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Abstract. Let G = (V, E) be a graph. A nonempty subset S C V is a
(strong defensive) alliance of G if every node in S has at least as many
neighbors in S than in V'\ S. This work is motivated by the following ob-
servation: when G is a locally structured graph its nodes typically belong
to small alliances. Despite the fact that finding the smallest alliance in a
graph is NP-hard, we can at least compute in polynomial time depthg(v),
the minimum distance one has to move away from an arbitrary node v
in order to find an alliance containing v.

We define depth(G) as the sum of depthg(v) taken over v € V. We
prove that depth(G) can be at most +(3n* — 2n + 3) and it can be
computed in time O(n®). Intuitively, the value depth(G) should be small
for clustered graphs. This is the case for the plane grid, which has a depth
of 2n. We generalize the previous for bridgeless planar regular graphs of
degree 3 and 4.

The idea that clustered graphs are those having a lot of small alliances
leads us to analyze the value of r,(G) = IP{S contains an alliance}, with
S C V randomly chosen. This probability goes to 1 for planar regular
graphs of degree 3 and 4. Finally, we generalize an already known result
by proving that if the minimum degree of the graph is logarithmically
lower bounded and if S is a large random set (roughly |S| > %), then
also r,(G) — 1 as n — oo.

1 Introduction

The clustering coefficient of a vertex v, denoted by ¢(v), indicates the extent to
which neighbors of v are neighbors themselves [I]. More precisely, if the num-
ber of edges within the neighborhood of v is I' and the degree of v is d, then
c(v) = %. The average of ¢(v) taken over all the nodes of a graph G gives
the clustering coefficient of G. With this coefficient, Watts and Strogatz [I] were
able to justify empirically the idea that small-world networks are locally con-
nected while classical random graphs are not (with both families having a small
diameter).
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Fig. 1. A locally structured graph

A fundamental limitation of the clustering coefficient is shown in the graph
of Fig.[Il consisting of a ring where every vertex has two additional neighbors at
ring-distance k. When k = 2, the clustering coefficient is % > 0. However, when
k > 3 it becomes 0, despite the fact that the structure of the graph remains the
same.

This and other limitations have lead researchers to propose all kinds of gen-
eralizations. In [2], for instance, authors introduced a new definition intended to
filter out the effect of degree correlations. In [3], instead of asking “how many
of my neighbors are connected?”, researchers started to ask “how closely related
are my neighbors?”. Roughly, this is the approach behind most of the new no-
tions such as grid coefficient [4], meshedness coefficient [5], weighted clustering
coefficient [6], high order clustering coefficient [7] and efficiency [g].

In the present work we take another approach, which is motivated by the
following observation: the nodes of locally structured graphs typically belong to
small alliances. In Fig. [I] these alliances are cycles of length k. More precisely,
a subset of nodes S C V is an alliance if each of its nodes has at least as
many neighbors inside S than outside S. The formal definition was given in [9],
where they used the term strong defensive alliance (which for simplicity we call
alliance).

Our results. Let S, be, among all the alliances containing the node v, a min-
imum one (with respect to the cardinality). Since finding |S,| is NP-hard, we
exhibit in Sect. 2 a polynomial time algorithm that computes depthg(v), the
minimum distance one has to move away from v in order to find an alliance
containing v. We define depth(G) as the sum of depthg(v) taken over all the
nodes of G. We prove that the depth of G can be at most +(3n* — 2n + 3) and it
can be computed in time O(n?). For bridgeless planar cubic graph we obtain a
better upper bound, namely %n We consider this section the starting point of
our research efforts by which we expect to find bounds for the depth of different
graph classes.

We also take a probabilistic approach introducing another coefficient. We
consider the probability of finding an alliance in a randomly chosen subset of
nodes S (each one independently and with probability p). We prove that, as
expected and in accordance with the previous result, this probability goes to 1
for planar regular graphs of degree 3 and 4.
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It is known that in every graph G = (V, E) of n nodes there exists an alliance
of size at most L%J + 1 [9L[10]. We prove a stronger result which says that, for
graphs where the degree of every node is w(log(n)), if the chosen set S is large
enough (i.e, with p > %), then S will be an alliance with high probability.

Related work. The notion of alliance was first studied in [9], where the authors
introduced various types of alliances which have been studied later, calculat-
ing and bounding their size on certain classes of graphs. Namely, these types
of alliances are: defensive alliances [9[I], offensive alliances [I2], global defen-
sive/offensive alliances [I3[14], dual or powerful alliances [15] and k-alliances
16,17, 18,19].

The notion of alliance is very natural and, for that reason, it has appeared
in other works in different contexts. In [20] the notion of web community was
introduced: “a community is a set of sites that have more links to members of the
community than to non-members”. In [21] the authors refer to a “white block”
as a subset W of an (m x n)-torus composed of vertices “each of which has at
least two neighbors in W”. This set W is, of course, an alliance. It appeared
when researchers were trying to bound the size of monopolies and coalitions in
graphs [22/23]. A closely related line of research consists in trying to partition
the graph into communities (alliances in this work). Here the key object is the
partition itself and the measure of its quality. Newman in [24], together with a
state-of-the-art survey and a complete list of references, provides an algorithm
for partitioning based on the eigenspectrum of a matrix he calls modularity
matrix.

Some terminology. Let G = (V, E) be a (simple) undirected graph. We will
usually assume |[V| =n. Let X C V and v € V. Let dx(v) be the number of
neighbors the node v has in X. In other words, dx(v) = |[Ng(v) N X|, where
Ng(v) is the (open) neighborhood of v. A nonempty subset S C V is a strong
defensive alliance [9] if for every vertex v € S it holds that |[Ng(v) N S| >
|Nc(v) N'S|. Note that this is equivalent to ds(v) > dz(v). In this work such a
set S will simply be called an alliance. The eccentricity of a node v, denoted by
ecca(v), is the greatest distance between v and any other node in G.

2 The Depth of a Graph

Let v be a node of a graph G = (V, E). Let S, C V denote a minimum size
alliance containing v. Our work is motivated by the following observation: in
locally structured graphs the value |S,| is typically small. Therefore, if we want
to measure how locally structured a graph is, we should compute the average
of |Sy| taken over all the nodes. Unfortunately, calculating the size of each S,
turns out to be NP-hard. In fact, let us define the problem ALLIANCE as follows:

ALLIANCE
Instance: Graph G and k € IN.
Question: Is there any alliance S in G such that |S| < k?
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This problem is NP-complete [25]. For sake of completeness we present our
own reduction in the Appendix. Despite the fact that the previous result implies
that in practice there is no efficient way to find |S,|, we can still do something.
In fact, since we are looking for a measure of “clustering”, it would be enough
to compute the depth of v, the minimum distance one has to move away from v
in order to find an alliance containing v:

depthe(v) = min{eccg(v) : S alliance with v € S},

where eccg(v) is the S-eccentricity of v, the distance from v to the farthest node
in S. We are going to present first an algorithm that, given A C V, outputs
m(A), the largest alliance contained in A.

ALLIANCE Input: G = (V,E),A C V. Output: m(A).
S— A
S —{veS:2ds(v) >da(v)}
while S’ # S do
S5
S —{veS:2ds(v) >dg(v)}
end while
return S

Proposition 1. If the set m(A) computed by algorithm ALLIANCE is not
empty, then it is the largest alliance contained in A. The time complexity of
ALLIANCE is O(n?).

Proof. Let S be any set of vertices and let
S '={veS:2ds(v) >dgv)}

Clearly, S’ = S if and only if S is an alliance. Moreover, an alliance is contained
in S if and only it is contained in S’. Hence, the largest alliance contained
in S (if any) is also contained in S’. Therefore, if ALLIANCE sets S" to ()
during some iteration, then it will finish with m(A) = (. Otherwise, it stops
with m(A) =8 = S # (), for some set S. For the time complexity notice that
the construction of S’ is O(n) and there are at most n iterations. O

By using ALLIANCE we propose the following algorithm to compute the depth
of a vertex.

DEPTH Input: G = (V,E),v € V. Output: depthg(v).
A~ Ng(w)U{v}, r1
while r <n do

if v € ALLIANCE(A) then

return r

end if

A— AUNg(A)

r—r+1
end while
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Proposition 2. DEPTH returns depthg(v) and its time complexity is O(n?).

Proof. In order to prove the statement we prove that the depth of a vertex v
corresponds to the smallest radius r > 0 such that the ball of radius r centered
in v contains an alliance containing v, which is exactly the quantity returned by
DEPTH.

Clearly, if S is an alliance contained in a ball of radius r centered in v, then
the distance between v and any vertex in S is at most r. Hence the eccentricity
of v in S is at most r. Therefore, the depth of v is at most r. Conversely, for
sake of contradiction, let us assume that there is an alliance S containing v such
that the eccentricity of v in S is less than r. Then the distance from v to any
vertex in S is less than r. Hence, S is an alliance contained in a ball of radius
smaller than r.

Since running DEPTH involves running ALLIANCE at most n times, the
time complexity follows. ]

The depth of a graph G is the sum of the depth of its vertices. It is denoted by
depth(G). From Proposition 2 depth(G) can be computed in polynomial time.
As we have already mentioned, it is known that every graph G with n vertices
has an alliance of size at most L%J + 1 [9,10]. In order to find an upper bound
for the depth of G we prove now a slightly different result.

Proposition 3. Every graph G = (V, E) has an alliance S CV such that |S| €
Izl T21+13.
Proof. Let us consider the set of all “almost balanced” cuts of G = (V, E). More
precisely, C = {E(U,U) CE : UCV, [Ul €{[n/2], [n/2] +1}}.Let Uy C V
be such that E(Uy, Up) is a min-cut of C. i.e, |E(Uy, Up)| = min g, |E|.

All we need to prove now is that Uy is an alliance of G. Suppose that there is a

node u € Uy such that dy,(u) < dg(u). In that case, if we define Uy = Up \ {u},
we would have

|E(Uy, Un)| = |E(Uo, Uo)| — (dg(w) — du, (u)) < [E(Uo, Up)|-

In order to conclude we need to show that E(Uy,U;) € C. In fact, if |Up

[n/2] + 1 then |Uy| = [n/2]. On the other hand, if |Uy| = [n/2] then |U;| €
{[n/2], [n/2]+ 1} 0
Corollary 1. The depth of any graph G is at most $(3n* — 2n + 3).

Proof. The depth of [%1 vertices is at most [%1 ]

We do not know whether this upper bound is tight. Nevertheless, by forcing the
graph to be bridgeless planar of degree at most 4, the upper bound decreases
drastically.

First notice the following: the depth of every vertex in the (m x n)-grid is 2,
since every vertex belongs to a small alliance (a cycle of length 4). We are now
going to generalize this and prove that the depth of any planar bridgeless graph
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of degree at most 4 is linear in n. This result goes in the right direction: the
depth of a graph seems to be a good generalization of its clustering coefficient.
Let G be a bridgeless plane cubic graph. Then, each vertex v belongs to a cycle
C which is the boundary of a face. We call these faces facial cycles in the sequel.
Clearly, C is an alliance containing v, and therefore depthg(v) < |[V(C)|/2.

oL . . . 15
Proposition 4. The depth a bridgeless planar cubic graph is at most 3 n.
Proposition [4] is a consequence of the following lemma.

Lemma 1. Let G = (V, E) be a bridgeless plane cubic graph and let F(G) denote
the set of its faces. Then there exists a function f associating to each vertex a
facial cycle containing it and such that no face is associated with more than five
vertices.

Proof. Consider the dual graph G* = (F(G), E*). Since G is plane, cubic and
bridgeless, then G* is a plane graph with no loops and with no multiple edges.
We are looking for a function f that assigns to each vertex of G a particular
alliance to which it belongs. By duality, this is equivalent to look for a function
f* that assigns to each face h* of G* a particular vertex v* of G* with v* lying
in the boundary of h*. Hence, in order to prove the lemma we have to make sure
that in our construction (of f*) at most 5 faces of G* are labeled with the same
vertex.

We proceed by induction on the number of vertices of G*. If G* has just
one vertex then we label the unique face of the graph with this vertex. Suppose
now that G* has n + 1 vertices. Since G* is plane (with no loops and with no
multiple edges) there must be a vertex v* of degree at most five. Consider the
graph G’ = G* \ v* (i.e, we delete the vertex and the incident edges). By the
induction hypothesis one can solve the problem in G’ without using v*. The
point occupied by v* belongs to one face of G’. That face contains at most 5
faces of G*. We label all of them with v* and we get the result. O

Proof. (of Proposition[]). Let us consider the function f of the previous lemma.
It follows:

S = > Irllf T I<5 Y |hl=5x2|E]=5x3|V].

veV heF(G) heF(G)

Therefore, depth(G) =Y, oy, deptha(v) < 530 oy 1f(v)] < 2|V O

3 A Probabilistic Approach

Clustered graphs are those having a lot of small alliances. So a natural way of
testing this is to compute the probability of finding an alliance in a small fraction
of nodes (chosen randomly).

We can formalize this question. Let p € [0,1]. Let us denote V,(G) the out-
come of selecting each node of V' with probability p. Let us denote 7,(G) =
IP{V,(G) contains an alliance}. The problem of computing r,(G) seems to be
very difficult in general. But it can be tackled in some cases.
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Proposition 5. Let G = (V, E) be a cubic planar graph. Let 0 < p < 1. Then
(@) 21— (1-p) 5.

Proof. Let us assume that G is already embedded in the plane and let F' be the
set of faces of G. As any face is an alliance of G, we have that

rp(G) >TP{S:3f € F,V(f) C S}.

Let F’ be any maximal set of vertex pairwise disjoint faces of size at most 6.
The probability that a random set S does not contain a given face f in F’ is
1—plVUI < 1—p%. Since the faces in F’ are vertex disjoint the probability that
S does not contain any face in F’ is at most (1 — p6)|F/|. In order to conclude
we will prove that 56|F'| > |V| + 4.

Let a; be the number of faces of size 7 and let b; be the number of faces of
size at most 7. By maximality, any face f with size at most 6 intersects at least
one element of I’ and a face f € F’ intersect at most 6 faces of size at most 6
not in F’. Therefore, 6|F’| > bg — |F’| and then 7|F’| > bg. From the definition
of a;, we get that |F| =3",.,a; and 2|E| = 3, 4 ia;. From Euler’s Formula for
cubic graphs, 2|E| = 6|F| — 12, we get the following.

> (i —6)a; + 12 = a5 + 2a4 + 3a3 (1)
i>7

Let ¢ be a positive number. From equation [I] we deduce that if a5 + 2a4 +
3az < c|F|, then |F| — bg < c|F| and hence bs > (1 — ¢)|F|. Otherwise, if

as + 2a4 + 3as > c|F| then bg > £|F|. By choosing ¢ = 3 we conclude that

be > %|F|. By using again Euler’s formula and the upper bound |F'| > % we
conclude that
F)> % > R = @4 VI/2)
-7 7287 28
Therefore,
|V|+a

rp(G) > 1— (1—p9)FT>1— (1 pf) e 0

We say that a sequence of graphs (G )rew is an increasing sequence if the order
(number of nodes) of the graphs grows with k.

Corollary 2. Let 0 < p < 1. Every increasing sequence (Gi)rew of cubic planar
graphs satisfies limyg_. 7,(Gr) = 1.

Remark 1. The previous result also holds for planar regular graphs of degree 4.

As we have already seen, every graph G with n nodes has an alliance of size at
most L%J + 1. This alliance comes from a wvery particular construction, dealing
with an “almost balanced” minimum cut of G. What if we choose randomly a

large set of nodes? Is it going to contain an alliance with high probability?

Proposition 6. Let G = (V,E) be a graph with minimum degree d. Let 3 <
2
p<1l. Thenry(G)>1— ne=" 4, where =p(1-0).
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Proof. We apply the Chernoff bound in a standard way as explained in [26]. Let
Xy =1ifv € V,(G) and X, = 0 otherwise. Let X (v) = 3_, ¢ n(,) Xu- It follows:

rp(G) > P{Vv € V,,(G) : dv, (@) (v) > dVP(G) (v)}

>1- Y P{X(v)< @} =1- > P{X(v)<(1-EX@)}
VEV,(G) VEV,(G)
>1- Z 6_#(1(1)) >1- ne_#d. O

veV,(G)

We can apply the previous lemma to graphs for which the degree of every node
is high enough. A class of graphs is said to have minimum degree d(n) if the
minimum degree of any graph having more than n nodes is at least d(n).

Corollary 3. Let 3 < p < 1 and let d(n) = w(log(n)). Then, for every
increasing sequence (Gi)rew of graphs with minimum degree d(n), we have
hmk‘}m Tp(Gk) =1.

Acknowledgment. The authors would like to thank Martin Loebl for very
helpful hints and comments.

References

1. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Na-
ture 393, 440-442 (1998)

2. Soffer, S.N., Vazquez, A.: Network clustering coeflicient without degree-correlation
biases. Phys. Rev. E 71(5), 57101 (2005)

3. Abdo, A.H., de Moura, A.P.S.: Measuring the local topology of networks: An ex-
tended clustering coefficient, arXiv:physics/0605235 (2006)

4. Caldarelli, G., Pastor-Santorras, R., Vespignani, A.: Cycles structure and local
ordering in complex networks. The European Physical Journal B - Condensed
Matter 38(2), 183-186 (2004)

5. Buhl, J., Gautrais, J., Solé, R.V., Kuntz, P., Valverde, S., Deneubourg, J., Ther-
aulaz, G.: Efficiency and robustness in ant networks of galleries. The European
Physical Journal B - Condensed Matter 42, 123-129 (2004)

6. Schank, T., Wagner, D.: Approximating clustering coefficient and transitivity. Jour-
nal of Graph Algorithms and Applications 9(2), 265-275 (2005)

7. Fronczak, A., Holyst, J.A., Jedynak, M., Sienkiewicz, J.: Higher order clustering
coefficients in Barabasi-Albert networks. Physica A 316(1), 688—694 (2002)

8. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Phys. Rev.
Lett. 87(19), 198701 (2001)

9. Kristiansen, P., Hedetniemi, S.M., Hedetniemi, S.T.: Alliances in graphs. J. Com-
bin. Math. Combin. Comput. (48), 157-177 (2004)

10. Shafique, K.H.: Partitioning a graph in alliances and its application to data cluster-
ing. PhD thesis, School of Comp. Sci., College of Eng. and Comp. Sci., University
of Central Florida (2004)



226

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

R. Carvajal et al.

Sigarreta, J.M., Rodriguez, J.A.: On defensive alliances and line graphs. Applied
Mathematics Letters 12(19), 1345-1350 (2006)

Favaron, O., Fricke, G., Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Kris-
tiansen, P.: Offensive alliances in graphs. Discuss. Math. Graph Theory 24(2),
263275 (2004)

Haynes, T.W., Hedetniemi, S.T., Henning, M.A.: Global defensive alliances in
graphs. Electron. J. Combin (10), 139-146 (2003)

Rodriguez, J.A., Sigarreta, J.M.: Global offensive alliances in graphs. Electronic
Notes in Discrete Mathematics 25, 157-164 (2006)

Brigham, R., Dutton, R., Hedetniemi, S.: A sharp lower bound on the powerful
alliance number of ¢,y X ¢n. Congr. Number. 167, 57-63 (2004)

Shafique, K.H., Dutton, R.D.: Maximum alliance-free and minimum alliance-cover
sets. Congr. Number. 162, 139-146 (2003)

Shafique, K.H., Dutton, R.D.: A tight bound on the cardinalities of maximum
alliance-free and minimum alliance-cover sets. J. Combin. Math. Combin. Com-
put. 56, 139-145 (2006)

Rodruguez-Veldazquez, J.A., Gonzalez-Yero, 1., Sigarreta, J.M.: Defensive k-
alliances in graphs. eprint arXiv:math/0611180 (2006)

Rodriguez-Veldzquez, J.A., Sigarreta, J.M.: Global defensive k-alliances in graphs.
eprint arXiv:math/0611616 (2006)

Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities.
In: Proc. of the 6th ACM SIGKDD Int. Conference on Knowledge Discovery and
Data Mining, pp. 150-160. ACM Press, New York (2000)

Flocchini, P., Lodi, E., Luccio, F., Pagli, L., Santoro, N.: Dynamic monopolies in
tori. Discrete Appl. Math. 137(2), 197212 (2004)

Bermond, J., Bond, J., Peleg, D., Perennes, S.: Tight bounds on the size of 2-
monopolies. In: Proc. 3rd Colloq. on Structural Information and Communication
Complexity (1996)

Peleg, D.: Local majorities, coalitions and monopolies in graphs: A review. Theor.
Comput. Sci. 282(2), 231-257 (2002)

Newman, M.E.J.: Finding community structure in networks using the eigenvectors
of matrices. Phys. Rev. E 74(3), 36104 (2006)

McRae, A., Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T., Kristiansen, P.:
The algorithmic complexity of alliances in graphs (Preprint, 2002)

Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2004)

Sipser, M.: Introduction to the Theory of Computation. International Thomson
Publishing (1996)

Appendix: Alliance is N P-Complete

It is known that the following problem is NP-complete [27].

HALF-CLIQUE
Instance: Graph G (with n nodes, n even).
Question: Is there any clique in G of size (at least) %7

Proposition 7. ALLIANCE is N P-complete.
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Proof. Let G = (V, E) be an instance of HALF-CLIQUE (i.e, n is even). In the
reduction to ALLIANCE we construct a graph G’ of size 4n as follows. We first
generate graphs G = (V,E), G2 = (V,¢), Gs = (V,¢) and G4 = (V, E).
The connection between these graphs is made according to the original graph
G = (V, E). Here we will abuse the notation, making no distinction between the
copies in the four graphs, of a node v € V.

Nodes t € (7 are connected to those nodes u € Gy such that
teV\({t}UN(u)). Nodes u € Gy are connected to those nodes v € G5 such
that u € N(v). Nodes v € (i3 are connected to those nodes w € G4 such that
v e (V\({v}UN(w)). For each i € {1,2,3,4}, v; is connected to every vertex
of G;. Notice that G’ is n-regular and therefore the smallest alliances are of size
%. The reader should verify that there exists an alliance in G’ of size § + 1 if

and only if there exists a clique in G' of size 3. a
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