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Abstract. In this paper we propose a probabilistic analysis of the fully
asynchronous behavior (i.e., two cells are never simultaneously updated,
as in a continuous time process) of elementary finite cellular automata
(i.e., {0, 1} states, radius 1 and unidimensional) for which both states
are quiescent (i.e., (0, 0, 0) 7→ 0 and (1, 1, 1) 7→ 1). It has been exper-
imentally shown in previous works that introducing asynchronism in
the global function of a cellular automaton may perturb its behavior,
but as far as we know, only few theoretical work exist on the subject.
The cellular automata we consider live on a ring of size n and asyn-
chronism is introduced as follows: at each time step one cell is selected
uniformly at random and the transition rule is applied to this cell while
the others remain unchanged. Among the sixty-four cellular automata
belonging to the class we consider, we show that fifty-five other converge
almost surely to a random fixed point while nine of them diverge on all
non-trivial configurations. We show that the convergence time of these
fifty-five automata can only take the following values: either 0, Θ(n ln n),
Θ(n2), Θ(n3), or Θ(n2n). Furthermore, the global behavior of each of
these cellular automata can be guessed by simply reading its code.

1 Introduction

The aim of this article is to analyze theoretically the asynchronous behavior of
unbounded finite cellular automata. During the last two decades, several em-
pirical studies [3,12,9,1,13,4] have shown that certain cellular automata behav-
ior change drastically under asynchronous behavior. In particular, [1,5] observe
that finite size Game of Life space-time diagrams under synchronous and asyn-
chronous updating differ qualitatively. For instance, fixed size Game of Life ex-
hibits convergence to cycles of arbitrary length under synchronous updating,
while appears to converge towards a random fixed point under asynchronous
dynamics [1].

Cellular automata are widely used to model systems involving a huge number
of interacting elements such as agents in economy, particles in physics, proteins
in biology, etc. In most of these applications, in particular in many real system



models, agents are not synchronous. Interestingly enough, in spite of this lack
of synchronism, real living systems are very resilient over time. One might then
expect the cellular automata used to model these systems to be robust to asyn-
chronism and other kind of failure as well (such as misreading the state of the
neighbors). Surprisingly enough, it turns out that the resilience to asynchronism
widely varies from one automata to another (e.g., [1,4]). In particular, the aspect
of asynchronous space-time diagrams of cellular automata may differ radically
from their synchronous ones.

As far as we know, the question of the importance of perfect synchrony on
the behavior of a cellular automaton is not yet understood theoretically. To
our knowledge, only Gács shows in [8] undecidability results on the invariance
with respect to the update history. Studies have also been led in the more general
context of probabilistic cellular automata regarding the question of the existence
of stationary distribution on infinite configurations (see [10] for a state of the
art).

In this paper, we quantify the convergence time and describe the space-time
diagrams for a class of cellular automata under fully asynchronous updating,
where two cells are not updated simultaneously. This asynchronous regime, also
known as step-driven asynchronous dynamics [13], arises for instance in continu-
ous time updating processes. We focus on double-quiescent elementary automata.
We show that among these sixty-four automata, nine diverge on all non-trivial
configurations (see Theorem 13), and the fifty-five other converge almost surely
to a random fixed point (see Theorem 1). Furthermore, the convergence time
of these fifty-five automata on (spatially) periodic configurations, can only take
the following values: either 0, Θ(n ln n), Θ(n2), Θ(n3), or Θ(n2n), where n is
the size of the configurations. One of the most striking results is that the fully
asynchronous global behavior of double quiescent elementary automata is ob-
tained simply by reading the code of their local transition rules (see Tab. 1),
which is known to be a difficult problem in general. Moreover, the asynchronous
behavior of all automata is in a certain sense characterized by this convergence
time: all automata within the same convergence time present the same kind of
space-time diagrams (see Tab. 1 and Fig. 1). Remark that the asynchronous
behavior of some very simple automata like the shift (Wolfram rule code 170)
actually simulates intricate stochastic processes that are currently under investi-
gation in mathematics and physics, such as annihilating random walks, studied
for instance in [11]. Our results rely on coupling the automata with a proper
random process.

Definitions and our main result are given in Section 2. In section 3, we present
basic but useful properties of the automata we consider. Section 4 is a technical
section that develops probabilistic tools used to analyze the automata. Section 5
finally analyzes in details the asynchronous behavior of each automaton.



(a) DE 232 (b) BEFG 130

(c) BDEG 170 (d) BCEFG 146

(e) BCEF 210 (f) BCFG 150

Fig. 1. Examples of space-time diagrams under fully asynchronous and synchronous
dynamics for each type of convergence, with n = 50. For each automaton, the larger
left and the smaller right diagrams are respectively examples of asynchronous and
synchronous dynamics. White and black pixels respectively stand for states 0 and 1.
The k-th line from bottom is the configuration at time t = 50 k for the asynchronous
dynamics, and at time t = k for the synchronous one. Note that automata (a) and (c)
are respectively the classic Majority and Shift rules. Each automata is described by
two codes: a number, which is the classic Wolfram’s number, and a sequence of letters,
which will be introduced later in the paper.



2 Definitions, Notations and Main Results

In this paper, we consider two-state cellular automata on finite size configura-
tions.

Definition 1. An Elementary Cellular Automata (ECA) is given by its transi-

tion function δ : {0, 1}3 → {0, 1}. We denote by Q = {0, 1} the set of states. A
state q is quiescent if δ(q, q, q) = q. An ECA is double-quiescent (DQECA) if
both states 0 and 1 are quiescent.

We denote by U = Z/nZ the set of cells. A finite configuration with periodic
boundary conditions x ∈ QU is a word indexed by U with letters in Q. For a
given pattern w ∈ QU , we denote by |x|w = #{i ∈ U : xi+1 . . . xi+|w| = w} the
number of occurrences of w in configuration x.

We consider two kinds of dynamics for ECAs: the synchronous dynamics
and the fully asynchronous dynamics. The synchronous dynamics is the classic
dynamics of cellular automata, where the transition function is applied at each
(discrete) time step on each cell simultaneously.

Definition 2 (Synchronous Dynamics). The synchronous dynamics
Sδ : QU → QU of an ECA δ, associates to each configuration x the configuration
y, such that for all i in U , yi = δ(xi−1, xi, xi+1).

The asynchronous regime studied here can be seen as the most extreme
asynchronous regime as two cells are never updated simultaneously.

Definition 3 (Fully Asynchronous Dynamics). The fully asynchronous dy-
namics ASδ of an ECA δ associates to each configuration x a random config-
uration y, such that yj = xj for j 6= i, and yi = δ(xi−1, xi, xi+1), where i is
uniformly chosen at random in U . ASδ could equivalently be seen as a function
with two arguments, the configuration x and the random index i ∈ U . For a given
ECA δ, we denote by xt the random variable for the configuration obtained by
t applications of the asynchronous dynamics function ASδ on configuration x,
i.e., xt = (ASδ)

t(x).

Definition 4 (Fixed point). We say that a configuration x is a fixed point
for δ under fully asynchronous dynamics if ASδ(x) = x whatever the choice of i
(the cell to be updated) is. Fδ denotes the set of fixed points for δ.

The set of fixed points of the asynchronous dynamics is clearly identical to
{x : Sδ(x) = x} the set of fixed points of the synchronous dynamics. Note that
every DQECA admits two trivial fixed points, 0n and 1

n.

Definition 5 (Worst Expected Convergence Time). Given an ECA δ and
a configuration x, we denote by Tδ(x) the random variable for the time to reach a
fixed point from configuration x under fully asynchronous dynamics, i.e., Tδ(x) =
min{t : xt ∈ Fδ}. The worst expected convergence time Tδ of ECA δ is :

Tδ = max
x∈QU

E[Tδ(x)].



We can now state our main theorem.

Theorem 1 (Main result). Under fully asynchronous dynamics, among the
sixty-four DQECAs,

– fifty-five converge almost surely to a random fixed point on any initial
configuration, and the worst expected convergence times of these fifty-five
convergent DQECAs are 0, Θ(n ln n), Θ(n2), Θ(n3), and Θ(n2n);

– the nine others diverge almost surely on any initial configuration that is
neither 0

n, nor 1
n nor, when n is even, (01)n/2.

Furthermore, the behaviors of the different DQECAs are similar within each
class, and are obtained by simply reading its code as illustrated in Tab. 1.

Figure 1 gives examples of the asynchronous space-time diagrams of a represen-
tative of each class (but Identity). It is interesting to notice that except for the
first diagram (Fig. 1(a)), the asynchronous space-time diagrams (the larger ones)
considerably differ from the corresponding synchronous ones (the smaller ones).

3 Basic properties of DQECAs

The transition function δ of an ECA is given by the set of its eight transitions

δ(000), δ(001), . . . , δ(111), traditionally written 000
δ(000)

, . . . , 111
δ(111)

. The follow-

ing code describes each ECA by its differences to the Identity automaton. We
use this notation rather than the classic Wolfram’s one [14] since it is not im-
mediate to infer the local behavior of the cellular automaton just by looking at
its Wolfram code. In order to allow comparison with other work we still indicate
the classic Wolfram number in Tab. 1.

Notation 1 We say that a transition is active if it changes the state of the cell
where it is applied. Each ECA is fully determined by its active transitions. We
label each active transition by a letter as follow:

A B C D E F G H

000 001 100 101 010 011 110 111
1 1 1 1 0 0 0 0

We label each ECA by the set of its active transitions.

Note that with these notations, the DQECAs are exactly the ECAs having
a label containing neither A nor H. By 0/1 and horizontal symmetries of config-
urations, we shall w.l.o.g. only consider the 24 DQECAs listed in Tab. 1 among
the 64 DQECAs. For each of these 24 DQECAs, the number of the equivalent
automata under symmetries is written within parentheses after their classic ECA
code in the table.

From now on, we only consider the fully asynchronous dynamics (with uni-
form choice); this will be implicit in all the following propositions. Our results



Table 1. Behavior of DQECA under fully asynchronous dynamics. WECT stands for
worst expected convergence time. See Section 2 for explanations.

Behavior ECA (#) Rule 010101 101010 010010010 101101101 WECT

Identity 204 (1) ∅ · · · · 0

Coupon collector
200 (2) E · · + ·

Θ(n ln n)
232 (1) DE · · + +

Monotonic

206 (4) B ← · · ·

Θ(n2)

222 (2) BC ← → · ·
234 (4) BDE ← · + +
250 (2) BCDE ← → + +
202 (4) BE ← · + ·
192 (4) EF → · + ·
218 (2) BCE ← → + ·
128 (2) EFG → ← + ·

Biased Random Walk
242 (4) BCDEF ! → + +
130 (4) BEFG ! ← + ·

Random Walk

226 (2) BDEF ! · + +

Θ(n3)

170 (2) BDEG ← ← + +
178 (1) BCDEFG ! ! + +
194 (4) BEF ! · + ·
138 (4) BEG ← ← + ·
146 (2) BCEFG ! ! + ·

Biased Random Walk 210 (4) BCEF ! → + · Θ(n2n)

Divergent

198 (2) BF ! · · ·

Divergent
142 (2) BG ← ← · ·
214 (4) BCF ! → · ·
150 (1) BCFG ! ! · ·

rely on the study of the evolution of the “regions” in the space-time diagram
(i.e., of the intervals of consecutive 0s or 1s in configuration xt). The key obser-
vation is that for DQECAs, under fully asynchronous dynamics, the number of
regions is non-increasing since no new region can be created; furthermore, only
regions of length one can disappear (see Fig. 1). We denote by Z(x) = |x|01
(= |x|10) the number of alternations from 0 to 1 in configuration x, which will
be our counter for the number of regions.

Fact 2 For any DQECA, Z(xt) is a non-increasing function of time. Further-
more, Z(xt+1) < Z(xt) if and only if xt+1 is obtained from xt by applying a
transition D or E at time t, and then Z(xt+1) = Z(xt)− 1.

On the one hand, transitions D and E are thus responsible for decreasing the
number of regions in the space-time diagram: D “erases” the 1-regions and E the
0-regions. On the other hand, transitions B and F act on patterns 01. Intuitively,
transition B moves a pattern 01 to the left, and transition F moves it to the right.
In particular, patterns 01 perform a kind of random walk for DQECA with both



transitions B and F. Similarly, transitions C and G act on patterns 10. Transition
C moves a pattern 10 to the right, and transition G moves it to the left. The
arrows in Tab. 1 represent the different behavior of the patterns:← or→, for left
or right moves of the patterns 01 or 10; !, for random walks of these patterns.

The following lemma characterizes the fixed points of a given DQECA ac-
cording to its code.

Fact 3 If a DQECA δ admits a non-trivial fixed point x, then:

– if δ contains transition B or C, then all 0s in x are isolated;
– if δ contains transition F or G, then all 1s in x are isolated;
– if δ contains transition D, then none of the 0s in x is isolated;
– if δ contains transition E, then none of the 1s in x is isolated.

The next section is devoted to analyzing particular random walk-like pro-
cesses that will be used as tools to obtain our bounds on the convergence time.

4 Probabilistic toolbox

Notation 2 For a given random sequence (Xt)t∈N, we denote by (∆X t)t>0 the
random sequence ∆Xt = Xt −Xt−1.

Quadratic DQECA toolbox. Consider ε > 0, a non-negative integer m, and
(Xt)t∈N a sequence of random variables with values in {0, . . . , m} given with
a suitable filtration (Ft)t∈N. In probability theory, Ft represents intuitively the
σ-algebra (the “set”) of the events that happened up to time t and is the formal
tool to condition relatively to the past (see [7, Chap. 7]). In the sequel, Ft will
either be the values of the previous random variables X0, . . . , Xt, or in some
cases, the set of past configurations x0, . . . , xt. The following lemma bounds
the convergence time of a random variable that decreases by a constant on
expectation.

Lemma 4 Assume that if Xt > 0, then E[∆Xt+1|Ft] 6 −ε. Let T = min{t :
Xt 6 0} denote the random variable for the first time t where Xt 6 0. Then, if
X0 = x0,

E[T ] 6
m + x0

ε
.

Cubic DQECA toolbox. Let ε > 0 and (Xt)t∈N a sequence of random vari-
ables with values in {0, . . . , m}, given with a suitable filtration (Ft)t∈N.

Definition 6. The following two types of process will be extensively used in the
next section:

– We say that (Xt)t∈N is of type I if for all t:
• E[Xt+1|Ft] = Xt (i.e., (Xt) is a martingale), and
• if 0 < Xt < m, then Pr{∆Xt+1 > 1} = Pr{∆Xt+1 6 −1} > ε.



– We say that (Xt)t∈N is of type II if for all t:
• if Xt < m, then E[Xt+1] = Xt (i.e., (Xt) behaves as a martingale when

Xt < m), and
• if 0 < Xt < m, then Pr{∆Xt+1 > 1} = Pr{∆Xt+1 6 −1} > ε, and
• if Xt = m, then Pr{Xt+1 6 m− 1} > ε (i.e., Xt “bounces on m”).

Note that when (Xt) is of type I, if for some t, Xt ∈ {0, m}, then Xt′ = Xt for
all t′ > t, because (Xt) is a martingale bounded between 0 and m. Thus, {0, m}
are the (only) fixed points of any type I sequence. When (Xt) is of type II, if for
some t, Xt = 0, then Xt′ = Xt for all t′ > t, because (Xt) is a martingale lower
bounded by 0. Thus, 0 is the (only) fixed point of any type II sequence.

Definition 7. The convergence time of a type I sequence (Xt) is defined as the
random variable T = min{t : Xt ∈ {0, m}}. The convergence time of a type II
sequence (Xt) is similarly defined as the random variable T = min{t : Xt = 0}.

The following lemmas bound the convergence time of these two types of
random processes.

Lemma 5 For sequence (Xt), if X0 = x0, the expectation of T satisfies:

E[T ] 6
x0(m− x0)

2ε
if (Xt) is of type I,

E[T ] 6
x0(2m + 1− x0)

2ε
if (Xt) is of type II.

5 Convergence

In this section, we evaluate the worst expected convergence time for each of
the twenty-four representative automata in Tab. 1. Our results rely on studying
the evolution of quantities computed on the random configurations (xt), whose
convergence implies the convergence of the automaton. The upper bounds on
the convergence time of these quantities are obtained by coupling them with
one of the integer random processes analyzed in the previous section. The lower
bounds are obtained by analyzing the exact expected convergence time for a
particular initial configuration (most of the time, a configuration with a single 0-
region and a single 1-region). This involves building suitable variants measuring
progress towards fixed points. One of the main difficulties is to handle correctly
the mergings of the regions, i.e., the applications of transitions D and E.

We introduce the following convenient functions that simplify the evaluation
of the quantities that are used to bound the convergence time. These function
will spare us tedious parsings of the patterns in the configurations. For a given
configuration x, we denote by a(x), . . . , h(x) the number of cells where transitions
A, . . . , H are applicable, i.e.:

a(x) = |x|000, b(x) = |x|001, c(x) = |x|100, d(x) = |x|101,
e(x) = |x|010, f(x) = |x|011, g(x) = |x|110, h(x) = |x|111.



For instance, consider rule BCG. For convenience, we denote by p = 1/n the
probability that a given cell is updated under fully asynchronous dynamics.
Applying the transitions A, . . . , D increases the number of 1s by one and applying
E, . . . , H decreases it by one. The expected variation of the number of 1s for
configuration x in one step is then immediately p · (b(x) + c(x) − g(x)). When
the context is clear, the argument x will be omitted. Clearly, parsing properly
configuration x gives the following useful relationships.

Fact 6 For all configurations x ∈ QU , the following equalities hold:

|x|01 = b + d = e + f = c + d = e + g = |x|10,

|x|001 = b = c = |x|100,

|x|011 = f = g = |x|110.

Let us now analyze the worst expected convergence time for DQECAs. Due
to space constraints, most of the proofs are omitted and can be found in [6].

5.1 “Coupon collector” DQECAs

The behavior of the DQECAs in this class (see Fig. 1(a)) is similar to the classic
Coupon Collector random process (e.g., [7]).

Theorem 7. Under fully asynchronous dynamics, DQECAs E and DE converge
a.s. to a fixed point on any initial configuration. Their worst expected convergence
time is Θ(n ln n). The fixed points for E and DE respectively are the configurations
without isolated 1 and the configurations without isolated 0 and 1.

Proof. These rules simply erase either isolated 0s, isolated 1s or both. They
never create any of them (by Fact 2), and reach a fixed point as soon as no more
0 or 1 are isolated (by Fact 3). These processes are then similar to a coupon
collector process that has to collect all the isolated 0s or 1s, by drawing at each
time step a random location uniformly in {1, . . . , n} (see e.g., [7]). If the number
of remaining isolated 0s and 1s is i, the probability to draw one of them is i/n,
and then, one of them is drawn on expectation after n/i steps. The expected
convergence time is then bounded by n(1 + 1

2
+ · · ·+ 1

n ) = O(n ln n).

Finally, configuration (010)bn/3c
0

n mod 3, which is a proper coupon collector
process, provides a lower bound of Ω(n ln n) for both rules.

5.2 Quadratic DQECAs

Figure 1(b) illustrates the typical space-time diagram in this class. All the results
of this section are obtained by finding a proper variant whose convergence implies
the convergence of the DQECA, and which decreases by more than a given
constant on expectation.

Lemma 8 Given an initial configuration x, for each DQECA B, BC, BDE,
BCDE, BCDEG, BE, EF, BCE, EFG, BCEFG, and BEFG, there exists a sequence
(Xt) of random variables with values in {0, . . . , n} (the variant), such that:



(a) if Xt = 0, then xt is a fixed point.

(b) for all t such that xt is not a fixed point, E[∆X t+1|Xt] 6 −p.

Proof. Rules B and BC. Set Xt = |xt|0 the number of 0s in xt. (a) is clear
since Xt = 0 implies that xt = 1

n. We obtain (b) by noticing that each applica-
tion of transitions B or C decreases Xt by one, and that for any non fixed-point
configuration, an active transition is performed with probability greater or equal
to p. Similarly, Xt = |xt|1 is suitable for rules EF and EFG.
Remaining rules. We need to take into account the presence of isolated 0s
and 1s. We set Xt = |xt|0 + Z(xt) for rules BDE, BCDE, BE, BCE, and BCDEG;
and Xt = |xt|1 + Z(xt) for rule BEFG. Consider automaton BEFG. Clearly,
Xt ∈ {0, . . . , n}, and we have (a) Xt = 0 implies that xt = 0

n. For this rule,

E[∆Xt+1|x
t] = p · (b− e− f − g)(xt)− p · e(xt),

since only transition E acts on Z(xt). By Fact 6, one can rewrite

E[∆Xt+1|x
t] = −p · (d + e + g)(xt).

Second, if x is not a fixed point, then (b + e + f + g)(x) > 0. But by Fact 6, if
d + e = 0, then b = f = g. Thus, b + e + f + g > 0 implies d + e + g > 0. We
conclude that if xt is not a fixed point, we have (b). The proof is similar for all
the remaining automata. We can now state the theorem.

Theorem 9. Under fully asynchronous dynamics, DQECAs B, BC, BDE,
BCDE, BCDEG, BE, EF, BCE, EFG, BCEFG, and BEFG converge almost surely
to a fixed point on any initial configuration. Their worst expected convergence
time is Θ(n2). Only the DQECAs B, BC, BE, and BCE have non-trivial fixed
points, which are the configurations where all the 0s are isolated.

Proof. The property on the fixed points is a direct application of Fact 3. Consider
now one of the rules. Let Xt be the variant given by Lemma 8. Xt does not exactly
verify the hypotheses of Lemma 4: Xt needs to be extended beyond a fixed point
if it is reached before Xt = 0. We consider the random sequence X ′

t defined as
follow: X ′

t = Xt if xt is not a fixed point, and X ′
t = 0 otherwise. Thus, X ′

t = 0 if
and only if xt is a fixed point, and we can now apply Lemma 4 with m = n and
ε = p and we obtain E[T ] 6 X0/p = O(n2).

The lower bound Ω(n2) on the convergence time is simply given by consid-
ering the following initial configuration x = 0

dn/2e
1
bn/2c. Note that Xt = |xt|1

works for all the rules on initial configuration x and its exact expected conver-
gence time is straightforward to compute by first step analysis (see [2]).

Observe that we can divide this class into two subcategories: the automata
that are monotonic, for which the variant is a non-increasing function of time,
and the non-monotonic, for which the variant follows a biased random walk
(see Tab. 1). Interestingly enough, this distinction is observed on the space-time
diagrams.



5.3 Cubic DQECAs

Figure 1(c) and 1(d) illustrate the typical behaviors in this class: one can ob-
serve that the dynamics of the regions in the space-time diagram are similar to
unbiased random walks. Furthermore, one can observe that the process of the
frontiers between regions is similar to annihilating random walks (e.g.,[11]): each
frontier follow a random walk and two frontiers vanish when they meet.

All the results of this section are obtained by coupling the process with a
suitable unbiased bounded random walk, such that the DQECA is guaranteed
to reach a fixed point before the walk reaches a (or one distinguished) boundary.

The upperbounds in Theorem 11 are straightforward applications of the fol-
lowing lemma 10 in combination with the probabilistic lemma 5. The lower
bounds are again obtained by analyzing the expected convergence time on the
initial configuration x = 0

dn/2e
1
bn/2c with variant Xt = |xt|1.

Lemma 10 Given an initial configuration x,

– for each DQECA BDEF, BDEG, and BCDEFG, there exists an integer m 6 2n
and a random integer sequence (Xt) of type I (see section 4) with values in
{0, . . . , m}, such that: for all t, if Xt = 0 or Xt = m, then xt is a fixed point.

– for each DQECA BEF, BEG, and BCEFG, there exists an integer m 6 2n
and a random integer sequence (Xt) of type II (see section 4) with values in
{0, . . . , m}, such that for all t, if Xt = 0, then xt is a fixed point.

Theorem 11. Under fully asynchronous dynamics, DQECAs BDEF, BDEG,
BCDEFG, BEF, BEG, and BCEFG converge almost surely to a fixed point on
any initial configuration. Their worst expected convergence time is Θ(n3). All of
them admit only 0

n and 1
n as fixed point.

For DQECAs BDEF, BDEG, and BCDEFG, the fixed points 0
n and 1

n can be
reached from any configuration (respectively distinct from 1

n and 0
n). For DQE-

CAs BEF, BEG, and BCEFG, any configuration distinct from 1
n converges almost

surely to 0
n.

5.4 Exponential DQECA

Figure 1(e) illustrates the typical behavior of this class. The illustrated process
will eventually converge to 0

n. The trajectory of the 0-regions is similar to a coa-
lescing random walk : the 0-regions follow a kind of coalescing random walk and
merge when they meet, until only one 0-region remains. The size of the remain-
ing 0-region then follows a random walk, biased towards 1, that will eventually
converge to n after an exponential time (note that a 0-region cannot disappear
for rule BCEF). This result is obtained by coupling the process with a process
applying the same rule on a suitable single 0-region configuration. The follow-
ing lemma analyzes the latter process first, from which we deduce the theorem.
Note that the expected convergence time is independent of the initial (non-fixed
point) configuration, up to a multiplicative constant.

Theorem 12. The fixed points of DQECA BCEF are 0
n and 1

n. From any non-
fixed point initial configuration, DQECA BCEF converges almost surely to 0

n

and its expected convergence time is exactly Θ(n2n).



5.5 Diverging DQECAs

Figure 1(f) illustrates the typical behavior of a divergent DQECA: the number
of regions is conserved, and all reachable configurations from a given initial
configuration are accessed an infinite number of times almost surely. The proof
of the following result relies essentially on applying Fact 3.

Theorem 13. Under fully asynchronous dynamics, the DQECAs BF, BG, BCF,
and BCFG diverge almost surely on any initial configuration that is not one of
the three following fixed points 0

n, 1n and, if n is even, (01)n/2. Furthermore,
given an initial configuration, all reachable configurations are accessed an infinite
number of times almost surely.
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