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Abstract. Self-assembling tile systems are a model for assembling DNA-
based nano artefacts. In the currently known constructions, most of the
effort is put on garanteeing the size of the output object, whereas the ge-
ometrical efficiency of the assembling of the shape itself is left aside. We
propose in this paper a framework to obtain provably time efficient self-
assembling tile systems. Our approach consists in studying how the flow
of information has to circulate within the desired shape to guarantee an
optimal time construction. We show how this study can yield an adequate
ordering of the tiling process from which one can deduced a provably time
efficient tile systems for that shape. We apply our framework to squares
and cubes for which we obtain time optimal self-assembling tile systems.

Keywords: Self-assembling, Tilings, Time Optimal Construction, 2D
and 3D Discrete Geometry.

1 Introduction

Self-assembly is the process by which small entities combine themselves into
a bigger shape by local interactions in such a way that the resulting aggre-
gates have interesting global properties. Examples of self-assembly are found in
crystal growth, coral reefs, microtubules, and so on. In [7], Winfree proposed
a framework for using DNA molecules in order to manufacture nano-artefacts
by self-assembly. These artefacts can even be made to encode the result of a
computation, leading to a good model for DNA computing [8].

This framework consists in a refinement of Wang tiles where the colors of the
sides are seen as different kinds of glues. These glues have different strengths
which represent the strength of the affinity between the DNA sequences forming
the sides of the tiles. Two equal glues will stick together, with a strength equal
to the strength of the glues. The self-assembly of the tiles is controlled by the
temperature, an integer τ such that: a tile stays attached only if the sum of the
strengths of the bonds with the other tiles along its sides is at least τ , otherwise
it is torn off from the rest of the crystal by thermal agitation. This model can
and has indeed been implemented practically [5] with DNA.
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Theoretical research so far on self-assembly has focused on minimising the
numbers of tiles necessary to assemble a given shape. In this paper, we will
focus as well on the time needed to assemble a shape. In this model, one can
optimally assemble a shape with O(K/ log K) tiles, where K is the Kolmogorov
complexity of the shape [1,6]. This direction yields tile sets in which most of the
complexity is related to the decoding of a compact representation of the shape,
rather than assembling the shape efficiently. Furthermore, as far as we know,
the time needed to assemble a given shape has not been studied in detail so
far, and asymptotic results have been deemed sufficient. In this paper, we show
how a finer understanding of the inherent parallelism of the model can lead to
time-optimal self-assembly.

Time-constraint-based tile set design. Our approach relies on the study of the
time-relationship between the tiles. More precisely, it consists in studying the
flow of information within the desired shape, and deducing from it a specific
order in which the tiles have to be placed, and from which we finally infer a
time-optimal set of tiles. Deducing the tile set from its specifications allows to
obtain directly a tile set whose behavior has already been proved formally, which
is often easier than obtaining the tile set first and then proving that it behaves
correctly. Interestingly enough, this method yields to a new kind of self-assembly
process in which the construction is not driven by some master signals1 but
rather by a set of interdependent signals where no one takes over the other nor
may progress without the others. This implies that other kinds of relationship
between construction signals may have to be considered in future constructions.

On time optimality and tile set design. In order to set up a proper definition of
time-optimal tile set for a shape, computer science taught us that the considered
tile sets need to allow the construction of an infinite range of sizes for the object.
Indeed, the optimal construction time of a fixed size object cannot be defined
since its construction time can always be made arbitrarily small for any given tile
set simply by increasing the concentrations of the tiles. Obtaining a tile set that
can produce the desired shape at arbitrary size, is also a desirable design strategy:
it’s exactly like writing a program P that asks for n and computes n! instead
of rewriting a new program Pn each time a new n is requested. Decoupling the
problem of decoding of the size and the problem of geometric assembling of the
shape allows to focus on each problem separately and to treat each of them
with more efficiency. Moreover, as we will see, our tile set can easily be extended
by adding computations within the tiles that decodes the size and stops the
construction at the right moment.

Our contribution. In this paper, we focus on squares and cubes and answer to
the question: what is the optimal time to self-assembly these shapes? We start
with the squares and design from the constraints imposed by time-optimality an
order in which the tiles have to be placed, from which we deduce the tile set.

1 For instance, in [2] the construction is driven by the master diagonal signal.
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Our tile set allows to construct any square n×n in optimal parallel time 2n− 2
instead of 3n−5 for the previously known constructions [2]. Then we extend the
result to 3 dimensional self-assembly. In three dimensions, the description of the
tile set could become cumbersome, and its verification even more so. We show
how, by designing first the order in which the tiles should be added, and then
by checking a few conditions of regularity and local determinacy on the order,
we get at once the tile set and a proof of its correctness and its time optimality.
One can also readily check properties such as the absence of bubbles in the 3D
self-assembly process, which can be crucial in practice.

2 Self Assembling Tile Systems

Definition 1 (Tiles). A tile is a unit square with one glue on each side. For-
mally, it is a quadruple of glues 〈αN , αS , αE , αW 〉 chosen from a finite set of
glues Σ.2 Each glue α ∈ Σ has a strength g(α), a non-negative integer. Two
tiles may be placed next to eachother only if their common sides hold the same
glue α; in that case, we say that there is bond of strength g(α) between these
tiles.

Definition 2 (Tile system). Formally, a seeded tile system is a quintuple
T = 〈T, t0, τ, Σ, g〉, where:

– Σ is a finite set of glues whose strengths are given by g.
– T ⊆ Σ4 is a finite set of tiles.
– t0 ∈ T is a particular tile known as the seed.
– τ is a positive integer called the temperature.

The “shapes” produced from a tile system are the one obtained by aggregation
from the seed tile, according to the rule stating that a tile may stick to the
current aggregate only if the sum of its bonds to the rest of the aggregate is at
least the temperature. Formally,

Definition 3 (Productions). A configuration is a partial mapping A : Z
2 →

T , such that all neighboring tiles hold the same glue on their common sides. The
domain of A is called the shape realized by A. We say that a configuration B
extends a configuration A at site (i, j) if: the domain of B is the domain of A
plus the site (i, j); B is identical to A on A’s domain; and the tile placed in B
at site (i, j) sticks to A’s tiles, i.e., the sum of the strengths of the bonds around
the sides of the tile (i, j) in B with the rest of the configuration is at least τ . We
write A →T B and denote by →∗

T the transitive closure.
The productions P of a tile system T are the configurations derived from

the seed configuration, Γ0, which consists in the single tile t0 placed at (0, 0):

2 One can force the orientation of the tiles simply by coding the correct orientation in
the glues, so we assume here w.l.o.g. that the tiles are oriented (no rotation of the
tiles are allowed). This simplifies considerably the design of a tile system, without
affecting its generality.
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P = {A : Γ0 →∗
T A}. We say that a production is final if no other production

may be derived from it. The order induced by →∗
T from the seed configuration is

called the dynamics of T .

A desirable property of a tile system is that the tiles of a production have to be as-
sembled in a fixed known (partial) order. This property turns out to be very useful
in the proof of correctness of tile systems [5]. To the classic RC condition [5] which
states that all the tiles on a given column (resp. row) have to be placed after a fixed
first tile has been placed in this column (resp. row) (we say that this tile opens the
column, resp. row), we prefer the following weaker condition which allows more
geometrical freedom (for instance, assembling concave shapes) while preserving
the necessary guarantee of determinism for the design and analysis purposes.

Definition 4 (The order condition). Given an assembling sequence γ =
〈Γ0→T A1→T A2→T · · ·→T At = P 〉 of a production P and two neighboring
sites (i, j) and (i′, j′) in P , we say that (i, j) ≺P,γ (i′, j′) if the tile over (i, j)
is placed before the tile over (i′, j′) in the construction sequence. We say that
the tile system T satisfies the order condition (is ordered, for short) if for all
production P , the relationship ≺P,γ between the sites of P is independent of
the assembling sequence γ; in that case, the relationship, written ≺P , defines a
partial order (see for instance [3]) called the local order of the sites of P .

Clearly, for any ordered tile system, the assembling sequence of a given produc-
tion P is “locally deterministic”: the tiles over two neighboring sites are always
placed in the same order. The only uncertainty in an ordered tile system relies
in the choice of the tile to place at each site; this choice will condition which
production will be obtained at the end; but, every given production P is always
assembled in the same order locally. Some easy facts on ordered tile systems are:

– if a production Q extends a production P , the local order ≺Q coincides
with ≺P on P ’s sites, and moreover, since no site can be tiled before its
predecessors, P is an ideal3 ≺Q in the order theory terminology.

– since more than τ predecessors would induce uncertainty on the precedence
relationship of a site with its neighbors, every site in a production P has at
most τ predecessors according to ≺P and the seed t0 is the only tile without
predecessors;

– every RC tile system [5] is ordered.

3 Time Optimality and Skeleton

3.1 Time Optimal Tile Systems

Timed dynamics. The assembling of a shape is classically modeled by a Markov
chain in which each tile appears at each unoccupied site at a rate proportional
to its concentration [1]. We do not study here the probability that a given shape
3 An ideal I of a partial order ≺ is a set such that for all u ∈ I , v ≺ u ⇒ v ∈ I

(see [3]).
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is produced, which depends on the concentrations of the tiles: we rather focus
on minimizing the expected construction time of each production, conditioned
to the event that this production is obtained. It is known from [1] that the
expected construction time of a given production P is then proportional to the
length �(P ) of the longest chain of predecessors in ≺P , where the multiplicative
constant depends only on the concentrations of the tiles. Since once we condition
the expectation to construct one specific production, the concentrations play the
same role as GHz in computers (doubling them will reduce the construction time
by 2), the meaningful parameter to measure time here is �(P ). We thus aim at
minimizing the length of the longest chain of dependencies in ≺P to obtain an
efficient construction time. Therefore, we say that the construction of a final
production P is time optimal when the length �(P ) of the longest chain in ≺P

is as small as possible.
Note that, for ordered tile systems, �(P ) is also exactly the time to construct

P in the parallel dynamics, where at every time step, we place all the tiles that
can be attached to the current aggregate.

Since any production is obtained by assembling tiles one after the other start-
ing at the seed tile, we obtain the following bound on the length of the longest
chain of dependencies.

Fact 1 (Trivial lower bound). Given a 4-connected shape S ⊂ Z
2, for all tile

system T and all production P realizing S, we have: �(P ) � ||S||1, where ||S||1
denotes the maximum �1-distance of a site of S to the seed tile placed at the origin.

Definition 5 (Real time assembling). Given a family of shapes S, we say
that a tile system realizes the family S in real time, if the shapes realized by its
final productions are exactly S, and for all final production P realizing a shape
S ∈ S, we have: �(P ) = ||S||1.
By Fact 1, any real time tile system is by definition time optimal. The following
definition extends the notion of time to every site of a production in an ordered
tile system.

Definition 6 (Rank). We define the rank ρP (u) of a site u in a production
P , as the length of the longest chain leading to u in ≺P . We say that a site u
of P is on time if ρP (u) = ||u||1. Clearly, a tile system realizes a production P
in real time, if the site of highest rank in P is on time. Note that in the parallel
dynamics assembling a production P , each site u is tiled at time ρP (u) exactly.

3.2 Skeleton of a Production: Lower Bounding the Rank

Existing self-assembling constructions are driven by main signals, the rest of the
production been completed by “passive” tiles filling the gaps between these sig-
nals. In fact, this has to be the case for all ordered self-assembling constructions
and we formalize this fact with the following notion:

Definition 7 (Skeleton). Let T be an ordered tile system. The x-skeleton of
a production P (resp., y-skeleton) is the union of the seed site and of the sites
of P which have a unique predecessor in ≺P , placed on their right or left (resp.,
above or below). The skeleton of P is the union of its x- and y-skeletons.
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The x-skeleton (resp. y-) of a production P is the set of sites that open the x-
dimension (resp. y-) during the assembling of P , i.e., which are the first in each
column (resp., row) to be tiled. Indeed, in an ordered tile system, each column
of a production is progressively tiled by agregation from the corresponding x-
skeleton site on this column. Note that even if the tiles aggregated on a column
may carry as well meaningful signals, they have all to be placed by agregation
from the x-skeleton tile on this column. Naturally, the same holds respectively
for rows and the y-skeleton. It follows that given an ordered tile system, one can
lower bound the rank ρP (u) of each site u in a production P by the maximum
of the following two quantities:

σX(u) = ρP (a) + ||u − a||1 and σY (u) = ρP (b) + ||u − b||1, (1)

where a and b are the closest x- and y-skeleton sites on the column and on the
row of u in P , respectively (i.e., where a and b are the sites which open the row
and the column of u, respectively, in the assembling of P ).

These two lower bounds show how the “flow of information” circulates within
the shape from the skeleton during the assembling. We will see next how one
can use these lower bounds to understand where the skeleton of a shape has to
be to match the real time constraints. We illustrate this approach by obtaining
two real time tile systems realizing, respectively, the n × n squares Sn and the
n × n × n cubes Cn, rooted at the origin, in optimal time.

4 Assembling Squares in Real Time

4.1 A Real Time Local Order for Squares

We first show how to assemble in real time the family of squares with lower left
corner at the origin, Sn = {0, . . . , n − 1}2 for n � 2. Our approach consists in
designing first a local order for the sites from the “flow of information” induced
by the real time constraints within the shape; and then deduce from it an ordered
tile systems matching this order.

Since ||Sn+1||1 = 2n, our goal is to obtain a local order for the square Sn+1

such that the highest rank of the sites is (at most) 2n. Consider an arbitrary
ordered tile system T that realizes the square Sn+1. Since Sn+1 is convex and
T is ordered, each column (resp., row) of Sn+1 contains exactly one site in the
x-skeleton (resp., y-); otherwise, if there were two x-skeleton sites on the same
column, the sites between them could be assembled from both below and above,
the local order would depend on the assembling sequence and T would not be
ordered. Let us thus denote ai = (i, yi) and bj = (j, xj) the sequences of sites in
the x- and y-skeletons respectively. If yn > n/2 (for instance in [2,4], yn = n−1),
then by the lower bound (1), the rank of lower right corner (n, 0) would be at
least ρ(an) + ||(n, 0) − (n, an)||1 � ||an||1 + yn = n + 2yn > 2n. It follows that
the x-skeleton (resp. y-) of a real time ordered tile system for Sn+1 cannot get
above the site (n, 	n/2
) (resp. to the left of the site (	n/2
, n)).

We thus consider the following x- and y-skeletons: ai = (i, 	i/2
) and bj =
(	j/2
, j) as displayed in Figure 1(a). The lower bound (1) tells us that the
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(a) The local order induced by the x-
and y-skeletons within the square. In
each of the three regions delimited by
the x- and y-skeletons, the local order
≺ follows the directions of the arrows.
For example, in the central region,
the predecessors of (i, j) are (i− 1, j)
and (i, j − 1) and its successors are
(i + 1, j) and (i, j + 1). Each site
(i, � i

2
�) (resp. (� j

2
�, j)) of x-skeleton

(resp. y-) has a unique predecessor,
(i − 1, � i

2
�) (resp., (� j

2
�, j − 1)).

(b) The tile system for even squares. The
numbers on the sides of each tile are the IDs of
the glues, and the number of ticks accross the
boundary of the tiles stands for the strength
of the glue. The temperature is 2. Strength
2 glues lie on the lines j = 2i and j = i/2.
The green tiles and the red tile on the diag-
onal represent the GO and STOP tiles which
propagate (on time) up to the blue and or-
ange signals carrying the x- and y-skeletons
respectively either to allow them to continue
their progression for the next two steps (GO)
or to stop them (STOP).

Fig. 1. The skeleton and the tile systems assembling squares in real time

rank of each site u = (i, j) in any local order based on this skeleton is at least:
σ(u) = max(||ai||1 + ||u − ai||1, ||bj ||1 + ||u − bj ||1). More precisely,

– σ(u) = i+ j = ||u||1 if u lies between the x- and y-skeletons, i.e., if j � 	i/2

and i � 	j/2
;

– σ(u) = i + 2	i/2
− j > ||u||1 if u lies below the x-skeleton, i.e., if j < 	i/2
;
– symmetrically, σ(u) = j + 2	j/2
 − i > ||u||1 if u lies above the y-skeleton,

i.e., if i < 	j/2
.
Clearly, σ(u) � 2n, for all u. Moreover, one can easily verify that σ is the rank
of the following local order where the predecessors of each site u = (i, j) are
defined as (see Figure 1(a)):

– its east neighbor (i − 1, j), if u = ai belongs to the x-skeleton;
– its south neighbor (i, j − 1), if u = bj belongs to the y-skeleton;
– its east and north neighbors (i − 1, j) and (i, j + 1), if u lies below the

x-skeleton;
– its east and south neighbors (i − 1, j) and (i, j − 1), if u lies between the x-

and y-skeletons;
– its west and south neighbors (i + 1, j) and (i, j − 1), if u lies above the

y-skeleton.

We are now left with implementing this real time order with an ordered tile
system.



Time Optimal Self-assembly for 2D and 3D Shapes 151

4.2 A Real Time Tile System for Squares

The main issue in implementing the real time local order above into a tile sys-
tem is the synchronization between the two distant signals carrying the x- and
y-skeletons. It turns out that the sites lying between the x- and y-skeletons are
all on time (their ranks equal their �1-norms). We may then use this zone to
transport just-in-time the synchronization signals. We proceed as shown in Fig-
ure 1(b). The progress of the signals carrying the x- and y-skeletons is controlled
by the tile placed on the diagonal: if the GO tile is placed on the diagonal, then
the GO signal propagates along the row and column and allows just-in-time the
x- and y-skeletons to jump by one upward and to the right respectively and to
progress for two new steps; if the STOP tile is placed on the diagonal, then the
STOP signal propagates along the row and column and the progression of the x-
and y-skeleton stops just-in-time forcing the production to be completed into a
square. In order to obtain even square as well, we have two kinds of STOP tiles:
EVEN and ODD; while EVEN stops where the x- and y-skeleton stoped, ODD
allows one single extra step to extend the length of the sides by one.

The complete description of the tiles and their proof of correctness cannot be
given in details due to space constraints but can be read easily in Figure 1(b).
We thus conclude:

Theorem 2. There exists an ordered self-assembling system with 24 tiles (with
rotations allowed) whose final productions at temperature 2 realize exactly the
set of all squares Sn in optimal time.

Note that the tile system proposed in Figure 1(b) is not minimal and one can
significantly reduce the number of tiles by shifting the x- and y-skeletons while
preserving time optimality. The classic counter-based technique in the literature
[4] which allows to control precisely the size of the assembly can also be used
with this construction. It consists in adding O(log n/ log log n) tiles to force the
production of an n × n square. Instead of choosing non-deterministically the
position of the STOP tile on the diagonal, one can use the on time region be-
tween the x- and y-skeletons to simulate a counter (or any other computation)
and have the (ODD or EVEN) STOP tile to be put exactly at (	n/2
, 	n/2
).
Moreover, using the same technique, and by launching simultaneously four real
time constructions with a counter in the directions SE, NE, NW, and SW, one
can also obtain a real time assembly of a square rooted on any of its sites.

5 Assembling Cubes in Real Time

5.1 The Skeleton

We will now show how our framework allows to obtain readably a tri-dimensional
tile system which assemble in optimal time the family of cubes rooted at the
origin, Cn = {0, . . . , n − 1}3 for n � 2. We extend canonically the definitions in
Sections 2 and 3 from 2D to 3D.

As observed in Section 3.2, the assembling of a convex shape by an ordered
tile systems is necessarily driven by three skeletons consisting in the sequence
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of sites opening each dimension. Taking inspiration from the 2D tile system
designed above, we consider the following x-, y- and z-skeletons heading from the
origin to the centers of the three opposite faces of the cube: ai = (i, 	i/2
, 	i/2
),
bj = (	j/2
, j, 	j/2
) and ck = (	k/2
, 	k/2
, k).

As before, we define the rank function σ induced by the skeleton as follows. For
each site u = (i, j, k), let σX(u) = ||ai||1 + ||u−ai||1, σY (u) = ||bj ||1 + ||u− bj||1,
and σZ(u) = ||ck||1 + ||u − ck||1. The rank of u induced by the skeleton is then:
σ(u) = max(σX(u), σY (u), σZ(u)). Since tiles are assembled from the skeleton
by definition of the skeleton, σ(u) is clearly a lower bound on the earliest time
a tile may be placed at u in the parallel dynamics.

Given two neighboring sites u and v in N
3, we say that u is a predecessor of

v (and v is a successor of u) if σ(u) < σ(v). We define the order induced by the
skeleton ≺ as the transitive closure of the predecessor relation: u ≺ v if there
exists a finite sequence (u0 = u, u1, . . . , uq = v) such that ui−1 is a predecessor
of ui for all i = 1, . . . , q. Our goal is to prove that there exists a tile system
whose local order is exactly ≺. We need first to understand the structure of this
order, and thus first, the local variations of σ.

5.2 On the Rank Function Induced by the Skeleton

We denote by (ex, ey, ez) the canonical basis of N
3. A careful case study yields

the following key lemma describing the variations of σ along the z-axis.

Lemma 1 (Variations of σ along the z-axis). For all site u = (i, j, k) in
N

3, if max(i, j) � 2k + 1, then σ(u) < σ(u + ez); and if max(i, j) � 2k, σ(u) <
σ(u − ez) (provided that k �= 0).

X Y

Z

x
y

z

Z

X

Y

x

y

z

Fig. 2. The local variations of σ and the corresponding local order in N
3 from two

points of views: from (n, n, n) on the left, and from (n, 0, n) on the right. Only the sites
with at most 2 predecessors are represented. Arrows points in σ’s growth direction
along the axes. The white arrows stand for simple predecessors; the red arrow for
double predecessors; and the yellow arrows for triple predecessors. One can clearly see
the partition in seven regions filled with sites with 3 simple predecessors, separated
by discrete planes made of sites with two predecessors including at least one double
predecessor, intersecting each other on the x-, y- and z-skeletons (in pure blue, green
and red respectively) made of sites with one single triple predecessor.
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We thus define the following “pyramidal” discrete surfaces: ΔX = {(
⌊max(j,k)

2

⌋
,

j, k) : j, k � 0}, ΔY = {(i,
⌊max(i,k)

2

⌋
, k) : i, k � 0} and ΔZ = {(i, j,

⌊max(i,j)
2

⌋
) :

i, j � 0}. One can reformulate Lemma 1 as follows: σ is an increasing function
of z above ΔZ , and decreasing function of z below ΔZ .

Figure 2 sums up this result graphically. The discrete surfaces ΔX , ΔY and
ΔZ are respectively painted in blue and pink colors, green and orange colors,
and blue and green colors (the meaning of the colors will be explained in the
following sections). The growth directions of σ along each axis are represented
by the large white arrows within each of the seven regions partitioned by these
three surfaces and by small arrows within each surface.

Two important facts follows. First, σ defines a “proper” local order: σ never
takes the same value on two neighboring sites and thus, for every pair of neigh-
boring sites, one is always the predecessor one of the other. Second, the highest
ranked site in each cube Cn+1 is 3n = ||Cn+1||1, which is attained at the corner
(n, n, n). It follows that the order induced by the skeleton matches the real time
constraints as expected.

5.3 Classification of the Sites According to Their Relative Positions
with Their Predecessors

Thanks to Lemma 1 and Figure 2, we observe the following properties of the
order ≺ induced by σ:

Fact 3

1. each site has at most three predecessors among its neighbors;
2. the origin is the unique site with no predecessor;
3. a site u has a unique predecessor if and only if u belongs to the skeleton; this

predecessor is u − ez if u lies in the z-skeleton.
4. every site u = (i, j, k) with exactly two predecessors has two opposite neigh-

bors which are its successors; and these opposite successors are located in
u ± ez if and only if u belongs to ΔZ .

Multiplicity. We define the multiplicity of the predecessors of the sites as follows
(the missing cases are obtained by symmetry). The multiplicity will be used later
on to define the strength of the bond between the tiles attached on these sites.

– The multiplicity of the predecessors of any site with three predecesors is 1;
– If u �= 0 belongs to the skeleton, the multiplicity of its unique predecessor is 3;
– If u = (i, j, k) belongs to ΔZ : if 	 i

2
 � 	 j
2
 (u belongs to the bluish part of

ΔZ), the multiplicity of its predecessor along the y-axis is 2; if 	 j
2
 � 	 i

2
 (u
belongs to the greenish part of ΔZ), the multiplicity of its predecessor along
the x-axis is 2; if both cases apply (u belongs to the diagonal sites in cyan
of ΔZ in Figure 2), both predecessors of u get a multiplicity of 2, otherwise
the other predecessor gets a multiplicity 1.

In Figure 2, the multiplicities of the predecessors with their successors are
represented by white, red or yellow arrows whether the multiplicity is 1, 2, or
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3 respectively. The following fact will ensure that the tile system we will derive
from the order in Section 5.5, assembles the productions in the prescribed order
at temperature 3.

Fact 4. For all site u �= 0, the sum of the multiplicities of its predecessors is at
least 3 and the sum of the multiplicities of any strict subset of its predecessors
is at most 2.

5.4 Deducing the Successors from the Predecessors

A key property needed to obtain the tile system is that the information trans-
mitted by the glues on the faces a site u shares with its predecessors, is enough,
independently of the position of u, to completely determine the correct glues of
the free faces of u. In terms of order, this property consists for now in checking
that one can deduce the correct types of the successors of u from the types of its
predecessors only, and a small number of criteria that can be transmitted from
site to site through the glues. Consider a site u = (i, j, k).

– If u has a triple predecessor, w.l.o.g., u − ex, then u = ai belongs to the
x-skeleton, u has four double successors u ± ey and u ± ez, and: if i is even,
then u + ex = ai+1 is a triple successor, and a simple successor otherwise.

– If u has two double predecessors, w.l.o.g., u − ex and u − ey (u belongs to
the cyan diagonal part of ΔZ), then u± ez are both simple successors, and:
if i (resp. j) is even, u + ex (resp. u + ey) is a double successor, and a simple
successor otherwise.

– If u has two predecessors, a double and a simple, w.l.o.g., its double and
simple predecessors are respectively u − ex and u − ey and u belongs to the
lighter blue part of ΔZ ; then u ± ez are simple successors and u + ex and
u + ey are respectively double and simple successors as well.

– If u has three simple predecessors, then either u has three simple successors
or it has one triple successor, w.l.o.g. ai+1, and two simple successors; the
second alternative arising only if u = ai + ey + ez, i.e., if u is a successor of
ai + ey which is itself a successor of ai.

Each of these cases corresponds to a different color in Figure 2.

5.5 A Real Time Tile Systems for Cubes

It follows from the study above that one can correctly guess the types of the
successors of any site from the only knowledge of: 1) the multiplicity and relative
position of its predecessors, 2) the parity of the corresponding coordinates, and
3) possibly the immediate proximity to a part of the skeleton. We define thus
the glues as a combination of three labels as follows:

– each face holds a label chosen among +++, ++, +,−,−−,−−− according to
the multiplicity of the predecessor/successor relation with the corresponding
neighboring site and according to the orientation of this relation with respect
to the corresponding axis.
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– each pair of opposite faces holds a 0 or a 1 to propagate the parity of each
coordinate.

– each even site a2i of the x-skeleton propagates to a2i + ey which in turn
relays to a2i + ey + ez the fact that the later has to allow a triple successor
on its x+-face to attach the next element a2i+1 of the x-skeleton (the same
holds for the y- and z-skeletons).

According to the previous subsections, we now have a set of tiles that agregate
themselves from the seed tile according to the desired local order ≺ induced by
σ. We are now left with the problem of the synchronization of the stop of the
three distant signals carrying the x-, y- and z-skeletons. As for the squares in
Section 4.2, we can use for that purpose the central region between the three
surfaces ΔX , ΔY and ΔZ . Indeed an easy calculation demonstrates that this
region consists of the union of all the q × q × q cubes {q, . . . , 2q}3 and that its
sites are all on time (recall definition 6) and can thus be used to propagate from
the main diagonal a GO, STOP-EVEN, STOP-ODD signal to the three part of
the skeleton simultaneously and without delay as we did before in the 2D case.
We can thus conclude:

Theorem 5. There exists an ordered self-assembling system with a finite num-
ber of tiles whose final productions at temperature 3 realize exactly the set of all
cubes Cn in optimal time.
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