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Abstract. Kleinberg [17] proposed in 2000 the first random graph
model achieving to reproduce small world navigability, i.e. the ability
to greedily discover polylogarithmic routes between any pair of nodes in
a graph, with only a partial knowledge of distances. Following this semi-
nal work, a major challenge was to extend this model to larger classes of
graphs than regular meshes, introducing the concept of augmented graphs
navigability. In this paper, we propose an original method of augmenta-
tion, based on metrics embeddings. Precisely, we prove that, for any
ε > 0, any graph G such that its shortest paths metric admits an embed-
ding of distorsion γ into R

d can be augmented by one link per node such
that greedy routing computes paths of expected length O( 1

ε
γd log2+ε n)

between any pair of nodes with the only knowledge of G. Our method
isolates all the structural constraints in the existence of a good quality
embedding and therefore enables to enlarge the characterization of aug-
mentable graphs.

Keywords: Small world, metrics embedding, greedy routing.

1 Introduction

The small world effect, or “six degrees of separation”, is the well known prop-
erty observed in social networks [9,21] that any pair of nodes in these networks
is connected by a very short chain of acquaintances (typically polylogarithmic
in the size of the network), that, moreover, can be discovered locally. In the
literature, a small world graph can either refer to this property or to a graph
with polylogarithmic diameter and high clustering (see e.g. [23]). In this paper, a
small world graph refers to a graph of polylogarithmic diameter and whose short
paths can be discovered locally, i.e. which is navigable. This surprising property
has gained a lot of interest recently since Kleinberg [17] introduced the first an-
alytical graph model for navigability, and because of its potential in the design
of large decentralized networks with efficient routing schemes. The model pro-
posed by Kleinberg in 2000 consists in a d-dimensional mesh augmented by one
extra random link in each node, distributed according to the d-harmonic distri-
bution. The local search is then modeled by greedy routing, which is the simple
algorithm that, at each node, forwards the message to the neighbor that is the
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closest to the destination in the mesh. Kleinberg demonstrates that greedy rout-
ing computes paths of expected length Θ(log2 n) between any pair of nodes in
his model, with the only knowledge of the distances in the mesh: the augmented
mesh is navigable

Following this seminal work, a major challenge was to extend this model to
larger classes of graphs than regular meshes, i.e. to determine which n-node
graphs G admit an augmentation with one link in each node such that greedy
routing with the only of G computes polylog(n)-length paths between any pair
in the augmented graph. Kleinberg [18] and Duchon et al. [7] showed that this
is possible for all graphs of bounded growth, i.e. where, for any node u and
radius r ≥ 1, the 2r-neighborhood of u is of size at most a constant times
its r-neighborhood. Fraigniaud [10] demonstrates that any bounded treewidth
graph can also be augmented by one link per node to become navigable, and
Abraham and Gavoille [4] showed that, more generally, this is possible for all
graphs excluding a fixed minor. The definition of the problem can directly be
extended to metric spaces by asking which n-points metric spaces1 M = (V, δ)
can be augmented by O(log n) links such that, in the resulting graph, greedy
routing computes polylog(n) routes between any pair with the only knowledge
of M . In this framework, Slivkins [22] showed that any doubling metric can be
augmented to become navigable. A doubling metric is a metric where, for all
r ≥ 1, any ball of radius 2r can be covered by at most C balls of radius r, for
some constant C.

However, it was recently proven by Fraigniaud et al. [13] that such an aug-
mentation is not possible for all graphs: there exist an infinite familiy of n-node
graphs on which any distribution of augmented links will leave the greedy paths
of expected length Ω(n1/

√
log n) for some pairs. The best upper bound valid for

arbitrary graphs up to our knowledge is an expected length Õ(n1/3) between
any pair, due to Fraigniaud et al. [12], with some specific link augmentation.
The remaining gap between these two bounds is today still open and leaves a
question mark on the limiting characteristics of a metric for the navigability
augmentation.

Orthogonally to the navigability question, studies on embeddings of metric
spaces have known huge developments this last decade (cf. Chapter 15 of [20] for a
review), due in particular to their applications in approximation algorithms [15]
and more recently in handling efficiently large decentralized networks [6]. An
embedding σ of a metric M = (V, δ) into a metric M ′ = (V ′, δ′) is an injective
function σ on V into V ′. Its quality is characterized by the distorsion it induces
on the distances. For the sake of simplicity, we consider only non-contracting
embeddings, we then say that σ has distorsion γ if and only iff for any u, v ∈ V ,
δ′(σ(u), σ(v)) ≤ γ · δ(u, v). Crucial networking problems like routing, resource
location or nearest neighbor search are easy to handle on a low dimensional
euclidean space. However, large real networks like the Internet do not present

1 A metric space M = (V, δ) is a set of points V associated with a distance function
δ. Therefore, any weighted graph naturally defines a metric M on its set of nodes V
with the distance function δ being the length of a shortest path between two nodes.
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such a simple structure. The increasing interest for metrics embeddings comes
therefore partially from the fact that, if the embedding is of good quality, it
can provide a way to develop efficient algorithms on complex, or even arbitrary,
metric spaces, by solving them on a simple metric space that approximates them
well (cf. e.g. [14,15]). In addition, many good quality embeddings are computed
with randomized local algorithms that only require a distance oracle, making
them particularly appropriate to the large decentralized networks setting (cf.
e.g. [5] for a seminal example).

In this paper, we propose a new way to tackle the augmented graphs naviga-
bility problem through the metric embedding setting.

1.1 Our Contribution

We introduce a generalized augmentation process. The main feature of our aug-
mentation process is to use an embedding of the input graph shortest paths met-
ric into a metric that is easy to augment into a navigable graph. This distinction
between the augmentation process in itself (handled on the ”easy” metric) and
the structural characteristics of the input (captured by the embedding quality)
provides a new way to characterize the classes of navigable graphs. We consider
embedding into (Rd, �p) which is the d-dimensional euclidean space associated
to the �p norm, for d, p ≥ 1: for any u = (u1, . . . , ud) and v = (v1, . . . , vd), we
have ||u − v||p = (

∑d
i=1 |ui − vi|p)1/p. We prove the following theorem:

Theorem 1. Let p, n, γ, d ≥ 1. For any ε > 0, any n-node graph G whose
shortest path metric M = (V, δ) admits an embedding of distorsion γ into (Rd, �p)
can be augmented with one link per node such that greedy routing in the resulting
graph computes paths of expected length O(1

εγd log2+ε n) between any pair with
the only knowledge of M .

For instance, using the recent embedding result of Abraham et al. [3], we get as
an immediate corollary that, for any 0 < ε ≤ 1 and any n ≥ 1, any n-node graph
G of doubling dimension D (cf. [14]) can be augmented so that the expected
lengths of all greedy paths is O((log(1+ε) n)O(D/ε) log2 n) = O((log n)O(D)) with
the only knowledge of G. This provides a more direct proof to the fact that
bounded doubling dimension graphs are navigable (proved in [22]).

Intuitively, if the metric considered is not too far from a metric M which can
be easily augmented, we use a low distorsion embedding of the metric into M ,
draw the random links in M , and then map back appropriately these links to
the original metric so that they will still be useful shortcuts for greedy routing.

Moreover, the design of the augmented links in our process can be done in a
fully decentralized way and only requires to know the embedding. In the case
where the chosen embedding is itself local (like e.g. the seminal Bourgain em-
bedding [5] if a distance oracle is available), we thus provide an algorithm which
locally adds one address to each routing table in a network and guarantees a
small number of hops decentralized routing between any pair for a large class of
input graphs.



220 E. Lebhar and N. Schabanel

2 A Universal Augmentation Process via Metric
Embedding

In this section, we present our augmentation process that adds one directed link
per node. This process is universal in the sense that it only requires as an input
the base graph (arbitrary) and an embedding function of this graph into R

d
�p

, for
some p, d ≥ 1. Such a function exists for any graph and therefore the algorithm
is not restricted to a specific graph class. However, as we will see in the next
section, the analysis of greedy routing might give a poor routing time result if the
embedding is not of good quality. There exists lower bound results on arbitrary
metric embedding quality. A typical example is that embedding some n-node
constant degree expander graph into R

d
�p

requires distortion Ω(log n) [20] and
dimension d = Ω(log n) [2]. Nevertheless, expander graphs are always navigable
without any augmentation given their polylogarithmic diameter.

The augmentation algorithm is based on the well known augmentation of d-
dimensional meshes of the Kleinberg model, where the shortcuts are distributed
according to the d-harmonic distribution. The idea is to map back these links
to the original set of nodes. Given that not all the extremities of the shortcuts
added in �d

p are images of the original nodes, this requires some careful rewiring.

Augmentation Process AP
Input: An n-node graph G = (V, E), an embedding σ of its shortest path
metric M = (V, δ) into �d

p, and a constant ε > 0;
Output: G augmented with one directed link in each node.
Begin

For each u ∈ V do
Pick a point τu ∈ R

d
�p

with probability density:

1
Z

1
(
||σ(u) − τ ||p

)d ln1+ε(||σ(u) − τ ||p + e)
,

over all τ ∈ R
d
�p

.
Add a directed link from u to v ∈ V where v is the node such that σ(v) is

the closest point to τu in σ(V ).
End.

Note: e stands here for exp(1) and is only used to allow distance to be zero
in the formula. Z is the normalizing factor of the probability density described:
Z =

∫ ∞
t>0

S(t)
td ln1+ε(t+e)dt, where S(t) is the surface of an hypersphere of raius t in

R
d. Figure 1 illustrates the process AP .

3 Navigability of Graphs Augmented with AP

In this section, we demonstrate our main result. The intrinsic dimension [3], or
doubling dimension [1] of a graph G characterizes its geometric property, this is
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Fig. 1. Illustration of the augmented link from vertex 1 to 3 with process AP

the minimum constant α such that any ball in G can be covered by at most 2α

balls of half the radius. We show that, if a graph has low intrinsic dimension,
AP process provides augmented shortcuts that enables navigability. We have
the following theorem:

Theorem 2. Let p, n, γ, d ≥ 1, ε > 0, G an n-node graph and σ an embedding
of distorsion γ of the shortest path metric M of G into (Rd, �p). Then, greedy
routing in AP(G, σ, ε) computes paths of expected length at most O(1

εγd log2+ε n)
between any pair, with the only information of the distances in M .

Proof. In order to analyze greedy routing performances in AP(G, σ, ε), we begin
by analyzing some technical properties of the probability distribution of the
chosen points τ in (Rd, �p). For any u ∈ G, we say that τu, as defined in algorithm
AP , is the contact point of u.

Let Z be the normalizing factor of the contact points distribution. We have:

Z =
∫ ∞

t>0

S(t)
td ln1+ε(t + e)

dt,

where S(t) stands for the surface of a sphere of radius t in R
d
�p

. This surface is
at most cp ·

(
2d/(d − 1)!

)
· td−1, where cp > 1 is a constant depending on p. It

follows:

Z ≤ cp · 2d

(d − 1)!

∫ ∞

t>1

dt

t ln1+ε(t + e)
≤ cp · (1 + e)

ε
· 2d

(d − 1)!
.

Let s and t ∈ G be the source and the target of greedy routing in AP(G, σ, ε).
Let M = (V, δ) be the shortest paths metric of G. Let v be the current node of
greedy routing, and let 1 ≤ i ≤ �log δ(s, t)� such that δ(v, t) ∈ [2i−1, 2i).
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Since σ has distorsion γ, we have:

δ(v, t) ≤ ||σ(v) − σ(t)||p ≤ γ · δ(v, t).

Let X = ||σ(v) − σ(t)||p, and let E be the event: ”||τv − σ(t)||p ≤ X/(4γ)”. Let
L(v) be the contact of v (i.e. the closest point to τv in σ(V ).

Claim. If E occurs, then δ(L(v), t) ≤ δ(v, t)/2.

Indeed, assume that E occurs. From the triangle inequality, we have:

||σ(L(v)) − σ(t)||p ≤ ||σ(L(v)) − τv||p + ||τv − σ(t)||p.
And since σ(L(v)) = τ is closer to τv than σ(t) by definition of AP , we get:

||σ(L(v)) − σ(t)||p ≤ 2||τv − σ(t)||p ≤ X/(2γ).

Finally:

δ(L(v), t) ≤ ||σ(L(v)) − σ(t)||p ≤ X/(2γ) ≤ δ(v, t)/2. �

Claim. The probability that E occurs is greater than

C
ε

d5dγd

1
ln1+ε(2γδ(v, t) + e)

,

for some constant C > 0.

Proof of the claim. Let P be the probability that E occurs. P is the probability
that τv belongs to the ball of radius X/(4γ) centered at σ(t) in R

d
�p

. Let B be
this ball. We have, by definition of AP:

P =
1
Z

∫

τ∈B

1
(||σ(v) − τ ||p)d ln1+ε(||σ(v) − τ ||p + e)

≥ 1
Z

∫

τ∈B

1
(
(1 + 1/(4γ))X

)d ln1+ε((1 + 1/(4γ))X + e)
,

since (1 + 1/(4γ))X is the largest distance from σ(v) to any point in B.
On the other hand, the volume of B is at least c′p · 2d

d! (X/(4γ))d, for some
constant c′p > 0. We get:

P ≥ 1
Z

·
c′p2d(X/4γ)d

d!(1 + 1
4γ )dXd

· 1
ln1+ε((1 + 1

4γ )X + e)

≥
c′p

cp(1 + e)
· ε

d5d
· 1
γd

· 1
ln1+ε((1 + 1

4γ )X + e)

≥ C
ε

d5dγd

1
ln1+ε(2γδ(v, t) + e)

. �

Claim. If the current node v of greedy routing satisfies δ(v, t) ∈ [2i−1, 2i) for
some 1 ≤ i ≤ �log δ(s, t)�, then after O(1

εγd(i − 1)1+ε) steps on expectation,
greedy routing is at distance less than 2i−1 from t.
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Proof of the claim. Combining the claims, we get that, with probability
Ω([1εγd ln1+ε(γδ(v, t))]−1) (where the Ω notation hides a linear factor in ε),
the contact L(v) of v is at distance at most 2i−1 to t. If this does not occur,
greedy routing moves to a neighbor v′ at distance strictly less than δ(v, t) to t
and strictly greater than 2i−1 and we can repeat the same argument. Therefore,
after O(1

εγd ln1+ε(γδ(v, t))) = O(1
εγd(i − 1)1+ε) steps, greedy routing is at dis-

tance less than 2i−1 to t with constant probability. �

Finally, from this last claim, the expected number of steps of greedy routing
from s to t is at most:

log(δ(s,t))∑

i=1

O(γd(i − 1)1+ε) = O(
1
ε
γd log2+ε n).

From this theorem, results giving new insights on the navigability problem can
be derived from the very recent advances in metric embeddings theory. In partic-
ular, graphs of bounded doubling dimension, that subsumes graphs of bounded
growth, received an increasing interest recently. They are of particular interest
for scalable and distributed network applications since it is possible to decompose
them greedily into clusters of exponentially decreasing diameter.

Corollary 1. For any ε > 0, any n-node graph G of bounded doubling dimen-
sion α can be augmented with one link per node so that greedy routing compute
paths of expected length O(1

ε log(2+ε+2α) n) between any pair of vertices with the
only knowledge of G.

Indeed, from Theorem 1.1 of [3], it is known that, for every n-point metric space
M of doubling dimension α and every θ ∈ (0, 1], there exists an embedding of M
into R

d
�p

with distorsion O(log1+θ n) and dimension O(α/θ). Taking θ = 1 gives
the corollary. This result was previously proved in [22] by another method of
augmentation, using ”rings of neighbor”. The originality of our method is that
it is not specific to a given graph or metric class, this dependency lying only in
the embedding function. Therefore, it enables to get more direct proofs that a
graph is augmentable into a navigable small world than previous ones.

This new kind of augmentation process via embedding is also promising to de-
rive lower bounds on metrics embedding quality. Indeed, since not all graphs can
be augmented to become navigable, necessarily, if there exists a positive result
on small world augmentation via some embedding, then this embedding cannot
keep the same quality for all graphs. For the particular case of Theorem 2, we
derive that any injective function σ that embeds any arbitrary metric into R

d
�p

with distorsion γ has to satisfy γd = Ω̃(n1/
√

log n). This lower bound is how-
ever subsumed by the bound provided by the Johnson-Lindenstrauss flattening
lemma [16]: γd = O((1 + ε)log n/ε2

) = O(n(1+ε)/ε2
) for any 0 < ε < 1, which is

essentially tight (cf. e.g. [20]).
It is worth to note that Fraigniaud and Gavoille [11] recently tackled the

question of navigating in a graph that has been augmented using the distances
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in a spanner2 of this graph. They remarked that greedy routing usually requires
to know the spanner map of distances in order to achieve an efficient routing. On
the contrary, our augmentation process does not requires greedy routing to be
aware of distances in R

d. This is due to the geography of the spaces considered:
an embedding of a graph in R

d preserves geographical neighboring regions.

4 Discussion

The result presented in this paper gives new perspectives in the understanding
of networks small world augmentations. Indeed, the augmentation process AP
isolates all the dependencies on the graph structure in the embedding function.

On the other hand, such an augmentation process focuses on the geography
of the graph and cannot capture the augmentation processes that are based on
graph separator decomposition. It can be distinguished two main kinds of aug-
mentation processes in the navigable networks literature. One kind of augmenta-
tion relies on the graph density and its similarity with a mesh (like augmentations
in [7,17,18,22]), while the other kind relies on the existence of good separators in
the graph (like augmentations in [4,10]). Augmentation via embedding cannot
be directly extended to augmentations using separators because of the difficulty
to handle the distortion in the analysis of greedy routing. Finally, the extension
of AP to graphs that are close to a tree metric (using embeddings into tree met-
rics) could open the path to the exhaustive characterization of graph classes that
can be augmented to become navigable, as well as provide new lower and upper
bounds on embeddings as side results. More generally, the exhaustive charac-
terization of the graphs that can be augmented to become navigable is still an
important open problem, as well as the design of good quality embeddings into
low dimensional spaces.
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