
Non-clairvoyant Batch Sets Scheduling:
Fairness Is Fair Enough

Julien Robert1 and Nicolas Schabanel2

1 École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
http://perso.ens-lyon.fr/julien.robert

2 CNRS Centro de Modelamiento Matemático, Blanco Encalada 2120 Piso 7,
Santiago de Chile

http://www.cmm.uchile.fr/∼schabanel

Abstract. In real systems, such as operating systems, the scheduler is
often unaware of the remaining work in each job or of the ability of
the job to take advantage of more resources. In this paper, we adopt
the setting for non-clairvoyance of [3,2]. Based on the particular case of
malleable jobs, it is generally assumed in the literature that “Equi never
starves a job since it allocates to every job the same amount of processing
power”. We provide an analysis of the competitiveness of Equi for the
makespan objective which shows that under this more general setting
this statement is at the same time true and false: false, because, some
jobs may be stretched by a factor as large as, but no more than, lnn

ln ln n
with respect to the optimal, where n is the size of the largest set; true,
because no algorithm can achieve a better competitive ratio up to a
constant factor.

In this paper, we extend the results in [2,11] to the batch scheduling
of sets of jobs that go through arbitrary phases: user request all
together at time 0, for the execution of a set of jobs and is served when
the last job completes. We prove that the algorithm Equi◦Equi is
(2 +

√
3 + o(1)) ln n

ln ln n -competitive, where n is the maximum size of a
set, which is optimal up to a constant factor. We provide experimental
evidences that this algorithm may have the same asymptotic competitive
ratio Θ( lnn

ln ln n ) (independent of the number of requests) for the flowtime
objective when requests have release dates, if it is given sufficiently large
extra processing power with respect to the optimum.

Keywords: Online scheduling, Non-clairvoyant algorithm, Batch
scheduling, Fairness, Equi-partition, Makespan and Overall Set Com-
pletion Time minimization.

1 Introduction

Scheduling questions arise naturally in many different areas among which oper-
ating system design, compiling, memory management, communication network,
parallel machines, clusters management,... In real systems, the characteristics of
the jobs to schedule (such as release time, processing time,...) are often unknown

L. Arge and E. Welzl (Eds.): ESA 2007, LNCS 4698, pp. 741–753, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



742 J. Robert and N. Schabanel

and/or unpredictable beforehand. In particular, the scheduler, such as in an op-
erating system, is typically unaware of the remaining work in each job or of the
ability of the job to take advantage of more resources. Such systems are referred
as non-clairvoyant.

Several settings have been proposed to model non-clairvoyance, in which jobs
are fully parallelizable but their amount of work is unknown before their com-
pletion [9,6,7,5,8,1]. In this paper, we consider the very general setting for non-
clairvoyance proposed by Edmonds [3,2]. Jobs go through a sequence of different
phases, each consisting of a certain quantity of work with a speed-up function
that quantifies how it takes advantage of the number of processors it receives. For
example, during a fully parallel phase, the speed-up function increases linearly
with the number of processors received.

Surprisingly, in this setting, even if the scheduler is unaware of the charac-
teristics of the phases, some policies achieve constant factor approximation of
the optimal flowtime. More precisely, in [3], the author shows that the Equi
policy, introduced in the 1980’s by [12] and implemented in a lot of real systems
(by time-multiplexing), achieves a competitive ratio of (2+

√
3) for overall com-

pletion time minimization when all the jobs arrive at time 0. [2] shows that in
this setting no non-clairvoyant scheduler can achieve a competitive ratio better
than Ω(

√
n) when jobs arrive at arbitrary time and shows that Equi achieves

a constant factor approximation of the optimal flowtime if it receives slightly
more than twice as much resources as the optimal clairvoyant schedule it is
compared to.

Our Contribution. Based on the particular case of malleable jobs, it is generally
assumed in the literature that “Equi never starves a job” since it allocates to
every job the same amount of processing power. We provide an analysis of the
competitiveness of Equi for the makespan objective (Theorem 1) which shows
that this statement is at the same time true and false: false, because, as opposed
to the analysis of Equi for the flowtime objective in [3,2] where only the fully
parallel phases count, for the makespan minimization, these phases may arbi-
trarily delay sequential work and thus stretch the makespan by a factor as large
as, but no more than, ln n

ln lnn with respect to the optimum (Proposition 1); true,
because Equi is as fair as can be since no algorithm can achieve a better com-
petitive ratio up to a constant factor (Proposition 2). Furthermore, experiments
in Section 5 tend to show that this worst case result may also be the typical
behavior of Equi on random instances.

Non-clairvoyant competitiveness has been shown to be a powerful tool to
analyze online strategies in various domains (for instance, [4,11]). In this paper,
we aim to extend the non-clairvoyance toolbox by extending the results in [2] and
[11] to the batch scheduling of sets of jobs, that go through arbitrary phases:
each user sends, all at once, at time 0, a request for the execution of a set of jobs
and is served when the last job completes. We prove that the natural algorithm
Equi◦Equi achieves a competitive ratio of (2 +

√
3 + o(1)) ln n

ln ln n (Theorem 2),
where n is the maximum size of a set, which is optimal up to a constant factor.
We provide experimental evidences (Section 5) that this algorithm may have



Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough 743

the same asymptotic competitive ratio Θ( ln n
ln ln n ) (independent of the number

of requests) for the flowtime objective when requests have release dates, if it is
given sufficiently large extra processing power with respect to the optimum.

Besides its theoretical interest, this setting corresponds to the case where sev-
eral users send sets of unrelated calculations to a cluster farm that proceeds
the user requests by batches, for instance because a full hardware check is per-
formed between each pair of consecutive batches. As a byproduct of our analysis,
we extend the reduction shown by Edmonds in [2, Lemma 1], by showing (The-
orem 3) that one only needs to consider jobs consisting of sequential or parallel
work whatever the objective function is (flowtime, makespan, overall set comple-
tion time, stretch, energy consumption,...) in order to treat the very wide range
of non-decreasing sublinear speed-up functions all at once.

2 Non-clairvoyant Batch Sets Scheduling

The Model. We consider a collection S = {S1, . . . , Sm} of sets Si =
{Ji,1, . . . , Ji,ni} of ni jobs, each of them arriving at time zero. A schedule Sp

on p processors is a set of piecewise constant functions1 ρij : t #→ ρt
ij where ρt

ij

is the amount of processors allotted to job Jij at time t; (ρt
ij) are arbitrary non-

negative real numbers, such that at any time:
∑

i,j ρ
t
ij ! p. Following the defini-

tion introduced by [3], each job Jij goes through a series of phases J1
ij , . . . , J

qij

ij

with different degree of parallelism; the amount of work in each phase Jk
ij is wk

ij ;
at time t, during its k-th phase, job Jij progresses at a rate given by a speed-up
function Γ k

ij(ρt
ij) of the amount ρt

ij of processors allotted to Jij , that is to say
that the amount of work accomplished between t and t + dt during phase Jk

ij

is Γ k
ij(ρt

ij)dt. Let tkij denote the completion time of the k-th phase of Jij , i.e.

tkij is the first time t′ such that
∫ t′

tk−1
ij
Γ k

ij(ρt
ij) dt = wk

ij (with t0ij = 0). Job Jij is

completed at time cij = t
qij

ij . A schedule is valid if all jobs eventually complete,
i.e., cij < ∞ for all i, j. Set Si is completed at time ci = maxj=1..ni cij .

The Problem. The overall completion time of the jobs in a schedule Sp

is: CompletionTime(Sp) =
∑

i,j cij . The makespan of the jobs in Sp is:
Makespan(Sp) = maxi,j cij . The overall set completion time of the sets in Sp

is: SetCT(Sp) =
∑m

i=1 ci. Note that: if the input collection S consists of a single
set S1, the overall set completion time of a schedule Sp is simply the makespan
of the jobs in S1; and if S is a collection of singleton sets Si = {Ji 1}, the over-
all set completion time of Sp is simply the overall completion time of the jobs.
The overall set completion time allows then to measure a continuous range of
objective functions from makespan to overall completion time. Our goal is to
minimize the overall set completion time of a collection of sets of jobs arriving
at time 0.
1 Requiring the functions (ρij) to be piecewise constant is not restrictive since any

finite set of reasonable (i.e., Riemann integrable) functions can be uniformly approx-
imated from below within an arbitrary precision by piecewise constant functions. In
particular, all of our results hold if ρij are piecewise continuous functions.



744 J. Robert and N. Schabanel

We denote by OPTp(S) (or simply OPTp or OPT if the context is clear)
the optimal overall set completion time of a valid schedule on p processors for
collection S: OPTp = infall schedules Sp SetCT(Sp).

Speed-Up Functions. As in [2], we make the following reasonable assump-
tions on the speed-up functions. In the following, we consider that each speed-
up function is non-decreasing and sub-linear (i.e., such that for all i, j, k,

ρ < ρ′ ⇒ Γ k
ij(ρ)
ρ " Γ k

ij(ρ
′)

ρ′ ). These assumptions are usually verified (at least
desirable...) in practice: non-decreasing means that giving more processors can-
not deteriorate the performances; sub-linear means that a job makes a better
use of fewer processors: this is typically true when parallelism does not take too
much advantage of local caches. As shown in [2], two types of speed-up functions
will be of particular interest here:

– the sequential phase, where Γ (ρ) = 1 for all ρ " 0 (the job progresses at
constant speed even if no processor is allotted to it, similarly to an idle
period); and

– the fully parallel phase, where Γ (ρ) = ρ for all ρ " 0.

Two classes of instances will be useful in the following. We denote by (Par-Seq)∗
the class of all instances in which each phase of each job is either sequential or
fully parallel, and by Par-Seq the class of all instances in which each job consists
of a fully parallel phase followed by a sequential phase. Given a (Par-Seq)∗ job J ,
we denote by par(J) (resp., seq(J)) the sum of the fully parallel (resp., sequential)
works over all the phases of J . Given a set Si = {Ji,1, . . . , Ji,ni} of (Par-Seq)∗
jobs, we denote by par(Si) =

∑n
j=1 par(Jij) and seq(Si) = maxj=1,...,ni seq(Jij).

Non-clairvoyant Scheduling. As in [3,2], we consider that the scheduler knows
nothing about the progress of each job and is only informed that a job is com-
pleted at the time of its completion. In particular, it is not aware of the different
phases that the job goes through (neither of the amount of work nor of the
speed-up function). It follows that even if all the job sets arrive at time 0, the
scheduler has to design an online strategy to adapt its allocation on-the-fly to
the overall progress of the jobs.

We say that a given scheduler Ap is c-competitive if it computes a schedule
Ap(S) whose overall set completion time is at most c times the optimal clairvoy-
ant overall set completion time (that is aware of the characteristics of the phases
of each job), i.e., such that SetCT(Ap(S)) ! c ·OPTp(S) for all instances S. Due
to the overwhelming advantage granted to the optimum which knows all the hid-
den characteristics of the jobs, it is sometimes necessary for obtaining relevant
informations on an non-clairvoyant algorithm to limit the power of the optimum
by reducing its resources. We say that a scheduler Ap is s-speed c-competitive if it
computes a schedule Asp(S) on sp processors whose overall set completion time
is at most c times the optimal overall set completion time on only p processors,
i.e., such that SetCT(Asp(S)) ! c · OPTp(S) for all instances S.

We analyse twonon-clairvoyant schedulers, namelyEquiandEqui ◦ Equi, and
show that they have an optimal competitive ratio up to constant multiplicative



Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough 745

factors. The following two theorems are our main results and are proved in Propo-
sitions 1, 2 and 3.

Theorem 1 (Makespan minimization). Equi is a (1+o(1)) ln n
ln ln n -competitive

non-clairvoyant algorithm for the makespan minimization of a set of n jobs ar-
riving at time t = 0. Furthermore, no non-clairvoyant deterministic (resp. ran-
domized) algorithm is s-speed c-competitive for any s = o( ln n

ln ln n ) and c < ln n
2 ln ln n

(resp. c < lnn
4 ln ln n).

Theorem 2 (Main result). Equi◦Equi is a (2+
√

3+o(1)) ln n
ln ln n -competitive non-

clairvoyant algorithm for the overall set completion time minimization of a col-
lection of sets of jobs arriving at time t = 0, where n is the maximum cardinality
of the sets. (Clearly the lower bound on competitive ratio given above holds as
well for this problem).

3 Reduction to (Par-Seq)∗ Instances

In [2], Edmonds shows that for the flowtime objective function, one can reduce
the analysis of the competitiveness of non-clairvoyants algorithm to the instances
composed of a sequence of infinitesimal sequential or parallel work. It turns out
that as shown in Theorem 3 below, his reduction is far more general and applies
to any reasonable objective function (including makespan, overall set completion
time, stretch, energy consumption,...), and furthermore reduces the analysis to
instances where jobs are composed of a finite sequence of positive sequential
or fully parallel work, i.e., to true (Par-Seq)∗ instances. It follows that for any
non-clairvoyant scheduling problem, it is enough to analyse the competitiveness
of a non-clairvoyant algorithm on (Par-Seq)∗ instances. Sequential and parallel
phases are both unrealistic in practise (sequential phases that progress at a
constant rate even if they receive no processors are not less legitimate than fully
parallel phases which do not exist for real either). Nevertheless, these are much
easier to handle in competitive analysis.

Consider a collection of n jobs J1, . . . , Jn where Ji consists of a sequence
of phases J1

i , . . . , Jqi

i of work w1
i , . . . , w

qi

i with speed-up functions Γ 1
i , . . . , Γ qi

i .
Consider a speed s > 0. Let Asp be an arbitrary non-clairvoyant scheduler on sp
processors, and Op a valid schedule of J1, . . . , Jn on p processors. The principle,
see [2], is to remap the phases of the jobs within the two schedules Asp(J) and
Op as follows: each time Asp allots more processors to some phase of a job than
Op, this phase is substituted by a sequential phase and thus Asp allots these
resources pointlessly; and reciprocally, each time Asp allots less processors to
some other phase of a job than Op, we substitute this phase by a parallel phase.
We adjust the substituted sequential and parallel works so that they fit exactly
in the schedule computed by Asp, which implies, as Asp is non-clairvoyant, that
Asp will compute the exact same schedule as before; and since the instance
is made easier to Op, the optimum can only decrease. This ensures that the
competitive ratio of Asp on any instance is upper bounded by the competitive
ratio on (Par-Seq)∗ jobs.



746 J. Robert and N. Schabanel

Note that [2] implicitly assumed that the algorithm is monotonic (i.e., its
flowtime increases if some phase gets more work, which is the case of Equi),
while the present reduction to (Par-Seq)∗ instances applies to any algorithm and
furthermore to settings with release dates, precedences constraints, or any other
type of constraints, since Lemma 1 simply consists in remapping the phases of the
jobs within two valid schedules that already satisfy these additional constraints.

Lemma 1 (Reduction to (Par-Seq)∗ instances). There exists a collection of
(Par-Seq)∗ jobs J ′

1, . . . , J
′
n such that Op[J ′/J ] is a valid schedule of J ′

1, . . . , J
′
n and

Asp(J ′) = Asp(J)[J ′/J ], where S[J ′/J ] denotes the schedule obtained by schedul-
ing job J ′

i instead of Ji in a schedule S.

Proof. The present proof only simplifies the proof originally given in [2] in the
following ways: the jobs J ′

1, . . . , J
′
n consist of a finite number of phases (and

are thus a valid finitely described instance), and the schedules computed by
algorithm Asp on instances J ′

1, . . . , J
′
n and J1, . . . , Jn are identical, which avoids

to consider infinitely many schedules to construct J ′ from J .
Consider the two schedules Asp(J) and Op. Consider job J1 (the construction

of J ′
i is identical for Ji, i " 2). Let ρA(t) and ρO(t) be the number of processors

allotted over time to J1 by Asp(J) and Op respectively. Let ϕ(t) be the time
t′ at which the portion of work of J1 executed in Op at time t, is executed in
Asp(J). Let Γt′ be the speed-up function of the portion of work of J1 executed in
Asp(J) at time t′. By construction, for all t, the same portion of work dw of J1 is
executed between t and t+dt in Op and between ϕ(t) and ϕ(t+dt) = ϕ(t)+dϕ(t)
in Asp(J) with the same speed-up function Γϕ(t), thus: dw = Γϕ(t)(ρO(t)) dt =
Γϕ(t)(ρA(ϕ(t))) dϕ(t); it follows that ϕ’s derivative is ϕ′(t) = Γϕ(t)(ρO(t))

Γϕ(t)(ρA(ϕ(t))) (" 0,
ϕ is an increasing function). ρA(ϕ(t)) and ρO(t) are (by definition) piecewise
constant functions. Let t1 = 0 < t2 < · · · < t$ such that ρA(ϕ(t)) and ρO(t) are
constant on each time interval [tk, tk+1) and zero beyond t$; let t′k = ϕ(tk), ρA(t′)
is constant on each time interval (t′k, t′k+1); let ρk

A = ρA(t′k) and ρk
O = ρO(tk).

By construction, the portion of work of J1 executed by Asp(J) between times t′k
and t′k+1, is executed by Op between times tk and tk+1. J ′

1 consists of a sequence
of (& − 1) phases, sequential or fully parallel depending on the relative amount
of processors ρk

O and ρk
A alloted by Op and Asp(J) to J1 during time intervals

[tk, tk+1] and [t′k, t′k+1] respectively. The k-th phase of J ′
1 is defined as follows:

– If ρk
O ! ρk

A, the k-th phase of J ′
1 is a sequential work of wk = t′k+1 − t′k.

– If ρk
O > ρk

A, the k-th phase of J ′
1 is a fully parallel work of wk = ρk

A·(t′k+1−t′k).

The k-th phase of J ′
1 is designed to fit exactly in the overall amount of proces-

sors allotted by Asp to J1 during [t′k, t′k+1]; thus, since Asp is non-clairvoyant,
Asp(J ′) = Asp(J)[J ′/J ]. Let now verify that the k-th phase of J ′

1 fits in the
overall amount of processors allotted by Op to J1 during [tk, tk+1].

– If ρk
O ! ρk

A, wk =
∫ t′

k+1
t′
k

dt′ =
∫ tk+1

tk
ϕ′(t)dt =

∫ tk+1

tk

Γϕ(t)(ρk
O)

Γϕ(t)(ρk
A)dt !

∫ tk+1

tk
dt =

tk+1 − tk since the Γϕ(t) are non-decreasing functions.



Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough 747

– If ρk
O > ρk

A, wk = ρk
A

∫ t′
k+1

t′
k

dt′ = ρk
A

∫ tk+1

tk

Γϕ(t)(ρk
O)

Γϕ(t)(ρk
A)dt ! ρk

A

∫ tk+1

tk

ρk
O

ρk
A

dt =

ρk
O · (tk+1 − tk), since the Γϕ(t) are sub-linear functions.

It follows that in both cases, the k-th phase of J ′
1 can be completed in the space

allotted to J1 in Op during [tk, tk+1]. #

Consider an arbitrary non-clairvoyant scheduling problem where the goal is to
minimize an objective function F over the set of all valid schedules of an instance
of jobs J1, . . . , Jn. Assume that F is monotonic in the sense that if S and S[J ′/J ]
are valid schedules of J and J ′ respectively, then F (S[J ′/J ]) ! F (S), which
means essentially that wasting resources (allocating more resources than needed
or allocating processors after the completion of a job) costs no more than using
them: putting a larger thing into a box costs at least as much as putting a
smaller thing into the same box. Note that all standard objective functions are
monotonic: flowtime, makespan, overall completion time, overall set completion
time, stretch, energy consumption, etc. Then,

Theorem 3. Any non-clairvoyant algorithm AF for a monotonic objective func-
tion F that is s-speed c-competitive over (Par-Seq)∗ instances, is also s-speed
c-competitive over all instances of jobs going through phases with arbitrary non-
decreasing sublinear speed-up functions.

Proof. Consider a non-(Par-Seq)∗ instance J = {J1, . . . , Jn}. Denote
by OPTF

p (J) the optimal cost for J , i.e., OPTF
p (J) = inf{F (S) :

S is a valid schedule of J on p processors}. Consider an arbitrary small ε > 0
and O a valid schedule of J such that F (O) ! OPTF

p (J)+ ε (note that we do not
need that an optimal schedule exists). Let J ′ be the (Par-Seq)∗ instance given
by Lemma 1 from J , AF

sp, and O. Since AF
sp(J ′) = AF

sp(J)[J ′/J ], F (AF
sp(J)) =

F (AF
sp(J ′)). But AF

sp is s-speed c-competitive for J ′, so: F (AF
sp(J)) ! c ·

OPTF
p (J ′) ! c · F (O[J ′/J ]) ! c · F (O) ! c OPTF

p (J) + c ε, as O[J ′/J ] is a
valid schedule of J ′ and F is monotonic. Decreasing ε to zero completes the
proof. #

We shall from now on consider only (Par-Seq)∗ instances.

4 Fairness Is Fair Enough

4.1 The Single Set Case

In this section, we focus on the case where the collection S consists of a unique
set S1 = {J1, . . . , Jn}. The problem consists thus in minimizing the makespan of
the set of jobs S1. This problem is interesting on its own and, as far as we know,
no competitive non-clairvoyant algorithm was known. Furthermore, the analysis
that follows is one of the keys to the main result of the next section.



748 J. Robert and N. Schabanel

Equi Algorithm. Equi is the classic operating system approach to non-
clairvoyant scheduling. It consists in giving an equal amount of processors to
each uncompleted job (operating systems approximate this strategy by a pre-
emptive round robin policy). Formally, given p processors, if N(t) denotes the
number of uncompleted jobs at time t, Equi allots ρt

i = p/N(t) processors to
each uncompleted job Ji at time t.

Analysis of Equi for makespan minimization. Thanks to Theorem 3, we
focus on a (Par-Seq)∗ instance S = {J1, . . . , Jm}. By rescaling the parallel work
in each job, we can assume w.l.o.g. that p = 1. Let us define the Par-Seq instance
S′ = {J ′

1, ..., J
′
n} where each J ′

i consists of a fully parallel phase of work par(Ji)
followed by a sequential phase of work seq(Ji). Observe that:

Lemma 2. Makespan(Equi(S′)) " Makespan(Equi(S)).

Proof. Since all the jobs arrive at time 0, the number of uncompleted jobs is a
non-increasing function of time. It follows that the amount of processors alloted
by Equi to a given job is a non-decreasing function of time. Thus, moving all
the parallel work to the front, can only delay the completion of the jobs since
less processors will then be allocated to each given piece of parallel work. #

Now, every job consists of a parallel phase followed by a sequential phase of
length at most seq(S′). The key to the analysis is to observe that: if more than
a proportion α of jobs are in a parallel phase, then the overall parallel work
progresses at a rate at least α; and if more than a proportion (1 − α) of jobs
are in a sequential phase then after seq(S′) time, these jobs are completed and
the number of jobs decrease by a factor α. It follows that the parallel work is
at most dilated by some factor 1/α and the sequential phases get extended by
some logarithmic factor. We thus obtain the following competitive ratio:

Proposition 1. Equi is (1 + o(1)) lnn
ln ln n -competitive for the makespan mini-

mization problem.

Proof. Consider the schedule Equi(S′) and let T = Makespan(Equi(S′)). We
write [0, T ] as the disjoint union of two sets A and Ā. Set α = (ln lnn)2

ln n . Recall
that N(t) is the number of uncompleted jobs at time t. Let st be the number
of uncompleted jobs in a sequential phase at time t. Set A is the set of all the
instants where the fraction of jobs in a sequential phase is larger than α, and
Ā is its complementary set: i.e., A = {0 ! t ! T : st " (1 − α)N(t)} and
Ā = {0 ! t ! T : st < (1 − α)N(t)}. Clearly, T = |A| + |Ā|, with |X | =

∫
X dt.

We now bound |A| and |Ā| independently.
At any time t in Ā, the total amount of parallel work completed between t

and t + dt is at least α dt. Since the total amount of parallel work is par(S′), we
get

∫
Ā α dt ! par(S′). Thus, |Ā| ! par(S′)/α.

Now, let t1 < · · · < tq with tk ∈ A for all k, such that the time in-
tervals I1 = [t1, t1 + seq(S′)), . . . , Iq = [tq, tq + seq(S′)) form a collection
of non-overlapping intervals of length seq(S′) that covers A. Once the se-
quential phase of a Par-Seq job has begun at or before time t, the job



Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough 749

.

.

.

.

.

.

.

.

.

.

.

.

A fraction 1/L
of the Jobs are in 
a parallel phase
of total work all 
together ! 1/L

A fraction 1-1/L 
of the Jobs are
in a sequential 

phase and
 completes 
afterwards

t=0 t=1 t=2 t=L. . .

n jobs
are alive

n/L jobs
are alive

L jobs
are alive

n/L2 jobs
are alive

. . .

t=3

1 job
is alive

t=L+1

represents
a parallel
phase

represents
a sequential 
phase

Fig. 1. Worst case instance designed by the mean adversary

completes before time t + seq(S′). Since at time tk, at least (1 − α) · N(tk)
jobs are in a sequential phase, at time tk+1 " tk + seq(S′), we have thus:
N(tk+1) ! αN(tk). It follows that N(tk) ! αk · n. Since N(tq) " 1,
q ! ln n

ln(1/α) . But A is covered by q time intervals of length seq(S′), so: |A| !
ln n

ln(1/α) seq(S′). Finally, Makespan(Equi(S)) ! Makespan(Equi(S′)) = T !
1
α par(S′) + lnn

ln(1/α) seq(S′) ! (1 + o(1)) ln n
ln ln n max(par(S′), seq(S′)) =

(1 + o(1)) ln n
ln lnn max(par(S), seq(S)) ! (1 + o(1)) ln n

ln lnnOPT(S). #

Equi is asymptotically optimal up to a factor 2. The following lemma
shows that Equi is asymptotically optimal in the worst case. Note that increasing
the number of processors by a factor s does not improve the competitive ratio
of any deterministic or randomized algorithm as long as s = o( ln n

ln ln n ), i.e., the
competitive ratio does not improve even if the number of processors increases
(not too fast) with the number of jobs. Figure 1 presents the worst case instance
used below.

Proposition 2 (Lower bound for any non-clairvoyant algorithm). No
non-clairvoyant algorithm A has a competitive ratio less than γD = ln n

2 ln ln n if A
is deterministic, and γR = ln n

4 ln ln n if A is randomized.
Furthermore, no non-clairvoyant algorithm A is s-speed c-competitive for any

speed s = o( ln
ln ln n ) if c < γD and A is deterministic, or c < γR if A is random-

ized.

Proof. Consider the execution of an algorithm As given s processors on the
following instance (see Fig. 1). At time 0, n = (s&)$ jobs are given. Since the al-
gorithm is non-clairvoyant, we set the phase afterwards. At time 1, we renumber
the jobs J1, . . . , Jn by non-decreasing processing power received between t = 0
and t = 1 in As. Between time t = 0 and t = 1, we set the jobs J(s$)"−1+1, . . . , Jn

(i.e., the last fraction 1 − 1/(s&) of the (s&)$ jobs) to be in a sequential phase of
work 1 and say that all of them complete at time 1; each Jj of the J1, . . . , J(s$)"−1

are set in a parallel phase of work
∫ 1
0 ρ

t
j dt each between time 0 and 1, where ρt

j is
the amount of processors alloted to Ji at time t. The processing power received
by the last 1 − 1/(s&) fraction of jobs between t = 0 and t = 1 is at least s − 1/&



750 J. Robert and N. Schabanel

and thus, the total parallel work assigned to the jobs between 0 and 1 is at
most 1/&. At time 1 only remains the jobs J1, . . . , J(s$)"−1 that just have finished
their first parallel phase. We continue recursively as follows until time t = &: at
integer time t = i < &, (s&)$−i jobs are still uncompleted; between time t = i
and t = i + 1, the fraction 1 − 1/(s&) of the (s&)$−i jobs that received the most
processing power are set in a sequential phase of work 1 and all of them complete
at time i + 1; each job Jj of the other 1/(s&) fraction is set in a parallel phase of
work

∫ i+1
i ρt

j dt each; At time i + 1 only remains the (s&)$−i/(s&) = (s&)$−(i+1)

jobs that just have finished their i-th parallel phase. At time t = &, there only
remains one job which completes at time &+1 after a sequential phase of work 1.
It follows that for this instance, As achieves a makespan of &+1. But, the amount
of parallel work executed within each time interval [i, i + 1] for i = 0, ..., &− 1,
is at most 1/&. It follows that an optimal (clairvoyant) scheduler on 1 processor
can complete all the parallel work in one time unit and then finish the remaining
sequential work before time 2. But n = (s&)$, & > lnn

ln ln n , which concludes the
proof. (The proof for randomized algorithms, based on Yao’s principle [13,10],
is omitted due to space constraints). #

4.2 Non-clairvoyant Batch Set Scheduling

We now go back to the general problem. Consider a collection S = {S1, . . . , Sm}
of m sets Si = {Ji,1, . . . , Ji,ni} of ni (Par-Seq)∗ jobs, each of them arriving at
time zero. The goal is to minimize the overall set completion time of the sets.

Equi◦Equi Algorithm. We consider the Equi◦Equi strategy which splits evenly
the amount of processors given to each set among the uncompleted jobs within
that set. Formally, let N(t) be the number of uncompleted sets at time t, and
Ni(t) the number of uncompleted jobs in each uncompleted set Si at time t.
At time t, Equi◦Equi on p processors allots to each uncompleted job Jij an
amount of processors ρt

ij = p
N(t)·Ni(t) . The following section shows that indeed

the competitive ratio of this strategy is asymptotically optimal (up to a constant
multiplicative factor).

Competitiveness of Equi◦Equi. Scaling by a factor p each sequential work,
again we assume w.l.o.g. that p = 1. Consider the Par-Seq instance S′ =
{S′

1, . . . , S
′
m} where S′

i = {J ′
i,1, . . . , J

′
i,ni

} and each job J ′
ij consists of a fully

parallel phase of work par(Jij) followed by a sequential phase of work seq(Jij).
Following the proof of Lemma 2, we get:

Lemma 3. SetCT(Equi ◦ Equi(S′)) " SetCT(Equi ◦ Equi(S)).

The next lemmas are the keys to the result. They reduce the analysis of
Equi◦Equi to the analysis of the overall completion time of Equi for a col-
lection of jobs, which is known from [3] to be (2 +

√
3)-competitive when all the

jobs arrive at time 0. Let n = maxi=1,...,m ni be the maximum size of a set Si,
and let α = (ln ln n)2

ln n . The principle is to reduce the analysis of sets of jobs to the
analysis of single (Par-Seq)∗ jobs as follows. Consider the lifetime of a set, each



Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough 751

time a proportion more than α of the jobs are in a parallel phase within the set,
we create a parallel phase; and each time a proportion more than (1 −α) of the
jobs are in sequential phase, we create a sequential phase. For the same raison
as before, the overall parallel work gets dilated by at most 1/α while the overall
sequential work is extended by at most a logarithmic factor.

Lemma 4. There exists a (Par-Seq)∗ instance J = {J1, . . . , Jm}
of Non-Clairvoyant Batch Job Scheduling, such that: Equi(J) =
Equi ◦ Equi(S′)[J/S′], par(Ji) ! 1

α par(S′
i), and seq(Ji) ! lnn

ln(1/α) seq(S′
i),

where S[J/S′] denotes the schedule where Ji receives at any time the total
amount of processors alloted to the jobs J ′

ij of S′
i in schedule S.

Proof. Let E = Equi ◦ Equi(S′). Let us construct J1 (the construction of Ji,
i " 2, is identical). Consider the jobs J ′

1,1, . . . , J
′
1,n1

of S′
1 in the schedule E.

Let t1 = 0 < · · · < tq = c′1 (where c′1 denotes the completion time of S′
1 in E),

such that during each time interval [tk, tk+1), each job J ′
1,j remains in the same

phase; during [tk, tk+1), the number of jobs of S′
1 in a sequential (resp. fully

parallel) phase is constant, say sk (resp. N1(tk) − sk). J1 has (q − 1) phases:
– if sk " (1−α)N1(tk), the k-th phase of J1 is sequential of work wk = tk+1−tk.
– if sk < (1 − α)N1(tk), the k-th phase of J1 is fully parallel of work

wk =
∫ tk+1

tk

1
N(t)dt.

J1 is designed to fit exactly in the space alloted to S′
1 in E, thus Equi(J) =

E[J/S′]. We now have to bound the total parallel and total sequential works in
J1. Let K = {k : sk " (1 − α)N1(tk)} and K̄ = {1, . . . , q − 1} ! K; by con-
struction, seq(J1) =

∑
k∈K wk and par(J1) =

∑
k∈K̄ wk. For each t ∈ [tk, tk+1)

with k ∈ K̄, the amount of parallel work of jobs in S′
1 between t and t + dt

is at least αN1(t)
N(t)·N1(t) dt = α

N(t) dt. It follows that the amount of parallel work

of jobs in S′
1 scheduled in E during [tk, tk+1) is at least α

∫ tk+1

tk

1
N(t)dt = αwk.

Thus, par(S′
1) " ∑

k∈K̄ αwk = α par(J1), which is the claimed bound. Now, let
A = ∪k∈K [tk, tk+1), we have |A| = seq(J1). Since the bound on the size of A in
proof of Proposition 1 relies on a counting argument (and is thus independent
of the amount of processors given to the set) and the jobs in S′

1 are Par-Seq,
the same argument applies and |A| ! ln n1

ln(1/α) seq(S′
1) ! ln n

ln(1/α) seq(S′
1), which

conclude the proof. #

Let J ′ = {J ′
1, . . . , J

′
m} be the Par-Seq instance of Batch Job Scheduling where

each job J ′
i consists of a fully parallel work of par(Ji) followed by a sequential

work of seq(Ji). Again, as the amount of processors alloted by Equi to each
job is a non-decreasing function of time, pushing parallel work upfront can only
make it worse, thus: Equi(J) ! Equi(J ′).

We can now conclude on the competitiveness of Equi ◦ Equi since Equi is
proved to be (2 +

√
3)-competitive for instance J ′ in [3, Theorem 3.1].

Proposition 3. Equi◦Equi is (2+
√

3+o(1)) ln n
ln lnn -competitive for the overall set

completion time minimization problem.



752 J. Robert and N. Schabanel

5 Experimental Study of Equi and Equi◦Equi

Fig. 2(a) presents the empirical overall and maximum competitive ratio of Equi
for the Makespan objective on random stream-lined instances [2]: for each n, a
set of n jobs, of 5n phases of unit work each, is requested at time 0; for all i,
the type of the i-th phase of the n jobs are defined as follows: a job is chosen
uniformly at random and its i-th phase is set to parallel, and the i-th phases of
all the other jobs are all sequential. It appears that the empirical competitive
ratio measured for Equi on this random instance appears to be asymptotically
∼ .7 ln n

ln ln n . The worst case ratio proven in Proposition 2 seems thus to be the
typical behavior of Equi.

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 10  100  1000

 0.6

 0.8

 1

 1.2

 1.4

M
a
k
e
s
p
a
n
(E

Q
U

I)
 /
 O

P
T

Number of jobs

Maximum makespan/OPT
Average makespan/OPT
Average makespan/OPT/(ln(n)/(ln(ln(n))))
Maximum makespan/OPT/(ln(n)/(ln(ln(n))))

 2

 2.5

 3

 3.5

 4

 4.5

 10  100  1000  10000

A
v
e
ra

g
e
 S

e
t 
C

T
(E

Q
U

I)
 /
 O

P
T

Number of requests

Worst case instance with 200 Jobs per request
Worst case instance with 100 Jobs per request
Worst case instance with 50 Jobs per request
Worst case instance with 30 Jobs per request
Worst case instance with 10 Jobs per request

 2.5

 3

 3.5

 4

 4.5

 10  100  1000

 0.6

 0.8

 1

 1.2

 1.4

A
v
e

ra
g

e
 S

e
t 

C
T

(E
Q

U
I)

 /
 O

P
T

Number of jobs per request

Empirical competitive ratio
Empirical competitive ratio/((ln(n)/ln(ln(n))))

Fig. 2. From left to right: a) Makespan of Equi on random stream-lined instances; b)
Average Set Flowtime of Equi◦Equi on a stream of worst case instances for Makespan
on 2 processors; c) Worst empirical competitive ratio for Equi ◦ Equi2 w.r.t. OPT1

Fig. 2(b) and (c) present the competitive ratio of Equi◦Equi for the Average
Set Flowtime objective (the average flowtime of each set of jobs) with 2 proces-
sors with respect to the optimal with 1 processor, on the following instance:
at each time step t = 0..10 000, we request an instance of the worst case type
described in Fig. 1 with n jobs, n ∈ {10, 30, 50, 100, 200}. Fig. 2(c) shows that
the empirical competitive ratio seems to tend asymptotically to ∼ ln n

ln ln n as time
grows. It seems thus that the competitive ratio of Equi◦Equi is independent of
the number of requests for the Average Set Flowtime objective as well.

References

1. Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., Weglarz, J.(eds.): Handbook on
Scheduling: Models and Methods for Advanced Planning, chapter Online Schedul-
ing. International Handbooks on Information Systems. Springer, Heidelberg (2007),
at http://www.cs.pitt.edu/∼kirk/papers/index.html

2. Edmonds, J.: Scheduling in the dark. In: Proc. of the 31st ACM Symp. on Theory
of Computing (STOC), pp. 179–188. ACM Press, New York (1999)

3. Edmonds, J., Chinn, D.D., Brecht, T., Deng, X.: Non-clairvoyant multiprocessor
scheduling of jobs with changing execution characteristics. J. Scheduling 6(3), 231–
250 (2003)

http://www.cs.pitt.edu/~kirk/papers/index.html%20


Non-clairvoyant Batch Sets Scheduling: Fairness Is Fair Enough 753

4. Edmonds, J., Pruhs, K.: Broadcast scheduling: when fairness is fine. In: Proc. of the
13th annual ACM-SIAM symp. Society for Industrial and Applied Mathematics,
pp. 421–430. ACM Press, New York (2002)

5. Feldmann, A., Kao, M.-Y., Sgall, J., Teng, S.-H.: Optimal online scheduling of par-
allel jobs with dependencies. J. of Combinatorial Optimization 1, 393–411 (1998)

6. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Techni-
cal Journal 45, 1563–1581 (1966)

7. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics 17, 263–269 (1969)

8. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J.
ACM 47(4), 617–643 (2000)

9. Motwani, R., Philipps, S., Torng, E.: Non-clairvoyant scheduling. Theoretical Com-
puter Science 130, 17–47 (1994)

10. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995)

11. Robert, J., Schabanel, N.: Pull-based data broadcast with dependencies: Be fair to
users, not to items. In: Proc. of Symp. on Discrete Algorithms (SODA) (2007)

12. Tucker, A., Gupta, A.: Process control and scheduling issues for mulitprogrammed
shared memory multiprocessors. In: Proc. of the 12th ACM Symp. on Op. Syst.
Principles, pp. 159–166. ACM Press, New York (1989)

13. Yao, A.: Probabilistic computations: Towards a unified measure of complexity. In:
Proc. of 17th Symp. on Fond. of Computer Science (FOCS), pp. 222–227 (1977)


