√
pi�i

)2

.

That is to say

λ∗ =
( √

S√
2N

+
m∑

i=1

xi√
2S

)2

= S
2

(
1

N
+

m∑
i=1

xi

S

)2

= S
2

(
1

N
+ 1

)2

.

Then

τ ∗
m+1 =

√
2S
N 2

S
2

(
1 + 1

N

)2

= S
N

+ S
N 2

,

and, for 1 ≤ i ≤ m,

τ ∗
i =

√
2S
xi

xi
S
2

(
1 + 1

N

)2

= S + S
N

.

We conclude that

τ ∗
m+1 = S

N
+ �m+1 and τ ∗

1 = · · · = τ ∗
m = S + N�m+1 = N · τ ∗

m+1
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Fig. 3. A schedule that satisfies the decision problem (A).

and the lower bound LB0 is

LB0 = Ep[�] + 1

2

(
m+1∑
i=1

√
pi�i

)2

= S
2N 2

+
∑m

i=1 x2
i

2S + S
4

(
1 + 1

N

)2

.

We then reduce N -partition to the following decision problem: (A) “Does there exist a
schedule with average service time less than or equal to (S/2N 2 + (

∑m
i=1 x2

i )/2S +
(S/4)(1 + 1/N )2)?”

According to Lemma 10, there exists an optimal periodic schedule of the messages
M1, . . . , Mm, Mm+1. Thus (A) is equivalent to: (A′) “Does there exist a periodic schedule
of the messages M1, . . . , Mm, Mm+1 with average service time less than or equal to
(S/2N 2 + (

∑m
i=1 x2

i )/2S + (S/4)(1 + 1/N )2)?” According to Lemma 7, the answer is
“yes” if and only if there exists a periodic schedule S that broadcasts Mm+1 exactly every
τ ∗

m+1 = �m+1 +S/N , and each Mi≤m exactly every τ ∗
i = (N�m+1 +S) = N ·τ ∗

m+1. Such
a schedule exists if and only if one can partition {M1, . . . , Mm} into N setsM1, . . . ,MN

such that (see Figure 3) ∑
Mi ∈M1

�i = · · · =
∑

Mi ∈MN

�i .

6. 3-Approximation Algorithms

6.1. A New Lower Bound. We present here a new lower bound LBα for the data broad-
cast with non-uniform transmission times. The analysis of the algorithms will show in
the next section that this lower bound is indeed tight.

Upon closer examination, one realizes that the cost of any schedule for the set of
messages in Fact 8 is unavoidably high because whenever a really long message is
broadcast, all incoming requests have to wait. This observation led us to the following
improved lower bound. We will see in Theorem 17 that this improved lower bound is
tight up to a constant factor.

We define the quantity LBα as the following minimization problem, for 0 ≤ α < 1:

LBα


Ep[�] + min

τ>0

m∑
i=1

(
(1 − α)pi

τi

2
+ α

�2
i

2τi
+ ci

τi

)
subject to

m∑
i=1

�i

τi
≤ 1.

Note that for α = 0, we obtain LB0.
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As before this minimization problem is solved as follows:

LEMMA 12. For 0 ≤ α < 1, the minimization problem LBα admits a unique solution
τ� verifying

τ�
i =

√
2ci + α�2

i + λ��i

(1 − α)pi

for a certain λ� ≥0 (independent of i), such that λ� =0 if
∑m

i=1 �i

√
(1−α)pi/(2ci +α�2

i )

≤1; otherwise,λ� is the unique positive solution to
∑m

i=1 �i

√
(1−α)pi/(2ci +α�2

i +λ��i )

= 1.

PROOF. Straightforward application of Lemma 5 with the modified cost c′
i = (α�2

i +
2ci )/2(1 − α).

PROPOSITION 13. For any 0 ≤ α < 1, the minimization problem LBα is a lower bound
to the cost of any schedule of M1, . . . , Mm .

PROOF. Thanks to Lemma 4, we restrict ourself to periodic schedules. Let S be a
periodic schedule. We denote by T its period, and by ni the number of broadcasts of Mi

during a period. We define τi = T/ni . We know from (4) that

COST(S) ≥ Ep[�] +
m∑

i=1

(
pi
τi

2
+ ci

τi

)
.

We show here another lower bound on COST(S).
Since every message Mi is broadcast ni times in a period of S, the average broadcast

cost for S is ABC(S) = ∑m
i=1(ni ci/T ) = ∑m

i=1(ci/τi ).
Consider now a random request for message Mj in S. With probability ni�i/T =

�i/τi , it arrives during a broadcast of Mi and has to wait until the end of the current
broadcast, i.e., �i/2 on average, before starting to download anything. The downloading
time of the requested message is �j . Summing over i , we get that the average service
time for the request is at least

�j +
m∑

i=1

�i

τi
· �i

2
= �j +

m∑
i=1

�2
i

2τi
.

Summing over j , we get that the service time is at least

AST(S) ≥ Ep[�] +
m∑

i=1

�2
i

2τi
.

Summing the lower bounds on the service time and broadcast cost, we get the following
lower bound on the cost of S:

COST(S) ≥ Ep[�] +
m∑

i=1

(
�2

i

2τi
+ ci

τi

)
.
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A linear (1 − α, α) combination with (4) then gives that LBα is also a lower bound on
the cost of S.

The analysis of our randomized algorithm in the next section shows that this lower
bound is indeed tight.

6.2. A Randomized 3-Approximation. According to the lower bound LBα , one should
try to broadcast the messages Mi regularly proportionally to τ�

i . A classical method in
designing randomized algorithms (see [15], [5], [8], and [22] in the data broadcasting
context) is to choose randomly to broadcast message Mi with probability proportional
to 1/τ�

i . We show in this subsection that this leads to a 3-approximation.
Lemma 14 analyzes the expected performance of an algorithm that broadcasts each

message Mi with some probability si and stays idle for a period of time �0 with probabil-
ity s0. Note that the idle periods are necessary: when broadcast costs are very high, it is
worth, from time to time, not to broadcast any messages. Theorem 15 concludes that this
algorithm is a 3-approximation when (si ) and �0 are chosen as in the preprocessing step.

LEMMA 14. The randomized schedule output by Algorithm 1 has expected cost

E[COST(S)] = Es[�2]

2Es[�]
+ Ep

[
1

s

]
· Es[�] + Es[c]

Es[�]
.

Algorithm 1. A randomized scheduler

INPUT:
1. m messages M1, . . . , Mm with popularities (pi )i=1,...,m , with lengths (�i )i=1,...,m

and broadcast costs (ci )i=1,...,m .
PREPROCESSING:

Consider α = 1
3 and τ� the unique solution to LBα:

LBα


Ep[�] + min

τ>0

m∑
i=1

(
(1 − α)pi

τi

2
+ α

�2
i

2τi
+ ci

τi

)
subject to

m∑
i=1

�i

τi
≤ 1

as presented in Lemma 12. Take �0 = Ep[�]. Define τ�
0 by �0/τ

�
0 = 1 −∑m

i=1(�i/τ
�
i ).

For i = 0, . . . , m, take

si = 1/τ�
i∑m

j=0
(1/τ�

j )
.

OUTPUT:
loop

Draw i ∈ {0, . . . , m} with probability si .
if i = 0 then

The server remains idle for an time period of length �0.
else

The server broadcasts message Mi .
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PROOF. We analyze separately the expected average broadcast cost and the expected
average service time. Let Ni (t) be the number of broadcasts of message Mi that start
during the time period [0, t].

The broadcast cost. By definition, ABC(S, [0, T ]) = ∑m
i=1(ci Ni (T )/T ). By the

Borel–Cantelli theorem, limT →∞(Ni (T )/T ) = si/Es[�]. The linearity of expectation
then implies

E[ABC(S)] =
m∑

i=0

ci si

Es[�]
= Es[c]

Es[�]
.

The service time. Consider a request Q for Mi arriving at time t . Its service time ST(S,

Mi , t) is

ST(S, Mi , t) = Y (t) + Zi + �i ,

where Y (t) is the time elapsed from t to the end of the current broadcast at time t , and
Zi is the time elapsed from t + Y (t) to the beginning of the next broadcast of Mi . Note
that Y (t) is independent of i and Zi is independent of t .

First we compute E[Y (t)]. From the Borel–Cantelli theorem, the scheduler spends
on expectation an sj�j/Es[�] fraction of the time broadcasting Mj . Thus, with probabil-
ity sj�j/Es[�], request Q arises during a broadcast of message Mj and then waits �j/2
on expectation. Thus,

E[Y (t)] =
m∑

j=0

sj�j

Es[�]
· �j

2
= Es[�2]

2 Es[�]
.

Second, to compute E(Zi ), observe that there are on expectation
∑

t≥0 tsi (1 − si )
t =

(1−si )/si messages broadcast before Mi is sent, and each of those messages has expected
length (1/(1 − si ))

∑m
j=0, j �=i sj�j . So,

E[Zi ] =
∑m

j=0, j �=i sj�j

si
.(5)

Finally, the expected service time for request Q (including the downloading time) is

E[ST (S, Mi , t)] = E[Y (t)] + E[Zi ] + �i

= Es[�2]

2Es[�]
+
∑m

j=0, j �=i sj�j

si
+ �i = Es[�2]

2Es[�]
+ 1

si
Es[�].

Summing over all messages (weighted with their respective popularities) and adding the
expected broadcast cost concludes the proof of the lemma.

THEOREM 15. Algorithm 1 is a randomized polynomial 3-approximation.

PROOF. Plugging the values of si into the lemma, a straightforward calculation gives
the expected cost of the randomized schedule S output by Algorithm 1. Compare this



166 C. Kenyon and N. Schabanel

cost with LBα term by term:

E[COST(S)] =
m∑

i=1

piτ
�
i +

m∑
i=0

�2
i

2τ�
i

+
m∑

i=1

ci

τ�
i

,

LBα = Ep[�] +
m∑

i=1

(
1 − α

2
piτ

�
i + α

�2
i

2τ�
i

+ ci

τ�
i

)
.

We obtain

E[COST(S)] ≤ �0

2
· �0

τ�
0

+ max

(
2

1 − α
,

1

α
, 1

)
· (LBα −Ep[�]).(6)

Using �0/τ
�
0 ≤ 1, LBα ≤ OPT, �0 = Ep[�], and α = 1

3 , we finally get

E[COST(S)] ≤ 3 OPT −Ep[�]

2
.(7)

Note that the term −Ep[�]/2 could be omitted but it will be useful to prove The-
orem 17.

As a corollary of the proof, we observe that for any 0 < α < 1, LBα is a tight lower
bound.

6.3. Derandomizing: a Deterministic Greedy 3-Approximation. The algorithm so far
constructs a randomized schedule, which has the inconvenience of not being periodic.
Periodicity is a particularly useful property when designing a cache or prefetching strat-
egy [2] as well as indexing to allow power saving by reducing the monitoring time [18].
In this section we derandomize Algorithm 1 into a deterministic algorithm, which we
then, in the next section, truncate and wrap around cyclically to produce a deterministic
periodic schedule with quadratic length.

Our approach is inspired by the analysis in [8] of the greedy algorithm of [5]. A
close look at the potential function used in [8] reveals that the algorithm of [5] could
be obtained from the randomized algorithm of [15] by applying the method of condi-
tional expectations. Similarly, we apply the method of conditional expectations to the
randomized algorithm in the previous section.

DEFINITION. We denote by σ t
i (S) the time elapsed at time t since the beginning of

the last broadcast of Mi before time t in a schedule S (by convention, we assume that
σ t

i (S) = t for all time t before the first broadcast of Mi ). Let σ t (S) = (σ t
i (S)) be the

state of the schedule at time t .

The following lemma shows that the greedy Algorithm 2 performs at least as well as
the randomized Algorithm 1.
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Algorithm 2. A greedy scheduler

INPUT: As in Algorithm 1.
PREPROCESSING: As in Algorithm 1.
OUTPUT:

loop
Let σi be the time elapsed since the beginning of the last broadcast of Mi .
Choose i ∈ {0, 1, . . . , m} which minimizes

ci + �2
i

2
− piσi

Es[�]

si
− �i

{
1

2

Es[�2]

Es[�]
+ Es[c]

Es[�]
−

m∑
j=1

pjσj

}
︸ ︷︷ ︸

independent of i

if i = 0 then
The server remains idle for a time period �0.

else
The server broadcasts message Mi .

LEMMA 16 (Greedy Algorithm). Algorithm 2 outputs a schedule S whose cost is at
most the expected cost of Algorithm 1, given in Lemma 14.

NOTE 1. When all the lengths are equal to 1, Algorithm 2 is the algorithm of [8].

PROOF. Let Mgn denote the nth message broadcast, where by convention M0 denotes
an idle period of length �0. We use the penalty-based definition of the cost presented in
Section 2.3. According to (1) and Proposition 3,

COST(S) = ĈOST(S) = lim sup
N→∞

ĉost(1, S) + · · · + ĉost(N , S)

�g1 + · · · + �gN

,(8)

where ĉost(n, S) is the sum of �gn Ep[�] and of the cumulated penalty and broadcast costs
of a schedule S during the broadcast of Mgn .

Let σ n(S) denote the state at the end of the nth broadcast in S. Our analysis uses a
potential function defined by

�(n, S) =def

m∑
j=1

pjσ
n
j (S)

(
Es[�]

sj
− �j

)
.(9)

The definition of � generalizes the potential function in [8] using the following intuition:
�(n, S) is exactly the expected wait of the requests still unserved at the end of the nth
broadcast in S if the schedule uses randomized Algorithm 1 after the nth broadcast. A
request for Mj would then wait

∑m
k=0,k �= j (�ksk/sj ) = Es[�]/sj − �j in expectation (see

(5) in the proof of Lemma 14). � thus takes into account the future cost which is not
part of the penalty.

Let Avg denote the expected cost of the randomized algorithm, as given in Lemma 14.
We will show that the selection rule ensures that at every step n that broadcasts Mi ,

ĉost(n, S) − �(n − 1, S) + �(n, S) ≤ �i Avg .(10)
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Summing over n and dividing by the sum of the lengths then yields∑N
n=1 ĉost(n, S) + �(N , S) − �(0, S)

�g1 + · · · + �gN

≤ Avg,

which concludes the proof since �(N , S) is always non-negative and �(0, S) = 0.
We now concentrate on proving (10). Let Si be the schedule which is identical to S

for the first (n − 1) steps but broadcasts message Mi during the nth step. We show two
facts: first, that (10) holds on average when i is selected according to distribution s; and,
second, that the greedy selection rule selects the i that minimizes the difference between
the left- and the right-hand sides in (10), thus ensuring that (10) holds.

In Si we have σ n
j (Si ) = σ n−1

j (S)+�i for j �= i , and σ n
i (Si ) = �i . A simple calculation

then gives

�(n, Si ) − �(n − 1, Si ) = �i

m∑
j=1

pj

(
Es[�]

sj
− �j

)
− piσ

n−1
i (S)

(
Es[�]

si
− �i

)
.

Moreover, the average penalty for Mj during the broadcast of Mi is pj (σ
n−1
j (S) + �i/2)

if j �= i , and pi (�i/2) if j = i . Thus,

ĉost(n, Si ) = ci + �2
i

2
+ �i

m∑
j=1, j �=i

pjσ
n−1
j (S) + �iEp[�].

Thus, the left-hand side of (10) equals

L.H.S.(10)=ci + �2
i

2
+�i

m∑
j=1

pjσ
n−1
j (S)+�iEp

[
1

s

]
· Es[�]− piσ

n−1
i (S)

Es[�]

si
.(11)

Taking the expectation over i gives

Es[L.H.S.(10)] = Es[c] + 1
2 Es[�2] + Ep

[
1

s

]
· Es[�]2 = Es[�] Avg,

which concludes the first fact. Second, using (11) and the expression of Avg given in
Lemma 14, note that the difference between the left- and the right-hand sides in (10) can
be rewritten as

−piσ
n−1
i (S)

Es[�]

si
+ ci + �2

i

2
− �i

{
Es[�2]

2Es[�]
+ Es[c]

Es[�]
−

m∑
j=1

pjσ
n−1
j (S)

}
.

The greedy rule selects at each step the message Mi that minimizes this quantity which
ensures that (10) holds at each step.

6.4. Truncating: a Deterministic Periodic 3-Approximation. In this section we prove
that one can stop the greedy algorithm after a quadratic number of steps and obtain a
periodic 3-approximation by wrapping the schedule around.

The construction is illustrated in Figure 4. Algorithm 3 defines a periodic schedule
of period T + L, with T0 ≤ T < T0 + �max.
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Fig. 4. The periodic approximation.

THEOREM 17 (Deterministic and Periodic Approximation). Algorithm 3 outputs a pe-
riodic schedule S with period ≤ 2(L2 + C)/Ep[�] + �max and with cost ≤ 3 OPT.

PROOF. We adopt the same notations (σ n(S), �(n, S), . . .) as in the proof of Lemma 16.
As in that lemma, we use the penalty-based definition of the cost of S (see Section 2.3).
S has period (T + L).

Analysis of the time interval [L, T + L]. According to (10), the cumulated cost of S
for this time interval is bounded by

T Avg +�(m, S) − �(N + m, S),(12)

where N is the number of broadcasts in S during that time interval.

Analysis of the time interval [0,L]. Every message is broadcast once during this period,
the total broadcast cost for this period is then clearly C. If ti denotes the time of the first
broadcast of Mi , then the cumulated penalty of S during [0,L] is

m∑
i=1

pi

(
ti

(
ti
2

+ σ N+m
i (S)

)
+ (L − ti )

(L − ti )

2

)
≤

m∑
i=1

pi tiσ
N+m

i (S) + L2.

Since the messages are broadcast by order of decreasing si , ti is less than the expected
time, (Es[�]/si − �i ), of the first broadcast of Mi in Algorithm 1, so, ti ≤ Es[�]/si − �i .
Recalling the definition of �, (9), we get

�(N + m, S) ≥
m∑

i=1

pi tiσ
N+m

i (S).

Adding the cumulated costs during the two time intervals and using (8), we obtain that
the total cost satisfies

(T + L) COST(S) ≤ T Avg +�(m, S) + L2 + C.

Algorithm 3. A periodic scheduler

INPUT: As in Algorithms 1 and 2.
PREPROCESSING: As in Algorithms 1 and 2. Let T0 = 2(L2 + C)/Ep[�] − L.
OUTPUT: The first period of the schedule is as follows.

1. Broadcast each message Mi once (i = 1, . . . , m), in order of decreasing si .
2. Run Algorithm 2 until time T0 + L, then finish the current broadcast.
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Now, �(m, S) is the expected future waiting time of requests still unserved at the be-
ginning of the period, if one was to continue with the randomized algorithm. All the
requests arose in the past L time, so �(m, S) ≤ LAvg. Thus,

COST(S) ≤ Avg +L2 + C
T + L .

From our definition of T0, T +L ≥ T0 +L ≥ 2(L2 + C)/Ep[�]. Recalling from (7) that
Avg ≤ 3 OPT −Ep[�]/2, we conclude that

COST(S) ≤ 3 OPT .

Time complexity (number of broadcast steps). The computation of τ� is discussed in
the next section. Sorting the si ’s takes O(m log m) time. The time complexity here is
bounded by the number of steps, N , of the greedy algorithm. Time increases at each step
by at least �min, so the schedule is computed after N ≤ 2(L2 + C)/Ep[�]�min steps (i.e.,
O(m2) steps if lengths and broadcast costs are constant).

6.5. Numerical Concerns. From an implementation viewpoint, the solution to LBα

(and LB0) in Lemma 12 (and 5) cannot in general be calculated exactly. Solving the
minimization problem LBα reduces to finding the unique positive solution λ� to

m∑
i=1

�i

√
ai

bi + λ�i
= 1,

where �i > 0, 0 < ai ≤ 1, and bi > 0. Since λ �→ ∑m
i=1

√
ai/(bi + λ�i ) is a con-

vex decreasing function, Newton’s algorithm is an efficient solution. In order to bound
Newton’s algorithm convergence time, we just need to bound λ�. We have

1√
λ� + mini (bi/�i )

m∑
i=1

√
ai�i ≥ 1.

Since ai ≤ 1 and bi ≥ 0, we get

0 ≤ λ� ≤
(

m∑
i=1

√
�i

)2

− min
i

bi

�i
≤ mL.

Thus Newton’s algorithm computes an approximation of λ� within ε accuracy from the
seed λ = 0 in time O(log log((1/ε)Lm)). We can compute in sublogarithmic time an
approximation of τ� within ε accuracy. Since the optimal τ ∗

i are bounded away from
zero, the cost given in (6) does not increase much under a perturbation of τ near the
optimal solution.

7. A Multiple Channels Framework. The problem as stated since the beginning of
this paper can be seen a single channel data broadcast: the server can only broadcast
one message at any time. One can naturally extend the definitions to a multiple channels
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framework, as in [8], where the scheduler has W channels available for broadcasting the
messages:

• A schedule S of M1, . . . , Mm on W channels is, formally, a set of ordered pairs
(sw(n), tw(n)), where 1 ≤ w ≤ W . For any n ≥ 1, we define sw(n) = i if Mi is the
nth message broadcast on channel w, and the starting time of this broadcast is tw(n).
Since channel w must finish broadcasting a message before it can start broadcasting
any other message, we have the constraint

(∀w) (∀n) tw(n + 1) ≥ tw(n) + �sw(n).

S is periodic if there is a T > 0 (the period) such that for every channel w, there exists
Nw > 0 such that for any n ≥ 1, sw(n + Nw) = sw(n) and tw(n + Nw) = tw(n) + T .

• The clients connect at a uniform random time (given by some Poisson process7), ask
for a random message Mi (according to the distribution pi ), monitor all the channels
simultaneously, and download the requested message as soon as it is broadcast on
some channel (clients cannot start downloading in the middle of the broadcast of a
message but have to wait until the next broadcast).

• The cost is the sum of the average service time (average monitoring time plus average
downloading time) and of the average broadcast cost.

The multiple channel problem is not well understood. Schabanel [19] shows that
finding an optimal periodic schedule is NP-hard. However, no approximation algorithm
with constant performance guarantee is known at this point. The lower bound techniques
used in Section 6.1 do not seem to work.

We now discuss in some detail some of the difficulties. As we will see the multiple
channel case with non-uniform transmission time differs radically from the uniform case
studied in [8].

7.1. What Is Still True?

Expression and Reversibility of the Cost. The algebraic expression of the cost given
in Lemma 1 only relies on the time between two consecutive broadcasts of the same
messages. In the multiple channel framework, the two consecutive broadcasts may not
occur on the same channel, as can be seen in Figure 5, but in [19] it is shown that the cost
still has the same expression. Similarly, in [19] it is shown that the reversibility lemma
(Proposition 3) also holds in the multiple channel framework.

The Lower Bound LB0 Is Not Tight. As shown in [19], the lower bound LB0 extends
naturally to a lower bound on W channels, by increasing the available bandwidth from
1 to W . We get

LB0


Ep[�] + min

τ>0

m∑
i=1

(
pi
τi

2
+ ci

τi

)
subject to

m∑
i=1

�i

τi
≤ W.

7 See footnote 4.
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Fig. 5. The cost has the same representation in the multiple channel framework.

As in the one channel case, this lower bound is not tight. We extend the example in Fact 8
as follows: consider W + 1 messages M1, . . . , MW+1 where Mi has length �i = Li−1

and popularity pi = α/Li−1 where α is chosen so that p1 + · · · + pW+1 = 1.

FACT 18 [19]. For the set of messages given above, the optimal schedule on W channels
has cost OPT = �(L2−W

) but LB0 = �(1) when L goes to infinity.

PROOF SKETCH. A simple adaptation of Lemma 5 gives LB0 = �(1). However, the
optimal schedule on W channels has cost �(L2−W

) � LB0. It is a periodic schedule
with period LW+2−W

and constructed recursively as follows: between time t = 0 and
t = LW , MW+1 is broadcast on channel W and M1, . . . , MW are broadcast on the first
W −1 channels according to the optimal schedule on W −1 channels; and between time
t = LW and t = LW+2−W

, messages M1, . . . , MW are broadcast continuously each on
one of the W channels. The complete proof can be found in [19].

NP-Hardness. The reduction from N -partition given in the proof of Theorem 11 can
be extended by adding W − 1 messages with popularities and lengths adjusted so that
each would be broadcast continuously on one of the channels 2, . . . , W according to
LB0. Thus, finding the optimal cost of a periodic schedule on W channels is strongly
NP-hard [19].

7.2. What Is Not True Anymore?

Lower Bounds. The techniques used to design our lower bound do not work when
broadcasting on several channels. LBα (α > 0) is not a lower bound for the multiple
channel case: it is no longer true that no request can be served during the broadcast
of a message. Unlike in the uniform setting in [8], the optimal cost on W channels
depends non-trivially on W . As can be seen with the example of Fact 18, adding a
channel can reduce the optimal cost by an arbitrary factor:8 on W channels the optimal

8 In the uniform setting only a factor of W/(W + 1) could be saved.
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Fig. 6. An optimal schedule.

cost for the W + 1 messages is �(L2−W
), which tends to infinity when L grows; but

with W + 1 channels, the schedule that broadcasts Mi continuously on channel i has
cost �(1). As far as we know, no tight lower bound is known for the multiple channel
setting.

Periodicity of an Optimal Schedule. We do not know which condition would guarantee
the existence of an optimal periodic schedule when broadcasting on several channels.

First, there does not necessarily exist a periodic optimal schedule when there are
several channels.9 Indeed, consider the scheduling problem on two channels of two
messages M1 and M2, of lengths �1 = 1 and �2 = √

2, and popularities p1 = √
2/(1 +√

2) and p2 = 1/(1+√
2), and zero costs. A direct modification of Lemma 7 (Section 4)

gives that LB0(M1, M2) = √
2/2(1 + √

2) is a lower bound to the cost of any two-
channels schedule of M1 and M2. Note that it is realized by the schedule that keeps
broadcasting M1 on the first channel and M2 on the second.

However, if there was a periodic optimal schedule, it should, according to Lemma 7,
broadcast M1 every τ∗

1 = 1 time and M2 every τ∗
2 = √

2 time: this is impossible
since 1/

√
2 is irrational. This example relies on irrationality and may appear artifi-

cial (in particular, the periodicity condition is verified on each individual channel).
However, it shows that our proof techniques in Lemma 10 (based on the construc-
tion of a finite graph) do not work in the multiple channel framework. We do not
know whether having only rational lengths implies the existence of an optimal periodic
schedule.

Second, when broadcasting on several channels, we cannot assume that an optimal
schedule never stays idle, even if the messages have zero broadcast cost (as in Sec-
tion 5.1). Indeed, consider the broadcast of the following two messages M1 and M2 on
two channels: �1 = 2 and p1 = 1−ε; �2 = 3 and p2 = ε. For ε small enough, M2 will be
broadcast rarely, and M1 is the important message. Between two consecutive broadcasts
of M2, M1 has to be broadcast according to an optimal pattern, that is to say, all the time,
on both channels with an offset of one unit of time between the channels (see Figure 6).
Suppose that we are given a schedule that never stays idle: after each broadcast of M2 on
some channel, either the pattern for M1 is broken inducing a huge increase of the cost,
or M2 is broadcast twice in a row delaying the resuming of the pattern, which increases
the cost as well. In fact, none of the schedules which never stay idle is optimal. An
optimal schedule stays idle for one unit of time around every broadcast of M2 as shown
in Figure 6 (see [19]).

The condition of the existence of an optimal solution in the multiple setting is open. As
a consequence, it is not even clear a priori whether an optimal solution can be described
in finite time.

9 In the uniform setting, it is true that there is a periodic optimal schedule.
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8. Conclusion. As far as we know this work is the first yielding a constant factor
approximation for the non-uniform length case (on one channel). The multiple channel
case is still not well understood. Finding a good (tight) lower bound for the multiple
channel case with non-uniform length messages is an interesting open question.

In [20] Schabanel introduces a preemptive model for the non-uniform length broadcast
problem. It turns out that the problem with preemption is much better understood, even
in a multiple channel setting. In particular, it is shown that when preemption is possible,
one can reduce the expected service time by an arbitrary factor.

This paper and others focused on minimizing the expected service time, however, one
might also want to provide some guarantee in terms of quality of service. For example, an
interesting extension of the problem would consist in ensuring that the maximum waiting
time is never larger than some bound at least for some “important” messages. Another
possible extension would try to schedule at the same time push requests for the most
popular messages (based on popularity distribution) and pull requests for less popular
messages (based on the real requests of the users for these messages, arriving on-line).
Edmonds and Pruhs have recently proposed a first study of this question in [12]. They
study a different framework where all the messages are continuously and simultaneously
broadcast using the bandwidth of all broadcast channels as a whole; the server decides
over time what fraction of the total bandwidth to allocate to each message. They present
multiple channel solutions that approximate the single channel optimal cost.
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