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Abstract
We consider Edmonds’s model (1999) extended by prece-
dence constraints. In our setting, a scheduler has to schedule
non-clairvoyantly jobs consisting in DAGs of tasks arriving
over time, each task going through phases of different de-
grees of parallelism, unknown to the scheduler. As in the
original model without precedence constraints, the sched-
uler is only informed of the arrival and the completion of
each task, at the time of these events, and nothing more.
Furthermore, it is not aware of the DAG structure of each
job beforehand neither of the precise characteristics of the
phases of the tasks that compose each job.

We consider the preemptive strategy Equi◦Equi, that
divides the processors evenly among the alive jobs and then
divides the processing power alloted to each job evenly
among its alive tasks. We show that whatever how complex
the precedences are, Equi◦Equi is (2 + ε)-speed O(κ/ε)-
competitive for the flowtime metric, where κ is the maximum
number of independent tasks in each job. That is to say, the
flowtime of the schedule computed by Equi◦Equi is at a
constant ratio of the optimal flowtime as soon as Equi is
given slightly more than twice the resources as the optimum
it is compared to. Interestingly, the extra speed needed to
obtain a competitive algorithm, namely (2+ε), is the same in
presence of precedence constraints, as in the original setting
without precedences studied by Edmonds in 1999. This
means that the maximum load that the system can handle
without diverging, is the same with or without precedence
constraints.

Furthermore, we propose a simple scheme to analyze a
special class of schedulers, namely Equi-schedulers, which
allows to obtain upper and lower bounds on particular
precedences structures, such as independent chains, IN-trees,
OUT-trees and Serial-parallel DAGs.

Keywords: Online scheduling, Precedences, Non-

clairvoyant algorithm, Fairness, Equi-partition.

1 Introduction

We consider Edmonds’s model [2] extended by prece-
dence constraints. In our setting, a non-clairvoyant
scheduler has to schedule jobs consisting in DAGs of
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tasks arriving over time, each task going through phases
of different degrees of parallelism, unknown to the
scheduler. As in the original model without precedence
constraints, the scheduler is informed of nothing more
than the arrival and the completion of each task, at the
time of these events, and not before. Furthermore, it is
not aware of the DAG structure of each job beforehand
neither of the characteristics of the phases of the tasks
that compose each job. The DAG structure unfolds as
the tasks are scheduled, without informing the scheduler
of the precise precedence constraints that are activated.
We aim to minimize the flowtime of the jobs, i.e. the
sum of the time elapsed between the release of the job
and the completion of the last of its tasks.

It is known since [2], that no non-clairvoyant algo-
rithm is o(

√
n)-competitive with respect to the optimum

even in absence of precedence constraints. Furthermore
no non-clairvoyant algorithm is known to be competitive
with respect to an optimal offline strategy even if the
latter is given only half of the processors the algorithm
receives.

Non-clairvoyant scheduling was introduced by [10]
in an attempt to design algorithms that are provably
efficient for practical purposes. Several extensions have
been proposed to include precedence constraints. One of
the first extensions is [6] which studies the case where
DAGs of fully parallelizable jobs to arrive over time.
More recently, several other articles [1, 9, 7] study non-
clairvoyant scheduling of DAGs with simpler job models
than [2] but with more restrictions on the schedules
(such as costly preemption, discrete slots,...).

Our contribution. We consider the preemptive
strategy Equi◦Equi, that divides the processors evenly
among the alive jobs and then divides the processing
power alloted to each job evenly among its alive tasks.
Since no algorithm can compete directly with the opti-
mum, our analysis proceeds by resource augmentation.
We show that whatever how complex the precedences
are, Equi◦Equi is (2 + ε)-speed O(κ/ε)-competitive for
the flowtime metric, where κ is the maximum number
of independent tasks in each job. That is to say, the
flowtime of the schedule computed by Equi◦Equi is
at a constant ratio of the optimal flowtime as soon as
Equi is given slightly more than twice the resources as
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the optimum it is compared to. Surprisingly, the extra
speed needed to obtain a competitive algorithm, namely
(2+ε), is the same in presence of precedence constraints,
as in the original setting without precedences studied by
Edmonds in 1999. This means that the maximum load
that the system can handle without diverging, namely
1/(2 + ε), is the same with or without precedence con-
straints.

More generally, we consider a special class of sched-
ulers, the Equi-schedulers, which divides evenly the
processors among the alive jobs and then delegates to
a task scheduler, the division of the processors received
by each job among its alive tasks. We provide a sim-
ple framework to analyze these schedulers, from which
we obtain upper and lower bounds on particular prece-
dences structures, such as independent chains, IN-trees,
OUT-trees and Serial-parallel DAGs.

Interestingly, competitiveness of non-clairvoyant al-
gorithms in Edmonds’s model has been proved to be a
powerful tool to analyze other online algorithms in var-
ious settings, including TCP and databroadcast proto-
cols [4, 5, 12]. Our results extend the non-clairvoyant
toolbox by allowing precedence constraints.

Roadmap. Section 2 introduces the model studied
in this paper. Section 3 shows that as in [2], one
can reduce the analysis of the competitiveness of a
non-clairvoyant scheduler to only two types of tasks:
sequential and fully parallel. Section 4 first introduces
the key notion of α-scatterer task scheduler which allows
to handle the sequential tasks, and then shows how the
parallel tasks can be treated as a whole to prove our
main result:

Theorem 1.1. (Main result) Equi◦Equi is an (2+
ε)-speed O(κ/ε)-competitive algorithm for the non-
clairvoyant scheduling problem with precedence con-
straints where κ is the maximum number of independent
tasks in a job.

2 Model and definition

We apologize in advance to the reader for the following
tedious but rewarding paragraphs which are necessary
to settle the problem formally throughout. Fortunately,
Section 3 will demonstrate that only a much smaller
and easier class of jobs needs to be considered for the
analysis of competitiveness.

The problem. We consider a sequence of jobs
{J1, J2, . . .} with release times {r1, r2, . . .}. Following
the terminology of [7], each job Ji consists in a set of
tasks {Ji,1, . . . , Ji,mi} with precedence constraints that
the scheduler has to execute over p processors. Each
task goes through different phases of different degree
of parallelism and the scheduler has to decide on-the-

fly the amount of processors to allot to each alive task
as they appear in the system. The scheduler is non-
clairvoyant, i.e., discovers the jobs at the time of their
arrivals and the tasks at the time they become available;
furthermore, it is unaware of the current degree of
parallelism of each task (i.e., how they take advantage
of more processing power) nor of the amount of work
in each task; it is only informed that a task or a job is
completed at the time of its completion. As in [2], we
consider that the processors can be divided arbitrarily:
fractional allocation is usually realized through time
multiplexing in real systems.

Schedules. A schedule Sp on p processors is a set
of piecewise constant functions1 ρij : t 7→ ρtij where ρtij
is the amount of processors allotted to the task Jij at
time t; (ρtij) are arbitrary non-negative real numbers,
such that at any time t:

∑
ij ρ

t
ij 6 p.

The jobs. We extend the definition introduced
by [2, 3, 11] as follows. Each job Ji consists of a directed
acyclic graph (DAG for short) ({Ji 1, . . . , Jimi},≺),
where task Jij is released as soon as all tasks Jik, such
that Jik ≺ Jij , are completed. Job Ji is completed
as soon as all its tasks are completed. Each task goes
through a sequence of phases J1

ij , . . . , J
qij
ij with different

degrees of parallelism. Each phase Jkij consists in an
amount of work wkij and a speed-up function Γkij . At
time t, during its k-th phase, each task Jij progresses
at a rate Γkij(ρ

t
ij) which depends on the amount ρtij

of processors allotted to Jij by the scheduler, i.e., the
amount of work accomplished between t and t + dt in
each task Jij during its k-th phase is: dw = Γkij(ρ

t
ij)dt.

Given a schedule Sp of the jobs {J1, J2, . . .}. A
job or a task is alive as soon as it is released and
until it is completed. Let cij denote the completion
time of task Jij . The release time rij of a task Jij
is: rij = ri, the release time of Job Ji, if Ji,j does
not depend on any other task, i.e., if Jik 6≺ Jij for all
k; and rij = max{cik : Jik ≺ Jij}, otherwise. Let ckij
denote the completion time of the k-th phase of task Jij :

ckij is the first time t′ such that wkij =
∫ t′
ck−1
ij

Γkij(ρ
t
ij) dt

(with c0ij = rij). Each task Jij completes with its last
phase, thus: cij = c

qij
ij . Job Ji is thus completed at time

ci = maxj cij . A schedule is valid if all jobs eventually
complete, i.e., if ci <∞ for all i. We denote by Wij(t)
the total work of task Jij accomplished at time t, i.e.:

1Requiring the functions (ρij) to be piecewise constant is

not restrictive since any finite set of reasonable (i.e., Riemann
integrable) functions can be uniformly approximated from below
within an arbitrary precision by piecewise constant functions. In

particular, all of our results hold if ρij are piecewise continuous
functions.
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for t 6 cij , Wij(t) =
∑
k<` w

k
ij +

∫ t
c`−1
ij

Γ`ij(ρ
t
ij)dt, where

` = max{k : ck−1
ij 6 t}; and Wij(t) = wij , for t > cij .

The model in [2, 3], where each job goes through a
sequence of phases with different degree of parallelism,
corresponds to the special case where each job consists
in a single task. The model in [11], where each request
consists in a set of jobs of the type of [2, 3], corresponds
to the special case where each job consists in a graph of
independent tasks.

Cost of a schedule. The flowtime Fi of a job
Ji is the overall time Ji is alive in the system, i.e.,
Fi = ci − ri. The flowtime of a schedule Sp is the
sum of the flowtimes of the jobs: Flowtime(Sp) =

∑
i Fi.

Our goal is to design a scheduler that minimizes the
flowtime, which corresponds to the average response
time of the system, which is a classic measure of quality
of service. We denote by OPTp = inf{Flowtime(Sp) :
valid schedule Sp}, the optimal cost on p processors.

Speed-up functions. As in [2, 3, 11], we make
the following reasonable assumptions on the speed-up
functions. In the following, we consider that each speed-
up function is non-decreasing and sub-linear (i.e., such

that for all i, j, k, ρ < ρ′ ⇒ Γkij(ρ)

ρ >
Γkij(ρ

′)

ρ′ ). These
assumptions are reasonably verified in practice: non-
decreasing means that giving more processors cannot
deteriorate the performances; sub-linear means that a
job makes a better use of fewer processors: this is
typically true when parallelism does not take too much
advantage of local caches. As in [2, 3, 11], two types of
speed-up functions will be of particular interest here:

• the sequential phases where Γ(ρ) = 1, for all ρ > 0
(the task progresses at a constant rate even if
no processor is allotted to it, similarly to an idle
period); and

• the fully parallel phases where Γ(ρ) = ρ, for all
ρ > 0.

We say that a job Ji is PS if each of the phases of
its tasks is either sequential or parallel. An instance
is PS if all of its jobs are PS. For any task Jij of a
PS job Ji, we define seq(Jij) and par(Jij) as the over-
all sequential and parallel works in the task respec-
tively: seq(Jij) =

∑
k : k-th phase of Jij is sequential w

k
ij and

par(Jij) =
∑
k : k-th phase of Jij is fully parallel w

k
ij .

Chains and antichains. Given a job Ji, a
chain ξ of dependences is a sequence of tasks
Jij1 ≺ · · · ≺ Jijk . We denote by seq(ξ) =

∑k
`=1 seq(Jij`)

the overall sequential work to be done along the
chain ξ. We denote by seq(Ji) = max{seq(ξ) :
ξ is a chain of dependences in Ji}. Since each sequen-
tial task is executed at a rate independent of the amount

of processing power it recieves, seq(Ji) is a lower bound
on the flowtime of Ji in any valid schedule.

Two tasks Jij and Jik in Ji are independent (i.e.,
their release and completion times are unrelated) if
Jij 6≺∗Jik and Jik 6≺∗Jij , where ≺∗ denotes the transitive
closure of ≺. An antichain of length k in Ji is a set
of k pairwise independent distinct tasks. We denote by
κ(Ji) the maximum length of an antichain in Ji. κ(Ji)
is an upper bound on the maximum number of tasks
in Ji that can be scheduled simultaneously in any valid
schedule.

Non-clairvoyant scheduling with precedence
constraints. As in [2, 3, 11], we consider that the
scheduler knows nothing about the progress of each
tasks and is only informed that a job or a task is
completed at the time of its completion; in particular, it
is not aware of the different phases that each task goes
through (neither of the amount of work nor of the speed-
up function). Furthermore, tasks are released as soon
as they become available without noticing the scheduler
of the precedence constraints: if two tasks complete as
other tasks are released, the scheduler is unable to guess
which spawns which. In particular, the order in which
the tasks of a given job are released depends heavily on
the computed schedule, and the scheduler cannot even
reconstruct the DAG a posteriori in general. It is only
aware at all time of the IDs of the current alive jobs and
of their alive tasks.

Competitiveness and resource augmentation.
We say that a given scheduler Ap is c-competitive if
it computes a schedule Ap(S) whose flowtime is at
most c times the optimal (off-line) clairvoyant flow-
time (that is aware of the characteristics of the phases
of each task and of the DAG of each job), i.e., such
that Flowtime(Ap(J)) 6 c · OPTp(J) for all instances
J = {J1, J2, . . .}. Due to the overwhelming advantage
granted to the optimum which knows all the hidden
characteristics of the jobs, [2] shows that no algorithm is
o(
√
n)-competitive for n jobs even if each job consists of

a single task. It is thus necessary to limit the power of
the optimum by reducing its resources for obtaining rel-
evant informations on an non-clairvoyant algorithm. We
say that a scheduler Ap is s-speed c-competitive if it com-
putes a schedule Asp(J) on sp processors whose flowtime
is at most c times the optimal flowtime on p processors
only, i.e., such that Flowtime(Asp(J)) 6 c ·OPTp(J) for
all instances J . This analysis technique, which provides
interesting insights on the relative performances of dif-
ferent algorithms that could not be compared directly
to the optimum cost, is known as resource augmentation
(see for instance [8]).
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3 Reduction to PS instances

In [2], Edmonds shows that, for the flowtime objective
function, one can reduce the analysis of the competi-
tiveness of non-clairvoyants algorithm to the instances
composed of a sequence of infinitely many infinitesimal
sequential or fully parallel phases. Edmonds’s proof re-
lies implicitly on the monotonicity of the analyzed algo-
rithm, Equi, in the sense that increasing the work in one
phase of a job can only increase the flowtime of the com-
puted schedule. As shown in [11, Theorem 3], it turns
out that this assumption is unnecessary and holds for
any algorithm independently of its monotonicity. Fur-
thermore, Edmonds proves that one can reduce the anal-
ysis to streamlined instances of infinitesimal sequential
or parallel phases, i.e., instances that come with an op-
timal schedule in which every parallel phase gets all the
processors as soon as it is available (in particular, only
one parallel phase is executed at any time, while the
other alive jobs are idle, i.e., in a sequential phase).

We extend this result to the setting with prece-
dence constraints. Moreover, we improve Edmonds’s
result on two aspects: we reduce the analysis of non-
clairvoyant algorithms to their competitiveness on PS
instances where jobs are composed of a finite sequence
of positive sequential or fully parallel work, for which
there exists a weakly streamlined optimal schedule, i.e.,
a schedule in which at any time at most one task among
all the alive tasks in a parallel phase is scheduled; and
this reduction holds for non-monotonic algorithm as
well. It follows that for any non-clairvoyant scheduling
problem, it is enough to analyse the competitiveness of
a non-clairvoyant algorithm on streamlined instances.
As shown in [2], this allows a huge simplification of the
analysis because of the very simple form of the opti-
mal schedule. As already noticed in [11], sequential and
parallel phases are both unrealistic in practice (sequen-
tial phases that progress at a constant rate even if they
receive no processors are not less legitimate than fully
parallel phases which do not exist for real either). Nev-
ertheless, these are much easier to handle in compet-
itive analysis, and Theorem 3.1 guarantees that these
two extreme(ly simple) regimes are sufficiently general
to cover the range of all possible non-decreasing sub-
linear functions. Furthermore, intuitively, streamlined
instances are fundamentally the hardest cases for any
non-clairvoyant algorithm for the following reason: at
any time the algorithm should give all the processors to
one single job, but it does not have a clue about which
one to elect.

Consider an instance J and a speed s > 0. Let
Asp be an arbitrary non-clairvoyant scheduler on sp
processors, and Op a valid schedule of J on p processors.
Theorem 3 in [11] shows that one can remap the phases

within each task Jij such that:

1. every phase in the new instance (J ′ij) is either
sequential or parallel;

2. the precedence constraints between the tasks are
preserved;

3. the schedule computed by the non-clairvoyant
scheduler Asp on the new tasks (J ′ij) is exactly the
same as on the tasks (Jij); and 4) substituting each
Jij by J ′ij in Op yields a valid schedule for the tasks
(J ′ij).

Lemma 3.1. (Remapping to PS instances,
Theorem 3 in [11]) There exists a collection of
PS jobs J ′1, . . . , J

′
n such that:

• precedence constraints are preserved: for all i, j, k,
J ′ij ≺ J ′ik ⇔ Jij ≺ Jik;

• Op[J ′/J ] is a valid schedule of J ′1, . . . , J
′
n; in par-

ticular, Flowtime(Op[J ′/J ]) 6 Flowtime(Op);

• Asp(J ′) = Asp(J)[J ′/J ],

where S[J ′/J ] denotes the schedule obtained by schedul-
ing task J ′ij instead of Jij in a schedule S.

J ′ is a PS instance. We free in Op[J ′/J ] all
the processors allocated to sequential phases, since
sequential phases progress at the same rate even if
it receives no processor, the flowtime is unchanged.
We rearrange the allocations of the parallel phases
of the tasks in J ′ in Op[J ′/J ] as follows: in every
interval of time in which several tasks in a parallel
phase are scheduled in Op[J ′/J ], we reallocate all the
processors within this time interval to these tasks in an
arbitrary Round Robin order; this can only decrease the
flowtime of the schedule since each phase will complete
no later than in Op[J ′/J ]. We thus obtain a valid
schedule O′p of J ′, in which at any time if a parallel
phase is scheduled, it receives all the processors. Since
Flowtime(Op[J ′/J ]) 6 Flowtime(Op), it follows that:

Lemma 3.2. (A weakly streamlined schedule
for J ′) There exists a weakly streamlined schedule O′p
of J ′1, . . . , J

′
n such that Flowtime(O′p) 6 Flowtime(Op).

By remapping the phases again, we can furthermore
assume that the schedule computed by Asp is always
late with respect to the schedule O′p, i.e., at any time
the amount of completed work of each task J ′ij in Asp

is smaller or equal than in O′p: W
A
ij (t) 6 WO′

ij (t), for all
i, j, t.
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Lemma 3.3. (Asp is late) There exists a collection of
PS jobs J ′′1 , . . . , J

′′
n such that:

• precedence constraints are preserved: for all i, j, k,
J ′′ij ≺ J ′′ik ⇔ Jij ≺ Jik;

• O′p[J
′′/J ′] is a valid schedule of J ′′1 , . . . , J

′′
n ;

• Asp(J ′′) = Asp(J)[J ′′/J ];

• Asp is always late with respect to O′p: for all task
Jij and all time t, WA

ij (t) 6 WO′

ij (t), where WS
ij(t)

denotes the completed work of task J ′′ij in schedule
S up to time t.

Proof. The idea consists in replacing the first phases of
each task by a unique sequential phase until the first
date between the completion time of the task in Asp,
and the time from which O′p will never be late again with
respect to Asp on this task. This ensures that during
this newly created first phase, the task progresses at the
same rate in O′p and in Asp independently of the amount
of processors allotted to it. We then just need to ensure
that each task is released at least as early in O′p as in
Asp, which is done inductively on the DAG structure of
each job.

Theorem 3.1. For any non-clairvoyant algorithm A,
if for all PS instances J = {J1, . . . , Jn} and
all weakly streamlined schedules Op of J such
that Asp is late with respect to Op, we have
Flowtime(Asp(J)) 6 c · Flowtime(Op), then A is s-speed
c-competitive for all instances of jobs whose tasks go
through phases with arbitrary non-decreasing sublinear
speed-up functions.

Proof. Consider an arbitrary instance J = {J1, . . . , Jn}.
Consider an arbitrary small ε > 0 and Op a valid sched-
ule of J on p processors such that Flowtime(Op) 6
OPTp(J) + ε (note that we do not need that an op-
timal schedule exists). Let J ′′ be the PS instance
and O′p the weakly streamlined schedule given by Lem-
mas 3.2 and 3.3 from J , Asp and Op. Since Asp(J ′′) =
Asp(J)[J ′′/J ], Flowtime(Asp(J)) = Flowtime(Asp(J ′′)).
But Asp(J ′′) 6 c · Flowtime(O′p) by hypothesis.
Thus, Flowtime(Asp(J)) 6 c · Flowtime(O′p) 6 c ·
Flowtime(Op) 6 cOPTp(J) + c ε. Decreasing ε to zero
completes the proof.

We shall from now on consider only PS instances
and weakly streamlined optimal schedules with respect
to which the algorithm is always late.

4 Competitiveness of α-scatterer
Equi-schedulers

We consider a special class of algorithms which are a
composition of a job scheduler and a task scheduler.
The job scheduler allocates processing power to each
alive jobs. The task scheduler is called within each job
to divide among its alive tasks the processing power it
has received from the job scheduler. This approach is a
generalization of the algorithms developed in [12, 11]
for minimizing the flowtime of jobs that consist in
sets of independent tasks. According to the section
above, we only need to consider PS instances. A non-
clairvoyant scheduler cannot avoid wasting resources by
not allocating all the processors to the alive tasks in a
parallel phase. The job scheduler may waste resources
if it allocates processor to a job in which no alive task is
in a parallel phase. The task scheduler may also waste
processors if it allocate some to a task in a sequential
phase. Since the job and the task schedulers are non-
clairvoyant, wasting resources is unavoidable at both
levels. In [2], Edmonds shows essentially that when all
jobs consist in a chain of tasks, the job scheduler Equi,
which divides evenly the processors among the alive
jobs, does not waste more than half of the processors.
The principle of his analysis is that the amount of
parallel work scheduled by Equi self-stabilizes around
a positive fraction of the processing power and Equi
is thus (2 + ε)-speed O(1/ε)-competitive. In [11], it
is shown that as soon as dependencies are introduced
between the tasks, sequential works that could be
optimally scheduled together can get scattered over
large intervals of time and end up increasing drastically
the flowtime by the game of the dependencies. We
show here that if the task scheduler does not scatter
too much the sequential work, then it does not waste
too much resources, and the composition of both Equi
and the task scheduler ends up not wasting more
than half of the resources as well, i.e., is (2 + ε)-
speed O(1/ε)-competitive whatever how complicated
the precedence constraints are! We refer as Equi-
scheduler any composition of the job scheduler Equi
with a task scheduler.

4.1 ααα-scatterer task schedulers. We say that a
task scheduler does not scatter too much the sequential
work if the sum over time of the proportion of the
processors it receives from the job scheduler that ends
up on sequential phases, can be bounded by some
constant times the largest amount of sequential work
along a chain in the corresponding job, seq(Ji).

Formally, consider a task scheduler A and assume
it receives from the job scheduler ρti processors at each
time t to schedule a PS job Ji, released at time 0.
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Definition 4.1. (Waste) We denote by ωti the
amount of processors which are not alloted to
tasks in a parallel phase at time t in job Ji:
ωti = ρti − πti , where πti =

∑
j∈Parti

ρtij with Parti = {j :
task Jij is alive and in a parallel phase at time t}.

We denote by waste(A, ρ, Ji) the sum over time of
the proportion of the processors that are not allotted by
A to an alive task in a parallel phase: waste(A, ρ, Ji) =∫∞

0
ωti
ρti
dt.

Definition 4.2. (α-scatterer) A task scheduler A
is an α-scatterer if for any piecewise constant function
ρ : t 7→ ρt, and for any PS job J released at time 0:
waste(A, ρ, J) 6 α · seq(J).(2) α is referred as the scat-
tering coefficient of the task scheduler A.

Intuitively, the more sequential phases are sched-
uled at the same time, the better, because each of them
has to share the processors with others and then con-
tributes less to the waste of A. A task scheduler is thus
inefficient if it schedules only one sequential phase at a
time, i.e., if it scatters the sequential phases far apart
from each other. An α-scatterer will under no circum-
stances scatter the sequential phases of the tasks in such
a way that it ends up giving away more than a propor-
tion α times the largest chain of sequential work in a
job, of the processors it receives from the job scheduler.

Proposition 4.1. (Optimal scatterer) Equi, as
a task scheduler, is a κ(J)+1

2 -scatterer.(3) Furthermore,
for any task scheduler A, any piecewise constant func-
tion ρ and any integer k, there exists a job J such that
κ(J) = k and waste(A, ρ, J) > k+1

2 · seq(J).

Proof. Take an arbitrary piecewise constant function ρ
and a job J released at time 0, consisting in a DAG of
tasks whose the size of the largest anti-chain is k. Let νt
be the total number of alive tasks, and λt be the number
of alive tasks in a sequential phase, at time t. The
tasks scheduler Equi evenly divides the ρt processors
among the νt alive tasks; the tasks in a sequential phase
receive then a total of λtνt ·ρ

t processors. It follows that:
waste(Equi, ρ, J) =

∫∞
0

(λtνt · ρ
t) · 1

ρt dt =
∫∞

0
λt
νt
dt.

According to Dilworth’s theorem, since the size of
the largest antichain in the DAG representing J is k,
one can partition the tasks in J into k disjoint chains
ξ1, . . . , ξk, i.e., such that in each ξj all the tasks have
to be scheduled in a fixed total order given by ≺∗, the
transitive closure of ≺. Since Equi schedules each task

2Recall that seq(J) is the largest total amount of sequential

work along a chain of tasks in job J .
3Recall that κ(J) is the maximum number of independent tasks

in job J .

PAR PAR PAR PAR

SEQ

PAR

SEQ SEQ SEQ

SEQ

SEQ

t=0 t=1 t=2 t=3 t=k-2 t=k-1 t=k

Figure 1: The evil comb – an antichain of size k in red
and a partition into k chains in green.

as soon as it is available, we can w.l.o.g. assume that ξ1
has a task alive at any time until the completion of J .

Now, let 1ξj (t) = 1 if and only if there is an
alive task in a sequential phase in ξj at time t, and
1ξj (t) = 0 otherwise (note that since ξj is a chain
there cannot be two alive tasks in ξi at the same
time t). Since the k chains cover all the tasks, we

can rewrite: waste(Equi, ρ, J) =
∫∞

0

Pk
j=1 1ξj (t)

νt
dt =∑k

j=1

∫∞
0

1ξj (t)

νt
dt 6

∫∞
0

1ξ1(t)dt +
∑k
j=2

∫∞
0

1ξj (t)

2 dt,
since any task in any chain ξj , j > 2, is al-
ways executed together with one other task in ξ1 at
least. It follows that: waste(Equi, ρ, J) 6 seq(ξ1) +
k−1

2 max{seq(ξ2), . . . , seq(ξk)} 6 k+1
2 · seq(J), by defini-

tion of seq(J). Equi is thus a k(J)+1
2 -scatterer for any

job J .
Optimality. Consider an arbitrary task scheduler A

receiving ρt processors from the job scheduler. Consider
a job consisting in a binary comb (see Fig. 1) with k−1
leaves and an extra isolated node, in which internal
nodes consist in a single parallel phase, and the leaves
and the isolated node consist in a sequential phase. At
any time, A has to schedule two tasks, one internal node
task and one isolated node or leaf task. Since A is non-
clairvoyant, we can set which is which afterwards, once
A made its choices. At time 1, let ρ1 and ρ2, ρ1 > ρ2,
the total processing power given by A to each of the
two first tasks: we say that the task which received ρ1

processing power was a sequential phase of work 1 and
that the other task was a parallel phase of work ρ2; this
later parallel task will spawn the next two tasks. This
process continues until time k − 1, where the parallel
task spawns a unique sequential task of work 1. Finally,
A wasted at least half of the processing power until time
k − 1 where it has to waste all it receives for one extra
time unit, since it receives no parallel work. The total
waste is thus: waste(A, ρ, J) > k−1

2 + 1 = k+1
2 .

4.2 Competitiveness of ααα-scatterer Equi-
schedulers. The main result of this section is that
as soon as one uses an Equi-scheduler based on a
α-scatterer task scheduler, the competitive ratio is
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bounded by a constant independent of the number of
requests, namely O(α/), as soon as it receives 2 + 
times more resources than the optimal it is compared
to. If we see an s-speed O(1)-competitive algorithm
as a system that can handle a charge of 1/s without
diverging (i.e., which starts being overwhelmed at
a charge 1/s), our result means that introducing
precedence constraints does not decrease the maximum
load the system can handle. One could believe a priori
that the precedence constraints and the interaction of
the different jobs may conduct the scheduler to waste
an higher proportion of resources on sequential work
that would propagate over time and thus lower the
maximum load the system can handle; it turns out that
using an α-scheduler guarantees that the scattering of
the sequential work due to the precedence constraints
remains local to each job and does not interfere with
other jobs in a dramatic way.

The key is to show that the effect of the precedence
constraints on an α-scatterer is essentially to stretch
the sequential work by a factor at most α while the
parallel work remains unchanged. It follows that the
self-stabilization process exhibited by [2] still occurs and
the parallel work ends up receiving a positive fraction of
the processing power which guarantees that the system
will not diverge, as soon as it receives at least (2 + )
times more resources than the optimal it is compared to.

Now, consider an arbitrary Equi-scheduler on
sp processors, Equi◦A, based on an α-scatterer
task scheduler A. Consider a PS instance J =
{J1, . . . , Jn}, together with a weakly streamlined sched-
ule Op given by Lemma 3.3 such that Equi ◦Asp(J)
is always late with respect to Op. We show that
Flowtime(Equi ◦Asp(J))  O(α )Flowtime(Op) as soon
as s = 2 +  for some  > 0. Scaling the parallel work
by 1/p in J , we assume w.l.o.g. that p = 1, and remove
p from the notations.

Linearization of the tasks within a job. This
step is the key step that allows to get rid of the
precedence constraints within each job and to count the
progress of the job with only two variables: one that
counts for the progress of the total sequential work and
one that counts for the progress of the total parallel
work.

Before we proceed we define the following operation.
Consider a job Ji and a time interval [t, t) such that all
tasks in Ji remain in the same phase and the amount
of processors allotted by Equi ◦As(J) to each of them
remains constant during [t, t). The operation push-
PAR-to-the-right consists in rescheduling the parallel
work phases within the time interval in a Round Robin
manner as far as possible to the right (see Fig. 2). Note
that we obtain a valid schedule since the sequential

PAR

PAR

Job Ji

!
t
i

P
A
R

P
A
R

Job Ji

!
t
i

Push PAR
to the 
right

EquioA EquioA'

Waste

W
a
s
t
e

PAR Task in a parallel phase

Task in a sequential phase

Figure 2: Push the parallel work to right within the area
allotted to a job in Equi ◦As(J).

phases are unaffected by this change.
Furthermore, this operation is waste-conservative.

Consider the waste of A for job Ji given the amount
of processor ρti allotted by the job scheduler Equis:
waste(Equi ◦As(J), Ji) =

 ∞
0
(1− πt

i/ρ
t
i)dt, where π

t
i

denotes the amount of processors given by A to the
tasks of Ji in parallel phases at time t. The waste may
only change during the time interval concerned by the
operation. If T denotes the length of the time interval, ρ
the amount of processors Ji receives from Equis, and π
the amount of these processors that are allotted to Ji’s
alive tasks in a parallel phase, the contribution to the
total waste for job Ji of this time interval is (1−π/ρ) ·T
in the former schedule and 1 · (T − πT/ρ) in the later.
It follows that the waste in both schedule for Ji are
identical.

Definition 4.3. (Linearization of a schedule)
Let δ > 0 be some arbitrary small constant. The δ-
linearization of the schedule Equi ◦As(J) with respect
to O is the schedule Equi ◦A

s(J) on s processors ob-
tained as follows. We apply the push-PAR-to-the-right
operation to Equi ◦As(J) within each maximal time
interval of length  δ, such that:

1. the amount of processors allotted to each alive task
does not change in Equi ◦As(J) and neither in O;

2. each alive task remains in the same phase in both
schedules; and

3. if O schedules a task Jij and if this task is sched-
uled in Equi ◦As(J) as well during this period of
time, this task is the last scheduled in the Round
Robin order applied by the push-PAR-to-the-right
operation.

By construction, the linearized schedule
Equi ◦A(J) is a valid schedule of J , verifying:

• Equi ◦A
s(J) is always late with respect to O;

• Flowtime(Equi ◦A
s(J))  Flowtime(Equi ◦As(J))

 Flowtime(Equi ◦A
s(J)) + nδ (since the last

sequential phase of each job may be released and
thus completed δ units of time earlier in the new
schedule, but not before);
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• for all job Ji, waste(Equi ◦A′s(J), ρi, Ji) =
waste(Equi ◦As(J), ρi, Ji).

We are now left with showing that:

Flowtime(Equi ◦A′s(J)) 6 O(α/ε) Flowtime(O),

decreasing δ to zero will conclude the result.
Parametrization. Thanks to the δ-linearization,

we are now back to the setting of [2] where the execution
of each job consists in an alternation of executions of
parallel and sequential work.

Let, at time t, in Equi ◦A′s(J):

• nt, be the number of alive jobs;

• `t, be the number of alive jobs in which no parallel
work is scheduled; and

• mt, be the number of alive jobs in which some
parallel work is scheduled.

By definition, Flowtime(Equi ◦A′s(J)) =
∫∞

0
nt dt =∫∞

0
(`t +mt) dt.
Bounding

∫∫∫∞∞∞
0 `̀̀t dt. Note that as opposed to [2],∫∞

0
`t dt is not directly related to the total sequential

work in the instance. But, since `t counts, for each job,
the periods of time in which the job wastes all the re-
sources it receives in Equi ◦A′s(J), we have:

∫∞
0
`t dt =∑

i waste(Equi ◦A′s(J), Ji). But, Equi ◦A′s(J) was ob-
tained from Equi ◦As(J) by a waste-conservative pro-
cess. So,

∫∞
0
`t dt =

∑
i waste(Equi ◦As(J), Ji) 6∑

i α seq(Ji), since A is an α-scatterer. But, the optimal
flowtime verifies: OPT(J) >

∑
i seq(Ji), so,

∫∞
0
`t dt 6

αOPT(J).
Bounding

∫∞∞∞
0

mt dt. Thanks to the δ-
linearization, the proof now follows essentially the
steps of [2]. More precisely, we will conduct the same
calculations as in [2] over variables that have the same
names. The key to Edmonds’s result in [2] is that
when job consists in a single chain of tasks, the parallel
work tends to self-stabilize as follows: at any time
t, the mt jobs executing some parallel work receive
each s/(mt + `t) processors and thus the total parallel
work progresses at a rate smt/(mt + `t), while the
weakly streamlined schedule O executes the parallel
work on one processor at a rate 6 1. Thus in an ideal
steady state, when smt/(mt + `t) < 1, the parallel
work accumulates in Equi with respect to O, and the
proportion smt/(mt + `t) tends to increase; and when
smt/(mt + `t) > 1, Equi progresses faster than O and
smt/(mt + `t) tends to decreases. It follows that in an
ideal steady state, mt self-stabilizes around the value
smt/(mt + `t) ∼ 1, i.e., mt ∼ `t

s−1 . It turns out that if
s < 2, the steady state cannot be reached fast enough,

but as soon as s = 2 + ε, Edmonds shows with the help
of a potential function that

∫∞
0
mt dt can be bounded

from above by some combination of the delay imposed
to Equi by the sequential phases,

∫∞
0
`t dt, and by

the time spent by the optimum on parallel phases.
The following consists in adapting this scheme to our
setting. We propose as well some minor simplifications
on Edmonds’s proof.

Thanks to the δ-linearization, we are able to define
variables similar to the case where jobs consist in a
single chain of tasks. For T 6 t, let mT

t be the number
of alive jobs executing some parallel work dw between t
and t + dt in Equi ◦A′s(J), that has been done before
time T in O. This variable counts how late Equi ◦A′s(J)
is with respect to O.

Let Mt be the number of alive jobs at time t in O

such that at least one of its alive tasks is in a parallel
phase. Note that as opposed to [2], Mt does not count
the number of parallel phases scheduled at time t and
can take values larger than 1, since O is only weakly
streamlined and there may be unscheduled alive parallel
phases in addition to the task scheduled at time t in O.
Let φ be the function that associates to each time T
where some parallel work dw is scheduled in O during
a time interval [T, T + dT ), the time φ(T ) (> T ) at
which this exact same parallel work dw is executed in
Equi ◦A′s(J), during time interval [φ(T ), φ(T + dT )).

Lemma 4.1. As in [2], the variables verify the following
relationships: for all time T 6 t,

1. mT
T = mT ,

2. mT
t 6 nT ,

3. If MT > 0:

• mT+dT
t = mT

t when t 6∈ [φ(T ), φ(T + dT )] and

• mT+dT
t = mT

t + 1 when t ∈ [φ(T ), φ(T + dT )];

4. If MT = 0, then: mT
t = mt, for all t > T .

Proof. The first point is because Equi ◦A′s(J) is late
with respect to O. The second point is because each job
is released in O at the same time as in Equi ◦A′s(J) so
that if a job is counted in mT

t , it is alive at time T in
Equi ◦A′s(J) as well and is counted in nT . The last
points hold by definition of mT

t and φ(T ).

Following [2], let FT =
∫ T

0
mt dt be the contribution

to the cost of Equi ◦A′s(J) due to parallel work up to
time T , and F̂T =

∫∞
T
ft(mT

t , `t) dt, with ft(m, `) =
m2−`2
nt

, a potential function that counts, as we will
see later, the total cost induced by the accumulated
tardiness of Equi ◦A′s(J) at time T .
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The proof consists in demonstrating that FT + F̂T
is a continuous function whose derivative is bounded by
a function of `t and Mt only. It follows that its limit
F∞ + F̂∞ = F∞ =

∫∞
0
mt dt is bounded in terms of

known lower bounds on OPT.

Lemma 4.2. If s > 2, for all time T ,

FT + F̂T 6
∫ T

0

(s+ 2)`t +Mt

s− 2
dt.

Proof. At time 0, Equi ◦A′s(J) is not late and that
it is also the case at the end of the schedule; thus,
F0 = F̂0 = F̂∞ = 0.

Continuity. FT is clearly continuous. F̂T is con-
tinuous as well, even at the dates where a new phase
ends or begins in O or in Equi ◦A′s(J). Indeed, since
mT
t and `t are uniformly bounded, the variation induced

by the variation of the bounds of integration are contin-
uous. Now, mT

t and mT+dT
t may differ only by 1 only

on an interval of infinitesimal size corresponding to the
infinitesimal time interval during which Equi ◦A′s(J)
executes the infinitesimal parallel work done in O be-
tween T and T + dT , if any. It follows that FT + F̂T is
continuous.

Bounding the derivative. Furthermore, FT + F̂T
is differentiable except on a finite number of dates
corresponding to the phase changes in O. Clearly,
dFT = mT dT . Now,

dF̂T =
∫∞
T+dT

ft(mT+dT
t , `t)− ft(mT

t , `t) dt︸ ︷︷ ︸
(1)

−
∫ T+dT

T
ft(mT , `t) dt︸ ︷︷ ︸

(2)

.

We now bound (1) and (2) independently. (1) corre-
sponds to the increase of the cost of Equi ◦A′s(J) due
to jobs falling behind. If MT = 0, no job falls behind,
and (1) = 0. If MT > 0:

(1) =
∫ φ(T+dT )

φ(T )

ft(mT
t + 1, `t)− ft(mT

t , `t) dt

=
∫ φ(T+dT )

φ(T )

s(2mT
t + 1)

(s− 2)nt
dt.

But the length of the interval [φ(T ), φ(T+dT )] is exactly
nφ(T )dT

s since the number of processors alloted to each
job at time φ(T ) is s

nφ(T )
and if a parallel phase is

executed in a job in Equi ◦A′s(J), this phase receives
all the processors allotted to the job (thanks to the

δ-linearization), thus:

(1) =
s(2mT

t + 1)
(s− 2)nφ(T )

nφ(T )dT

s
=

(2mT
t + 1)

(s− 2)
dT

6
(2nT + 1)

(s− 2)
dT,

since mT
φ(T ) is at most nT . We can thus bound (1) by

2(mT+`T )+MT

(s−2) .
(2) corresponds to the amount of tardiness that

Equi ◦A′s(J) is making up for:

(2) = −fT (mT
T , `T )dT = −fT (mT , `T )dT

= −s(m
T
T + `T )(mT

T − `T )
(s− 2)nT

dT = −s(mT − `T )
(s− 2)

dT.

It follows that:

d(FT + F̂T ) 6
(
mT + 2(mT+`T )+MT

(s−2) − s(mT−`T )
(s−2)

)
dT

=
(s+ 2)`T +MT

s− 2
dT.

Since F0 = F̂0 = 0, we conclude that
FT + F̂T 6

∫ T
0

(s+2)lt+Mt

s−2 dt.

We can now conclude with the proof of our main
theorem 4.1.

Theorem 4.1. If A is an α-scatterer task scheduler,
Equi◦A is an (2 + ε)-speed O(α/ε)-competitive algo-
rithm for the non-clairvoyant scheduling problem with
precedence constraint.

Proof. For s = 2 + ε and arbitrarily small δ > 0,

Flowtime(Equi ◦As(J))
6 Flowtime(Equi ◦A′s(J)) + nδ

= nδ +
∫ ∞

0

`t +mt dt

6 nδ +
∫ ∞

0

`t +
(s+ 2)`t +Mt

s− 2
dt,

by Lemma 4.2 and since F̂∞ = 0. But Flowtime(O) >∫∞
0
Mt dt, and

∫∞
0
`t dt 6 α

∑
i seq(Ji) 6 αFlowtime(O)

since A is α-scatterer. Furthermore, by definition of O,
Flowtime(O) 6 OPT(J) + η for some arbitrarily small
η > 0. It follows that

Flowtime(Equi ◦As(J)) 6 2sα+1
s−2 (OPT(J) + η) + nδ.

Taking δ and η to 0, yields the claimed competitive ra-
tio: Flowtime(Equi ◦A2+ε(J)) 6 (2α+ 4α+1

ε ) ·OPT(J).

Combining with Proposition 4.1, we obtain our
main result, Theorem 1.1.
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Precedence
DAG

6 κ independent
chains

IN-forest with 6 κ
leaves

OUT-forest with
6 κ leaves

d-regular com-
plete OUT-tree
with 6 κ leaves

d-regular Series-
Parallel-DAG
with 6 κ tasks

Upper bounds Equi is a Hκ-scatterer

Equi is a κ+1
2 -

scatterer and one
can compute the
exact scattering
coefficient of Equi
for any OUT-tree

Equi is a Θ(κ ln lnκ
lnκ )-scatterer and the algo-

rithm Split(a) is a κ
ln ln d
ln d -scatterer

aSplit is the task scheduler that divides
recursively and evenly between the children
the processing power given to their ancestor
at the time the ancestor spawns the children.

Lower bounds
for Equi-
schedulers

no Equi-scheduler is s-speed α-competitive

for α <
logs(κ)+1

2

no α-scatterer for
α < κ+1

2

Lower bounds
for any non-
clairvoyant al-
gorithm

no s-speed c-competitive for c < lnκ
2 ln lnκ and s = o( lnκ

ln lnκ ) (from [11])

Examples of
bad instances

PAR

PAR

PAR

PAR

SEQ SEQ
SEQ SEQ

SEQ

PAR

SEQSEQ

PAR PAR PAR

SEQ SEQ

SEQ

Table 1: Upper and lower bounds on classic precedence structures.

5 Concluding remark

Our analysis relies on the notion of α-scatterer task
scheduler. This tool allows to analyze conveniently
the competitiveness of non-clairvoyant algorithms in
Edmonds’s job model without going through the whole
process of the analysis. Table 1 sums up the upper
and lower bounds obtained by our method on classic
precedence structures which could not be included due
to space constraints. Note that it is unclear to us if the
scattering coefficient is the right concept nor if it is a
graph-related notion, although it is a simple powerful
tool to deal with precedences in the non-clairvoyant
setting.

Moreover, it seems that Edmonds’s analysis of
Equi, based on a potential function, might have a much
wider extend than simply the field of non-clairvoyant
algorithms since once the variables mT

t and `t are
defined, the underlying scheduling problem vanishes.
We believe it might be worth trying to understand what
is the exact problem it solves in order to exploit its whole
potential.
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