Non-Clairvoyant Scheduling with Precedence Constraints

Julien Robert™f

Abstract

We consider Edmonds’s model (1999) extended by prece-
dence constraints. In our setting, a scheduler has to schedule
non-clairvoyantly jobs consisting in DAGs of tasks arriving
over time, each task going through phases of different de-
grees of parallelism, unknown to the scheduler. As in the
original model without precedence constraints, the sched-
uler is only informed of the arrival and the completion of
each task, at the time of these events, and nothing more.
Furthermore, it is not aware of the DAG structure of each
job beforehand neither of the precise characteristics of the
phases of the tasks that compose each job.

We consider the preemptive strategy EQuioEQUI, that
divides the processors evenly among the alive jobs and then
divides the processing power alloted to each job evenly
among its alive tasks. We show that whatever how complex
the precedences are, EQUIoEQUI is (2 + €)-speed O(k/€)-
competitive for the flowtime metric, where & is the maximum
number of independent tasks in each job. That is to say, the
flowtime of the schedule computed by EQUIoEQUI is at a
constant ratio of the optimal flowtime as soon as EQUI is
given slightly more than twice the resources as the optimum
it is compared to. Interestingly, the extra speed needed to
obtain a competitive algorithm, namely (2+¢), is the same in
presence of precedence constraints, as in the original setting
without precedences studied by Edmonds in 1999. This
means that the maximum load that the system can handle
without diverging, is the same with or without precedence
constraints.

Furthermore, we propose a simple scheme to analyze a
special class of schedulers, namely EQUi-schedulers, which
allows to obtain upper and lower bounds on particular
precedences structures, such as independent chains, IN-trees,
OUT-trees and Serial-parallel DAGs.

Keywords: Online scheduling,

Precedences, Non-

clairvoyant algorithm, Fairness, Equi-partition.

1 Introduction

We consider Edmonds’s model [2] extended by prece-
dence constraints. In our setting, a non-clairvoyant
scheduler has to schedule jobs consisting in DAGs of

*Université de Lyon - Ecole Normale Supérieure de
Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France.
http://perso.ens-lyon.fr/julien.robert.

fCNRS ~ Centro de Modelamiento
Blanco Encalada 2120 Piso 7, Santiago de
http://www.cmm.uchile.cl/~schabanel.

Matemaético,
Chile.

491

Nicolas Schabanelt*

tasks arriving over time, each task going through phases
of different degrees of parallelism, unknown to the
scheduler. As in the original model without precedence
constraints, the scheduler is informed of nothing more
than the arrival and the completion of each task, at the
time of these events, and not before. Furthermore, it is
not aware of the DAG structure of each job beforehand
neither of the characteristics of the phases of the tasks
that compose each job. The DAG structure unfolds as
the tasks are scheduled, without informing the scheduler
of the precise precedence constraints that are activated.
We aim to minimize the flowtime of the jobs, i.e. the
sum of the time elapsed between the release of the job
and the completion of the last of its tasks.

It is known since [2], that no non-clairvoyant algo-
rithm is o(y/n)-competitive with respect to the optimum
even in absence of precedence constraints. Furthermore
no non-clairvoyant algorithm is known to be competitive
with respect to an optimal offline strategy even if the
latter is given only half of the processors the algorithm
receives.

Non-clairvoyant scheduling was introduced by [10]
in an attempt to design algorithms that are provably
efficient for practical purposes. Several extensions have
been proposed to include precedence constraints. One of
the first extensions is [6] which studies the case where
DAGs of fully parallelizable jobs to arrive over time.
More recently, several other articles [1, 9, 7] study non-
clairvoyant scheduling of DAGs with simpler job models
than [2] but with more restrictions on the schedules
(such as costly preemption, discrete slots,...).

Our contribution. We consider the preemptive
strategy EQUIoEQUI, that divides the processors evenly
among the alive jobs and then divides the processing
power alloted to each job evenly among its alive tasks.
Since no algorithm can compete directly with the opti-
mum, our analysis proceeds by resource augmentation.
We show that whatever how complex the precedences
are, EQUIoEQUI is (2 + €)-speed O(x/¢€)-competitive for
the flowtime metric, where x is the maximum number
of independent tasks in each job. That is to say, the
flowtime of the schedule computed by EQuiocEQUI is
at a constant ratio of the optimal flowtime as soon as
EqQuit is given slightly more than twice the resources as

the optimum it is compared to. Surprisingly, the extra
speed needed to obtain a competitive algorithm, namely
(2+¢€), is the same in presence of precedence constraints,
as in the original setting without precedences studied by
Edmonds in 1999. This means that the maximum load
that the system can handle without diverging, namely
1/(2 + €), is the same with or without precedence con-
straints.

More generally, we consider a special class of sched-
ulers, the EQUI-schedulers, which divides evenly the
processors among the alive jobs and then delegates to
a task scheduler, the division of the processors received
by each job among its alive tasks. We provide a sim-
ple framework to analyze these schedulers, from which
we obtain upper and lower bounds on particular prece-
dences structures, such as independent chains, IN-trees,
OUT-trees and Serial-parallel DAGs.

Interestingly, competitiveness of non-clairvoyant al-
gorithms in Edmonds’s model has been proved to be a
powerful tool to analyze other online algorithms in var-
ious settings, including TCP and databroadcast proto-
cols [4, 5, 12]. Our results extend the non-clairvoyant
toolbox by allowing precedence constraints.

Roadmap. Section 2 introduces the model studied
in this paper. Section 3 shows that as in [2], one
can reduce the analysis of the competitiveness of a
non-clairvoyant scheduler to only two types of tasks:
sequential and fully parallel. Section 4 first introduces
the key notion of a-scatterer task scheduler which allows
to handle the sequential tasks, and then shows how the
parallel tasks can be treated as a whole to prove our
main result:

THEOREM 1.1. (MAIN RESULT) EQUIcEQUI is an (2+
€)-speed O(k/€)-competitive algorithm for the non-
clairvoyant scheduling problem with precedence con-
straints where k is the mazimum number of independent
tasks in a job.

2 Model and definition

We apologize in advance to the reader for the following
tedious but rewarding paragraphs which are necessary
to settle the problem formally throughout. Fortunately,
Section 3 will demonstrate that only a much smaller
and easier class of jobs needs to be considered for the
analysis of competitiveness.

The problem. We consider a sequence of jobs
{J1,J2,...} with release times {ri,rs,...}. Following
the terminology of [7], each job J; consists in a set of
tasks {Ji1,...,Jim, } with precedence constraints that
the scheduler has to execute over p processors. Each
task goes through different phases of different degree
of parallelism and the scheduler has to decide on-the-

fly the amount of processors to allot to each alive task
as they appear in the system. The scheduler is non-
clairvoyant, i.e., discovers the jobs at the time of their
arrivals and the tasks at the time they become available;
furthermore, it is unaware of the current degree of
parallelism of each task (i.e., how they take advantage
of more processing power) nor of the amount of work
in each task; it is only informed that a task or a job is
completed at the time of its completion. As in [2], we
consider that the processors can be divided arbitrarily:
fractional allocation is usually realized through time
multiplexing in real systems.

Schedules. A schedule §;, on p processors is a set
of piecewise constant functions' p;; : t — pi; where pf;
is the amount of processors allotted to the task J;; at
time t; (pgj) are arbitrary non-negative real numbers,
such that at any time ¢: -, pl; < p.

The jobs. We extend the definition introduced
by [2, 3, 11] as follows. Each job J; consists of a directed
acyclic graph (DAG for short) ({Ji1,---sJim;}s =),
where task J;; is released as soon as all tasks J;x, such
that J;r < Jy;, are completed. Job J; is completed
as soon as all its tasks are completed. Each task goes
through a sequence of phases Jilj7 cee Jiq;j with different
degrees of parallelism. Fach phase Jikj consists in an
amount of work wfj and a speed-up function Ffj. At
time t, during its k-th phase, each task J;; progresses
at a rate T (p!;) which depends on the amount pf;
of processors allotted to J;; by the scheduler, i.e., the
amount of work accomplished between ¢ and ¢ + dt in
each task J;; during its k-th phase is: dw = T';(p};)dt.

Given a schedule 8, of the jobs {Ji,J2,...}. A
job or a task is alive as soon as it is released and
until it is completed. Let c¢;; denote the completion
time of task J;;. The release time r;; of a task J;;
is: r;; = 7;, the release time of Job J;, if J; ; does
not depend on any other task, i.e., if Jy, A J;; for all
k; and r;; = max{c;p : Ji < Jyj}, otherwise. Let cfj

denote the completion time of the k-th phase of task J;;:

cf; is the first time ¢ such that wy; = fctl‘c.—l TF(pt;) dt
ij

(with ¢f; = ri;). Each task J;; completes with its last

%

phase, thus: ¢;; = ¢;;’. Job J; is thus completed at time

¢; = max; ¢;;. A schedule is valid if all jobs eventually
complete, i.e., if ¢; < oo for all . We denote by W;;(t)
the total work of task J;; accomplished at time t, i.e.:

TRequiring the functions (pij) to be piecewise constant is
not restrictive since any finite set of reasonable (i.e., Riemann
integrable) functions can be uniformly approximated from below
within an arbitrary precision by piecewise constant functions. In
particular, all of our results hold if p;; are piecewise continuous
functions.

492

for t <

z]()

£ = max{k : cij

deww +fe 1 FZ (pf;)dt, where
< t}; and Wi (t) = wyj, for t > ¢;;.

Cij,

The model in [2, 3], where each job goes through a
sequence of phases with different degree of parallelism,
corresponds to the special case where each job consists
in a single task. The model in [11], where each request
consists in a set of jobs of the type of [2, 3], corresponds
to the special case where each job consists in a graph of
independent tasks.

Cost of a schedule. The flowtime F; of a job
J; is the overall time J; is alive in the system, i.e.,
F;=c¢; —r;. The flowtime of a schedule §, is the
sum of the flowtimes of the jobs: Flowtime(8,) =", F;.
Our goal is to design a scheduler that minimizes the
flowtime, which corresponds to the average response
time of the system, which is a classic measure of quality
of service. We denote by OPT,, = inf{Flowtime(8,) :
valid schedule 8, }, the optimal cost on p processors.

Speed-up functions. As in [2, 3, 11], we make
the following reasonable assumptions on the speed-up
functions. In the following, we consider that each speed-
up function is non-decreasing and sub-linear (i.e., such
that for all 4,5k, p < p/ = % > %). These
assumptions are reasonably verified in practice: non-
decreasing means that giving more processors cannot
deteriorate the performances; sub-linear means that a
job makes a better use of fewer processors: this is
typically true when parallelism does not take too much
advantage of local caches. As in [2, 3, 11], two types of
speed-up functions will be of particular interest here:

e the sequential phases where I'(p) =1, for all p > 0
(the task progresses at a constant rate even if
no processor is allotted to it, similarly to an idle
period); and

e the fully parallel phases where I'(p) = p, for all
p=0.

We say that a job J; is PS if each of the phases of
its tasks is either sequential or parallel. An instance
is PS if all of its jobs are PS. For any task J;; of a
PS job J;, we define seq(J;;) and par(J;;) as the over-
all sequential and parallel works in the task respec-
tively: Seq(‘]ij) = Zk : k-th phase of J;; is sequential U)Z and
par(‘]ij) = Zk : k-th phase of J;; is fully parallel wfj

Chains and antichains. Given a job J;, a
chain & of dependences is a sequence of tasks
Jijl << Jijk- ‘We denote by seq(f) = 212:1 seq(Jm)
the overall sequential work to be done along the
chain £&. We denote by seq(J;) = max{seq(&)
¢ is a chain of dependences in J;}. Since each sequen-
tial task is executed at a rate independent of the amount

of processing power it recieves, seq(J;) is a lower bound
on the flowtime of J; in any valid schedule.

Two tasks J;; and Ji in J; are independent (i.e.,
their release and completion times are unrelated) if
Jij A% Jir and Jip A" J;j, where <* denotes the transitive
closure of <. An antichain of length k in J; is a set
of k pairwise independent distinct tasks. We denote by
k(J;) the maximum length of an antichain in J;. x(J;)
is an upper bound on the maximum number of tasks
in J; that can be scheduled simultaneously in any valid
schedule.

Non-clairvoyant scheduling with precedence
constraints. As in [2, 3, 11], we consider that the
scheduler knows nothing about the progress of each
tasks and is only informed that a job or a task is
completed at the time of its completion; in particular, it
is not aware of the different phases that each task goes
through (neither of the amount of work nor of the speed-
up function). Furthermore, tasks are released as soon
as they become available without noticing the scheduler
of the precedence constraints: if two tasks complete as
other tasks are released, the scheduler is unable to guess
which spawns which. In particular, the order in which
the tasks of a given job are released depends heavily on
the computed schedule, and the scheduler cannot even
reconstruct the DAG a posteriori in general. It is only
aware at all time of the IDs of the current alive jobs and
of their alive tasks.

Competitiveness and resource augmentation.
We say that a given scheduler A, is c-competitive if
it computes a schedule A,(S) whose flowtime is at
most ¢ times the optimal (off-line) clairvoyant flow-
time (that is aware of the characteristics of the phases
of each task and of the DAG of each job), i.e., such
that Flowtime(A,(J)) < ¢- OPT,(J) for all instances
J = {Jy, Ja2,...}. Due to the overwhelming advantage
granted to the optimum which knows all the hidden
characteristics of the jobs, [2] shows that no algorithm is
o(y/n)-competitive for n jobs even if each job consists of
a single task. It is thus necessary to limit the power of
the optimum by reducing its resources for obtaining rel-
evant informations on an non-clairvoyant algorithm. We
say that a scheduler A, is s-speed c-competitive if it com-
putes a schedule A, (J) on sp processors whose flowtime
is at most ¢ times the optimal flowtime on p processors
only, i.e., such that Flowtime(A,,(J)) < ¢-OPT,(J) for
all instances J. This analysis technique, which provides
interesting insights on the relative performances of dif-
ferent algorithms that could not be compared directly
to the optimum cost, is known as resource augmentation
(see for instance [8]).

493

3 Reduction to PS instances

In [2], Edmonds shows that, for the flowtime objective
function, one can reduce the analysis of the competi-
tiveness of non-clairvoyants algorithm to the instances
composed of a sequence of infinitely many infinitesimal
sequential or fully parallel phases. Edmonds’s proof re-
lies implicitly on the monotonicity of the analyzed algo-
rithm, EQUI, in the sense that increasing the work in one
phase of a job can only increase the flowtime of the com-
puted schedule. As shown in [11, Theorem 3], it turns
out that this assumption is unnecessary and holds for
any algorithm independently of its monotonicity. Fur-
thermore, Edmonds proves that one can reduce the anal-
ysis to streamlined instances of infinitesimal sequential
or parallel phases, i.e., instances that come with an op-
timal schedule in which every parallel phase gets all the
processors as soon as it is available (in particular, only
one parallel phase is executed at any time, while the
other alive jobs are idle, i.e., in a sequential phase).

We extend this result to the setting with prece-
dence constraints. Moreover, we improve Edmonds’s
result on two aspects: we reduce the analysis of non-
clairvoyant algorithms to their competitiveness on PS
instances where jobs are composed of a finite sequence
of positive sequential or fully parallel work, for which
there exists a weakly streamlined optimal schedule, i.e.,
a schedule in which at any time at most one task among
all the alive tasks in a parallel phase is scheduled; and
this reduction holds for non-monotonic algorithm as
well. It follows that for any non-clairvoyant scheduling
problem, it is enough to analyse the competitiveness of
a non-clairvoyant algorithm on streamlined instances.
As shown in [2], this allows a huge simplification of the
analysis because of the very simple form of the opti-
mal schedule. As already noticed in [11], sequential and
parallel phases are both unrealistic in practice (sequen-
tial phases that progress at a constant rate even if they
receive no processors are not less legitimate than fully
parallel phases which do not exist for real either). Nev-
ertheless, these are much easier to handle in compet-
itive analysis, and Theorem 3.1 guarantees that these
two extreme(ly simple) regimes are sufficiently general
to cover the range of all possible non-decreasing sub-
linear functions. Furthermore, intuitively, streamlined
instances are fundamentally the hardest cases for any
non-clairvoyant algorithm for the following reason: at
any time the algorithm should give all the processors to
one single job, but it does not have a clue about which
one to elect.

Consider an instance J and a speed s > 0. Let
Asp be an arbitrary non-clairvoyant scheduler on sp
processors, and O, a valid schedule of J on p processors.
Theorem 3 in [11] shows that one can remap the phases

within each task J;; such that:

1. every phase in the new instance (J;) is either
sequential or parallel;

2. the precedence constraints between the tasks are
preserved;

3. the schedule computed by the non-clairvoyant
scheduler A, on the new tasks (.J;) is exactly the
same as on the tasks (J;;); and 4) substituting each
Jij by Jj; in O, yields a valid schedule for the tasks

(Ji)-

LEMMA 3.1. (REMAPPING TO PS INSTANCES,
THEOREM 3 IN [11]) There exists a collection of
PS jobs Ji,...,J] such that:

e precedence constraints are preserved: for all i,], k,
Ji/j < Jtlk = Jij < Jik;
o O,[J'/J] is a valid schedule of Ji,...,J}; in par-

y Yo

ticular, Flowtime(O,[J’/J]) < Flowtime(O,);
o Ayp(J") = Asp(DII'/],

where 8[J'/J] denotes the schedule obtained by schedul-
ing task J{j instead of Jij in a schedule 8.

J' is a PS instance. We free in Op,[J'/J] all
the processors allocated to sequential phases, since
sequential phases progress at the same rate even if
it receives no processor, the flowtime is unchanged.
We rearrange the allocations of the parallel phases
of the tasks in J' in O,[J'/J] as follows: in every
interval of time in which several tasks in a parallel
phase are scheduled in O,[J'/J], we reallocate all the
processors within this time interval to these tasks in an
arbitrary Round Robin order; this can only decrease the
flowtime of the schedule since each phase will complete
no later than in O,[J'/J]. We thus obtain a valid
schedule O, of J’, in which at any time if a parallel
phase is scheduled, it receives all the processors. Since
Flowtime(O,[J’/J]) < Flowtime(0O,), it follows that:

LEMMA 3.2. (A WEAKLY STREAMLINED SCHEDULE
FOR J') There exists a weakly streamlined schedule Oy,
of Ji,...,J,, such that Flowtime(0;,) < Flowtime(O,).

By remapping the phases again, we can furthermore
assume that the schedule computed by A, is always
late with respect to the schedule O;, i.e., at any time
the amount of completed work of each task J; in A,
i.s gmaller or equal than in O Wi‘;‘ (t) < W (t), for all
1,7,t.

494

LEMMA 3.3. (Asp IS LATE) There exists a collection of 4 Competitiveness of a-scatterer

PS jobs Ji, ..., J/ such that:
e precedence constraints are preserved: for all i,j, k,
J{; < Jz/;c 54 Jij < Jiks

e O,[J"/J'] is a valid schedule of J{,...,J};

o Agp(J") = Ay ()" J);

o A, is always late with respect to O;: for all task
Jij and all time t, Wi’;-‘(t) < Wg/(t), where WS (t)
denotes the completed work of task J[in schedule
S up to time t.

Proof. The idea consists in replacing the first phases of
each task by a unique sequential phase until the first
date between the completion time of the task in Agy,
and the time from which (‘);, will never be late again with
respect to A,, on this task. This ensures that during
this newly created first phase, the task progresses at the
same rate in O}, and in Ay, independently of the amount
of processors allotted to it. We then just need to ensure
that each task is released at least as early in O; as in
Asp, which is done inductively on the DAG structure of
each job.

THEOREM 3.1. For any non-clairvoyant algorithm A,

if for all PS instances J = {Ji,...,Jn} and
all weakly streamlined schedules O, of J such
that Ag, is late with respect to Op, we have

Flowtime(Asp(J)) < ¢ - Flowtime(0,,), then A is s-speed
c-competitive for all instances of jobs whose tasks go
through phases with arbitrary non-decreasing sublinear
speed-up functions.

Proof. Consider an arbitrary instance J = {J1, ..., J,}.
Consider an arbitrary small e > 0 and O, a valid sched-
ule of J on p processors such that Flowtime(O,) <
OPT,(J) + € (note that we do not need that an op-
timal schedule exists). Let J” be the PS instance
and (‘); the weakly streamlined schedule given by Lem-
mas 3.2 and 3.3 from J, A, and O,,. Since A,y (J") =
Agp(J)[J"/J], Flowtime(Asp(J)) = Flowtime(Asy,(J")).
But Ay (J") < ¢ - Flowtime(O;,) by hypothesis.
Thus, Flowtime(Ay,(J)) < c - Flowtime(0}) < ¢ -
Flowtime(0,) < cOPT,(J) + ce. Decreasing e to zero
completes the proof.

We shall from now on consider only PS instances
and weakly streamlined optimal schedules with respect
to which the algorithm is always late.

Equi-schedulers

We consider a special class of algorithms which are a
composition of a job scheduler and a task scheduler.
The job scheduler allocates processing power to each
alive jobs. The task scheduler is called within each job
to divide among its alive tasks the processing power it
has received from the job scheduler. This approach is a
generalization of the algorithms developed in [12, 11]
for minimizing the flowtime of jobs that consist in
sets of independent tasks. According to the section
above, we only need to consider PS instances. A non-
clairvoyant scheduler cannot avoid wasting resources by
not allocating all the processors to the alive tasks in a
parallel phase. The job scheduler may waste resources
if it allocates processor to a job in which no alive task is
in a parallel phase. The task scheduler may also waste
processors if it allocate some to a task in a sequential
phase. Since the job and the task schedulers are non-
clairvoyant, wasting resources is unavoidable at both
levels. In [2], Edmonds shows essentially that when all
jobs consist in a chain of tasks, the job scheduler EqQur,
which divides evenly the processors among the alive
jobs, does not waste more than half of the processors.
The principle of his analysis is that the amount of
parallel work scheduled by EQUI self-stabilizes around
a positive fraction of the processing power and EQUI
is thus (2 + €)-speed O(1/¢)-competitive. In [11], it
is shown that as soon as dependencies are introduced
between the tasks, sequential works that could be
optimally scheduled together can get scattered over
large intervals of time and end up increasing drastically
the flowtime by the game of the dependencies. We
show here that if the task scheduler does not scatter
too much the sequential work, then it does not waste
too much resources, and the composition of both EQUI
and the task scheduler ends up not wasting more
than half of the resources as well, i.e., is (2 + €)-
speed O(1/¢)-competitive whatever how complicated
the precedence constraints are! We refer as EQUI-
scheduler any composition of the job scheduler EQuI
with a task scheduler.

4.1 a-scatterer task schedulers. We say that a
task scheduler does not scatter too much the sequential
work if the sum over time of the proportion of the
processors it receives from the job scheduler that ends
up on sequential phases, can be bounded by some
constant times the largest amount of sequential work
along a chain in the corresponding job, seq(.J;).

Formally, consider a task scheduler A and assume
it receives from the job scheduler p! processors at each
time ¢ to schedule a PS job J;, released at time 0.

495

DEFINITION 4.1. (WASTE) We denote by w! the
amount of processors which are mnot alloted to
tasks in a parallel phase at time t in job J;:
wi = pi — 7, where m = 37 po,e pi; with Part = {j :
task J;; is alive and in a parallel phase at time t}.

We denote by waste(A, p, J;) the sum over time of
the proportion of the processors that are not allotted by

A to an alive task in a parallel phase: waste(A, p, J;) =
o0 w?
I Skt

DEFINITION 4.2. (a-SCATTERER) A task scheduler A
is an a-scatterer if for any piecewise constant function
p:t— pt, and for any PS job J released at time 0:
waste(A, p, J) < a-seq(J).(?) « is referred as the scat-
tering coefficient of the task scheduler A.

Intuitively, the more sequential phases are sched-
uled at the same time, the better, because each of them
has to share the processors with others and then con-
tributes less to the waste of A. A task scheduler is thus
inefficient if it schedules only one sequential phase at a
time, i.e., if it scatters the sequential phases far apart
from each other. An a-scatterer will under no circum-
stances scatter the sequential phases of the tasks in such
a way that it ends up giving away more than a propor-
tion « times the largest chain of sequential work in a
job, of the processors it receives from the job scheduler.

PROPOSITION 4.1. (OPTIMAL SCATTERER) EQUI,
r(J)+1
2

as
a task scheduler, is a -scatterer.(®) Furthermore,
for any task scheduler A, any piecewise constant func-

tion p and any integer k, there exists a job J such that
k(J) =k and waste(A, p, J) > ¥EL - seq(J).

Proof. Take an arbitrary piecewise constant function p
and a job J released at time 0, consisting in a DAG of
tasks whose the size of the largest anti-chain is k. Let v
be the total number of alive tasks, and A; be the number
of alive tasks in a sequential phase, at time t. The
tasks scheduler EQUI evenly divides the p' processors
among the 14 alive tasks the tasks in a sequential phase
receive then a total of p processors It follows that:
waste(EQuI, p, J) fo o . 1 Ldt = [7 l’\/—:dt.
According to Dilworth’s theorem since the size of
the largest antichain in the DAG representing J is k,
one can partition the tasks in J into k disjoint chains
&1y, &k, t.e., such that in each {; all the tasks have
to be scheduled in a fixed total order given by <*, the
transitive closure of <. Since EQUI schedules each task

ZRecall that seq(.J) is the largest total amount of sequential
work along a chain of tasks in job J.

3Recall that x(J) is the maximum number of independent tasks
in job J.

GED

N —g
t=k-2

t=k-1 t=k

t=0 t=1

Figure 1: The evil comb — an antichain of size k in red
and a partition into k£ chains in green.

as soon as it is available, we can w.l.0.g. assume that &;
has a task alive at any time until the completion of J.

Now, let 1¢,(t) = 1 if and only if there is an
alive task in a sequential phase in &; at time ¢, and
1¢,(t) = 0 otherwise (note that since ¢; is a chain
there cannot be two alive tasks in & at the same
time t¢). Since the k chains cover all the tasks, we

waste(EQuIL, p, J) = fooo Mdt _

Zf) Ooo lgf,(t)dt < fooo Le, (t)dt + ZJ 2 Ooo IEJQ(t)dt,
since any task in any chain §;, j > 2, is al-
ways executed together with one other task in & at
least. It follows that: waste(EQuI, p,J) < seq(&1) +
b max{seq(&), . .. ,seq(r)} < %L -seq(J), by defini-

tion of seq(J). EQUI is thus a W—Scatterer for any
job J.

Optimality. Consider an arbitrary task scheduler A
receiving p! processors from the job scheduler. Consider
a job consisting in a binary comb (see Fig. 1) with k—1
leaves and an extra isolated node, in which internal
nodes consist in a single parallel phase, and the leaves
and the isolated node consist in a sequential phase. At
any time, A has to schedule two tasks, one internal node
task and one isolated node or leaf task. Since A is non-
clairvoyant, we can set which is which afterwards, once
A made its choices. At time 1, let p; and ps2, p1 = pa,
the total processing power given by A to each of the
two first tasks: we say that the task which received p;
processing power was a sequential phase of work 1 and
that the other task was a parallel phase of work ps; this
later parallel task will spawn the next two tasks. This
process continues until time k& — 1, where the parallel
task spawns a unique sequential task of work 1. Finally,
A wasted at least half of the processing power until time
k — 1 where it has to waste all it receives for one extra
time unit, since it receives no parallel work. The total
waste is thus: waste(4, p, J) > % +1= %

can rewrite:

4.2 Competitiveness of a-scatterer Equi-
schedulers. The main result of this section is that
as soon as one uses an EQUI-scheduler based on a
a-scatterer task scheduler, the competitive ratio is

496

bounded by a constant independent of the number of
requests, namely O(«/€), as soon as it receives 2 + €
times more resources than the optimal it is compared
to. If we see an s-speed O(1)-competitive algorithm
as a system that can handle a charge of 1/s without
diverging (i.e., which starts being overwhelmed at
a charge 1/s), our result means that introducing
precedence constraints does not decrease the maximum
load the system can handle. One could believe a priori
that the precedence constraints and the interaction of
the different jobs may conduct the scheduler to waste
an higher proportion of resources on sequential work
that would propagate over time and thus lower the
maximum load the system can handle; it turns out that
using an a-scheduler guarantees that the scattering of
the sequential work due to the precedence constraints
remains local to each job and does not interfere with
other jobs in a dramatic way.

The key is to show that the effect of the precedence
constraints on an a-scatterer is essentially to stretch
the sequential work by a factor at most « while the
parallel work remains unchanged. It follows that the
self-stabilization process exhibited by [2] still occurs and
the parallel work ends up receiving a positive fraction of
the processing power which guarantees that the system
will not diverge, as soon as it receives at least (2 + ¢€)
times more resources than the optimal it is compared to.

Now, consider an arbitrary EQUI-scheduler on
sp processors, EQUIocA, based on an «-scatterer
task scheduler A. Consider a PS instance J =
{J1,...,Jn}, together with a weakly streamlined sched-
ule O, given by Lemma 3.3 such that EQuio A,(J)
is always late with respect to O,. We show that
Flowtime(EQuio A,,(J)) < O(%) Flowtime(0,,) as soon
as s = 2 4 € for some € > 0. Scaling the parallel work
by 1/p in J, we assume w.l.o.g. that p = 1, and remove
p from the notations.

Linearization of the tasks within a job. This
step is the key step that allows to get rid of the
precedence constraints within each job and to count the
progress of the job with only two variables: one that
counts for the progress of the total sequential work and
one that counts for the progress of the total parallel
work.

Before we proceed we define the following operation.
Counsider a job J; and a time interval [¢,t") such that all
tasks in J; remain in the same phase and the amount
of processors allotted by EQuUIio A (J) to each of them
remains constant during [¢,¢'). The operation push-
PAR-to-the-right consists in rescheduling the parallel
work phases within the time interval in a Round Robin
manner as far as possible to the right (see Fig. 2). Note
that we obtain a valid schedule since the sequential

Job Ji Job J;
PAR iw
alPlp PAR | Task in a parallel phase
p? PAR p? 3tsl A A P P
aste = Task in a sequential phase
EquioA Equio A’

Figure 2: Push the parallel work to right within the area
allotted to a job in EQuIio A (J).

phases are unaffected by this change.

Furthermore, this operation is waste-conservative.
Consider the waste of A for job J; given the amount
of processor pl allotted by the job scheduler EQui,:
waste(EQuio A (J), J;) = [;°(1 —xt/pl)dt, where !
denotes the amount of processors given by A to the
tasks of J; in parallel phases at time t. The waste may
only change during the time interval concerned by the
operation. If T denotes the length of the time interval, p
the amount of processors J; receives from EQUI,, and 7
the amount of these processors that are allotted to J;’s
alive tasks in a parallel phase, the contribution to the
total waste for job J; of this time interval is (1—7/p)-T
in the former schedule and 1 (T'— nT/p) in the later.
It follows that the waste in both schedule for J; are
identical.

DEFINITION 4.3. (LINEARIZATION OF A SCHEDULE)
Let § > 0 be some arbitrary small constant. The §-
linearization of the schedule EQUIo A (J) with respect
to O is the schedule EQUIo AL(J) on s processors ob-
tained as follows. We apply the push-PAR-to-the-right
operation to EQuUlo A (J) within each mazimal time
interval of length < 6, such that:

1. the amount of processors allotted to each alive task
does not change in EQui o A (J) and neither in O;

2. each alive task remains in the same phase in both
schedules; and

3. if O schedules a task J;; and if this task is sched-
uled in EQuio A (J) as well during this period of
time, this task is the last scheduled in the Round
Robin order applied by the push-PAR-to-the-right
operation.

By construction, the linearized schedule
EqQuio A'(J) is a valid schedule of J, verifying:

e EQuio A/(J) is always late with respect to O;

e Flowtime(EQuio A(J)) < Flowtime(EQuio A (J))
< Flowtime(EQuio AL(J)) + nd (since the last
sequential phase of each job may be released and
thus completed § units of time earlier in the new
schedule, but not before);

497

e for all job J;, waste(EQuio AL(J),p;i,Ji) =
waste(EQui o Ay (J), psi, J;).

We are now left with showing that:
Flowtime(EQui o A%(J)) < O(«a/€) Flowtime(0O),

decreasing § to zero will conclude the result.

Parametrization. Thanks to the d-linearization,
we are now back to the setting of [2] where the execution
of each job consists in an alternation of executions of
parallel and sequential work.

Let, at time ¢, in EQuIo A%(J):

e 1, be the number of alive jobs;

e /i, be the number of alive jobs in which no parallel
work is scheduled; and

e my, be the number of alive jobs in which some
parallel work is scheduled.

By definition, Flowtime(EQuio A%(J)) =
fooo(gt + mt) dt.

Bounding [$¢; dt. Note that as opposed to [2],
fooo ly dt is not directly related to the total sequential
work in the instance. But, since ¢; counts, for each job,
the periods of time in which the job wastes all the re-
sources it receives in EQuI o A (.J), we have: fooo by dt =
>, waste(EQuio AL(J), J;). But, EQuio A} (.J) was ob-
tained from EQuio A,(J) by a waste-conservative pro-
cess. So, [[Tlidt = Y, waste(EQUIo A (J),J;) <
>, aseq(J;), since A is an a-scatterer. But, the optimal
flowtime verifies: OPT(J) > Y, seq(J;), so, [~ €y dt <
a OPT(J).

Bounding fgo my dt. Thanks to the 4-
linearization, the proof now follows essentially the
steps of [2]. More precisely, we will conduct the same
calculations as in [2] over variables that have the same
names. The key to Edmonds’s result in [2] is that
when job consists in a single chain of tasks, the parallel
work tends to self-stabilize as follows: at any time
t, the m; jobs executing some parallel work receive
each s/(my + £;) processors and thus the total parallel
work progresses at a rate sm:/(m; + f;), while the
weakly streamlined schedule O executes the parallel
work on one processor at a rate < 1. Thus in an ideal
steady state, when sm;/(m; + ¢;) < 1, the parallel
work accumulates in EQUI with respect to O, and the
proportion smy/(m; + ¢;) tends to increase; and when
smy/(my + £;) > 1, EQUI progresses faster than O and
smg/(my + £¢) tends to decreases. It follows that in an
ideal steady state, m; self-stabilizes around the value
smy/(my +£) ~ 1, i.e., my ~ L Tt turns out that if

s—1°
s < 2, the steady state cannot be reached fast enough,

fooo ¢ dt =

but as soon as s = 2+ €, Edmonds shows with the help
of a potential function that fooo my dt can be bounded
from above by some combination of the delay imposed
to EQUI by the sequential phases, fooo ly dt, and by
the time spent by the optimum on parallel phases.
The following consists in adapting this scheme to our
setting. We propose as well some minor simplifications
on Edmonds’s proof.

Thanks to the d-linearization, we are able to define
variables similar to the case where jobs consist in a
single chain of tasks. For T < t, let mtT be the number
of alive jobs executing some parallel work dw between ¢
and t + dt in EQuio A’(J), that has been done before
time T in O. This variable counts how late EQui o A’ (J)
is with respect to O.

Let M; be the number of alive jobs at time ¢ in O
such that at least one of its alive tasks is in a parallel
phase. Note that as opposed to [2], M; does not count
the number of parallel phases scheduled at time ¢ and
can take values larger than 1, since O is only weakly
streamlined and there may be unscheduled alive parallel
phases in addition to the task scheduled at time ¢ in O.
Let ¢ be the function that associates to each time T
where some parallel work dw is scheduled in O during
a time interval [T,T + dT), the time ¢(T) (= T) at
which this exact same parallel work dw is executed in
EqQuio AL(J), during time interval [¢(T), ¢(T + dT)).

LEMMA 4.1. Asin [2], the variables verify the following
relationships: for all time T < t,

T

1. m4&» =mrp,

T
T
2. m;y <nr,

3. If Mp > 0:

o mI T — T when t & [¢(T), ¢(T + dT)] and
o m! T =mI +1 whent € [¢(T), p(T +dT));

4. If My =0, then: m} =my, for allt > T.

Proof. The first point is because EQuIo A(J) is late
with respect to O. The second point is because each job
is released in O at the same time as in EQuio A’(.J) so
that if a job is counted in m{, it is alive at time T in
EqQuio A%(J) as well and is counted in ny. The last
points hold by definition of m! and ¢(T).

Following [2], let Frr = fOT my dt be the contribution
to the cost of EQuIo A’ (J) due to parallel work up to
time T, and Fr = [fi(mf, 4)dt, with f,(m,0) =

mzntéz, a potential function that counts, as we will

see later, the total cost induced by the accumulated
tardiness of EQuI o AL(J) at time T

498

The proof consists in demonstrating that Fr + Fr
is a continuous function whose derivative is bounded by
a function of ¢; and M, only. It follows that its limit
Foo + F = Fy fo my dt is bounded in terms of
known lower bounds on OPT.

LEMMA 4.2. If s > 2, for all time T,

FT+FT</
0

Proof. At time 0, EQuio A’(J) is not late and that
it is also the case at the end of the schedule; thus,
Fy=Fy=Fy,=0.

Continuity. Frp is clearly continuous. Fr is con-
tinuous as well, even at the dates where a new phase
ends or begins in O or in EQuio A(J). Indeed, since
m! and {; are uniformly bounded, the variation induced
by the Variation of the bounds of integration are contin-
wous. Now, m] and mT+dT may differ only by 1 only
on an interval of infinitesimal size corresponding to the
infinitesimal time interval during which EqQuto A’(J)
executes the infinitesimal parallel work done in O be-
tween T and T + dT, if any. It follows that Fp + Fr is
continuous.

Bounding the derivative. Furthermore, Fp + FT
is differentiable except on a finite number of dates
corresponding to the phase changes in O. Clearly,
dFT = deT NOW,

T (S+2)Zt +Mt

dt.
s—2

dfp = [0 T) — fo(m] 0) dt

(1)
— [fi(mep, £4) dt
@)

We now bound (1) and (2) independently. (1) corre-
sponds to the increase of the cost of EQuio A%(J) due
to jobs falling behind. If My = 0, no job falls behind,
and (1) =0. If Mp > 0:

$(T+dT)
(1) = / fomT 1,0 -
o(T)

B /¢<T+dT> s@mi +1) o,
(T) (s=2m

fe(mT) dt

But the length of the interval [¢(T"), p(T+dT)] is exactly
2o 9T e the number of processors alloted to each

job at time ¢(T) is ;(T) and if a parallel phase is

n
executed in a job in EQuio AL(J), this phase receives
all the processors allotted to the job (thanks to the

d0-linearization), thus:
(1) = s(2ml + 1) ngrdT
(s = 2)ngr) s

S -2

_(@m{+1) T
(s =2)
dr,

since mT(T) is at most np. We can thus bound (1) by

2(mT+fT)+MT
(s—2)
(2) corresponds to the amount of tardiness that

EqQuio A’(J) is making up for:

(2) = —fT(mg,ﬁT)dT = —fr(my, by)dT

_ 7s(m%: + L) (mk — éT)dT _ _s(mr —br) T
(s —2)nr (s —2)
It follows that:
P 2(mp+Lr)+M s(mo—L1)
d(FT +FT) < (mT + mT(SiTQ) L — T;;mT)dT
_ (S + Z)ET + M dT.
s—2
Since Fy = FO = 0, we conclude that
Fr+ Fr < fT 7(5+29 lt;Mt dt.

We can now conclude with the proof of our main
theorem 4.1.

THEOREM 4.1. If A is an «-scatterer task scheduler,
EQUIcA is an (2 + €)-speed O(a/e)-competitive algo-
rithm for the non-clairvoyant scheduling problem with
precedence constraint.

Proof. For s = 2 + € and arbitrarily small § > 0,
Flowtime(EQuro A,(.J))
FIowtime(EQUI o AL(J)) +nd

N0, + M
n(5—|—/ P s £t+ (s 2)6+ Moy

by Lemma 4.2 and since F», = 0. But Flowtime(O) >
JoS Mydt, and [[° 6 dt < o), seq(J;) < aFlowtime(0)
since A is a-scatterer. Furthermore, by definition of O,
Flowtime(O©) < OPT(J) + n for some arbitrarily small
n > 0. It follows that

Flowtime(EQUT o A,(J)) < 2L (OPT(J) + 1) + né.

Taking § and n to 0, yields the claimed competitive ra-
tio: Flowtime(EQUIo Ay (J)) < (2a+ 22EL) . OPT(J).

Combining with Proposition 4.1, we obtain our
main result, Theorem 1.1.

499

IN-forest with <
leaves

Precedence
DAG

< Kk independent
chains

d-regular com-
plete OUT-tree | Parallel-DAG
with < k leaves with < k tasks

OUT-forest with d-regular Series-

< k leaves

Upper bounds EqQui is a H,-scatterer

EqQul is a @(nlr‘lé%)—scatterer and the algo-

; rtl Inlnd
EqQul is a > rithm SPLIT(®) is a x Ind -scatterer
scatterer and one
can compute the X -
exact scattering ISpLIT is the task scheduler that divides

recursively and evenly between the children
the processing power given to their ancestor
at the time the ancestor spawns the children.

coefficient of EQul
for any OUT-tree

Lower bounds
for Equi-
schedulers

no EQui-scheduler is s-speed a-competitive

for a < 71055(;)+1

no a-scatterer for

s+l

Lower bounds
for any non-

no s-speed c-competitive for ¢ < z{2E— and s = o(;

In K
nlnk

(from [11])

clairvoyant al-
gorithm
(eq) 2
xamples o) @ @ WWW
Ead inl:;ltancesf @R — Euuuh@
@ — SR A"
&)

Table 1: Upper and lower bounds on classic precedence structures.

5 Concluding remark

Our analysis relies on the notion of a-scatterer task
scheduler. This tool allows to analyze conveniently
the competitiveness of non-clairvoyant algorithms in
Edmonds’s job model without going through the whole
process of the analysis. Table 1 sums up the upper
and lower bounds obtained by our method on classic
precedence structures which could not be included due
to space constraints. Note that it is unclear to us if the
scattering coefficient is the right concept nor if it is a
graph-related notion, although it is a simple powerful
tool to deal with precedences in the non-clairvoyant
setting.

Moreover, it seems that Edmonds’s analysis of
EQui, based on a potential function, might have a much
wider extend than simply the field of non-clairvoyant
algorithms since once the variables m! and /; are
defined, the underlying scheduling problem vanishes.
We believe it might be worth trying to understand what
is the exact problem it solves in order to exploit its whole
potential.

References

[1] Yossi Azar and Leah Epstein. On-line scheduling with
precedence constraints. In Scandinavian Workshop on
Algorithm Theory, pages 164-174, 2000.

J. Edmonds. Scheduling in the dark. In Proc. of the
31st ACM Symp. on Theory of Computing (STOC),
pages 179-188, New York, NY, USA, 1999. ACM Press.
J. Edmonds, D. D. Chinn, T. Brecht, and X. Deng.
Non-clairvoyant multiprocessor scheduling of jobs with
changing execution characteristics. J. Scheduling,
6(3):231-250, 2003.

2l

[4] J. Edmonds, S. Datta, and P. Dymond. TCP is
competitive against a limited adversary. In Proc.
15th Symp. on Parallel Algorithms and Architectures
(SPAA), pages 174-183, 2003.

J. Edmonds and K. Pruhs. Multicast pull scheduling:
When fairness is fine. Algorithmica, 36(3):315-330,
2003.

A. Feldmann, M.-Y. Kao, J. Sgall, and S.-H. Teng.
Optimal online scheduling of parallel jobs with depen-
dencies. J. of Combinatorial Optimization, 1:393-411,
1998.

Yuxiong He, Wen Jing Hsu, and Charles E. Leiser-
son. Provably efficient online non-clairvoyant adaptive
scheduling. In Proc. of IEEE Parallel and Distributed
Processing Symposium (IPDPS), pages 1-10, 2007.

B. Kalyanasundaram and K. Pruhs. Speed is as
powerful as clairvoyance. J. of the ACM, 47:214-221,
2000.

Keqin Li. Average-case performance analysis of
scheduling random parallel tasks with precedence con-
straints on mesh connected multicomputer systems. J.
Parallel Distrib. Comput., 66(8):1090-1102, 2006.

R. Motwani, S. Philipps, and E. Torng. Non-
clairvoyant scheduling. Theoretical Computer Science,
130:17-47, 1994.

J. Robert and N. Schabanel. Non-clairvoyant batch set
scheduling: Fairness is fair enough. In Proc. of 15th
European Symposium on Algorithms (ESA), volume
LNCS 4698, pages 741-753, 2007.

J. Robert and N. Schabanel. Pull-based data broadcast
with dependencies: Be fair to users, not to items. In
Proc. of 18th Symp. on Discrete Algorithms (SODA),
pages 238-247, 2007.

(5]

(6]

(9]

(10]

(11]

[12]

500

