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Abstract. We consider the problem of nonclairvoyantly scheduling jobs,
which arrive over time and have varying sizes and degrees of paralleliz-
ability, with the objective of minimizing the maximum flow. We give
essentially tight bounds on the achievable competitiveness. More specifi-
cally we show that the competitive ratio of every deterministic nonclair-
voyant algorithm is high, namely Ω(

√
n) for n jobs. But there is a simple

batching algorithm that is (1 + ε)-processor O(logn)-competitive. And
this simple batching algorithm is optimally competitive as no determinis-
tic nonclairvoyant algorithm can be s-processor o(logn)-competitive for
any constant s.

1 Introduction

The founder of chip maker Tilera asserts that a corollary to Moore’s law will
be that the number of cores/processors will double every 18 months [11]. In
this paper we consider one of the many resulting technical challenges that arises
in such a future: developing algorithms/policies for scheduling jobs on many
processors so as to optimize the resulting quality of service. Such a scheduler
will be faced with scheduling jobs with highly varying degrees of parallelizability,
that is, when allocated many processors some jobs may be considerably sped up,
while on the other extreme, some jobs may not be sped up at all.

We will consider the setting where jobs of varying sizes arrive to the system
over time, and must be scheduled online on a collection of identical processors.
At each point in time the online scheduler needs to partition the processors
among the alive jobs. For each portion of each job, there is an inherient speed-
up function that specifies the rate at which the job is processed as a function
of the number of processor on which it is run. An operating system scheduler
generally needs to be nonclairvoyant, that is, the algorithm tipically does not
have access to the internal knowledge about jobs, such as the size and the speed-
up functions. The standard quality of service measure for a job is its flowtime,
which is the length of time between when the job arrives to the system and
which it is completed. One then normally obtains a quality of service measure
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for a schedule by taking the `p norm of the flowtimes for 1 6 p 6 ∞. The `p
norm is the pth root of the sum of the pth powers of the flow times. The `1 norm
is the total, or equivalently average, flowtime, and the `∞ norm is the maximum
flowtime. Intuitively, the higher the value of p, the more importance that is being
placed on avoiding starvation of jobs.

Formal definitions for all concepts in the introduction can be found in Sec-
tion 2.

1.1 Previous Results

The model of speed-up functions that we adopt here was proposed in [4]. [4]
showed that the natural algorithm Equi, which shares the processors equally
among the jobs, is O(1)-competitive for the `1 norm of flow in the special case
that all jobs arrive at the same time. Generalizing to the case of jobs with arbi-
trary release times, [3] gave a quite involved proof that Equi is (2+ε)-processor
O( 1

ε )-competitive for the `1 norm of flow. Given that a nonclairvoyant algorithm
does not know the speed-up functions, it is not clear what reasonable alternative
algorithms there are to Equi, as there is no way for a nonclairvoyant algorithm
to avoid the possibility that the jobs that it assigns most processors to may
be the least parallelizable. However, [6] showed that, by sharing the processors
evenly among most recently arriving constant fraction of the jobs, one obtains
an existentially scalable algorithm (see definition p. 6), that is an algorithm that
is O(1)-competitive with arbitrarily small processor augmentation. [6] also gives
a much simpler proof of the competitiveness of Equi proved in [3].

The model was then extended in [16] to include arbitrary precedence con-
straints among tasks within each job. [16] showed that the introduction of prece-
dence constraints does not affect the minimum processor augmentation required
to be competitive for the `1 norm of flow, even if the resulting competitive ratio
depends on the internal dependencies of each job.

The `p norm of flow, for 1 < p < ∞ was recently considered in [7]. [7]
showed that a simple algorithm that allocates the processors to the most recent
alive jobs proportional to the (p − 1)st power of their age is (2 + ε)-processor
O(1)-competitive. Very recently it was shown that this algorithm is existentially
scalable [5].

The only previous work on the `∞ norm of flow was in [15]. [15] showed
that if all the jobs are released all together at time 0, Equi is O(log n/ log log n)-
competitive, and there is a matching general lower bound even allowing constant
factor processor augmentation.

On single processor nonclairvoyant scheduling, or equivalently for multipro-
cessor scheduling when all the work is parallel, there has been a fair amount of
work done to optimize `p norms of flow. Let us first consider the `1 norm. The
competitive ratio of every deterministic nonclairvoyant algorithm is Ω(n1/3),
and the competitive ratio of every randomized nonclairvoyant algorithm against
an oblivious adversary is Ω(log n) [12]. There is a randomized algorithm, Ran-
domized Multi-Level Feedback Queues, that is O(log n)-competitive against an
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oblivious adversary [10,2]. The algorithm Shortest Elapsed Time First, which
shares the processors equally among the jobs that have been processed the least
to date, is universally scalable [9]. For the `p norm of flows for 1 < p < ∞, the

competitive ratio of every randomized nonclairvoyant algorithm is Ω(n(p−1)/3p2),
and Shortest Elapsed Time First is universally scalable [1]. The nonclairvoyant
algorithm First Come First Served is optimal for maximum flow.

There are many related scheduling problems with other objectives, and/or
other assumptions about the machine and job instance. Surveys can be found in
[14,13].

1.2 Our Results

So essentially what competitiveness is achievable by a nonclairvoyant algorithm
for the `p norm of flow is known for finite p. In this paper we address the
obvious remaining open question: What competitiveness is achievable for the
case that p =∞, that is for the objective of maximum flow. We give the following
essentially tight results:

– In section 3 we show that the competitive ratio of every deterministic non-
clairvoyant algorithm is high, namely Ω(

√
n).

– In section 4 we show that there is a simple nonclairvoyant batching algorithm
OBEqui that is (1 + ε)-processor O(log n)-competitive. In OBEqui there
are always two active batches, the current batch and the next batch. The
processors are shared equally among the current batch. Newly arriving jobs
are added to the next batch. When all the jobs in the current batch finish,
the next batch becomes the current batch.

– In section 5 we show that this simple batching algorithm is optimally com-
petitive as no deterministic nonclairvoyant algorithm can be s-processor
o(log n)-competitive for any constant s.

– In section 6 we show that the techniques developed in [16] to handle prece-
dence constraints when the objective is the `1 norm of flow can be extended
to the `∞ norm of flow. Furthermore, we give here a modular presentation
of these reduction-based techniques that will allow easy applications of the
concepts in [16] to arbitrary non-clairvoyant setting.

We find it surprising that such a simple batching strategy is optimal, it was
far from the first algorithm that we tried to analyze. Given the competitiveness
results for nonclairvoyantly scheduling jobs with the objective of the `p norm of
flow on a single and on multiple processors we make the following observations:

– On a single processor the `∞ norm is the easiest objective for the nonclair-
voyant scheduler as First Come First Served produces an optimal schedule,
and the best that a nonclairvoyant scheduler can do for the other norms is to
be universally scalable. Of course scheduling on multiple processors is harder
for a nonclairvoyant scheduler. But on mutiple processors, if jobs can have
arbitrary parallelizability, then the `∞ norm is the hardest objective for the
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nonclairvoyant scheduler as it is the one objective where it is not possible for
the scheduler to be at least existentially scalable. This suggests that perhaps
starvation avoidance is a more difficult objective in a multiprocessor setting
than in a single processor setting.

– By adding release times, the optimal competitive ratio increases signifi-
cantly, from Θ(log n/ log logn) to Ω(

√
n). But adding release dates only

raises the competitiveness achievable by a nonclairvoyant algorithm with
(1 + ε)-processor augmentation from Θ(log n/ log log n) to Θ(log n), and a
larger constant factor processor augmentation doesn’t improve the compet-
itiveness achievable by a nonclairvoyant algorithm.

2 Definitions and Notation

We present here the model in its general form with arbitrary speed-up functions
and precedences constraints. It turns out that our result proceeds by reduction to
a much simpler setting, including only parallel and sequential speed-up functions
and with no precedences constraint, which we will present first. Thus some of
these definitions will not be needed before section 6.

The Setting. We consider a sequence of jobs {J1, J2, . . .} with release times
{r1, r2, . . .}. Following the terminology of [8,16], each job Ji consists in a set
of tasks {Ji,1, . . . , Ji,mi} with precedence constraints that the scheduler has to
execute over p processors. Each task goes through different phases, where each
phase may have a different speed-up function. The scheduler has to decide online
the number of processors to allocate to each alive task. The scheduler is non-
clairvoyant, i.e., discovers the jobs at the time of their arrivals and the tasks
at the time they become available; furthermore, it is unaware of the current
speed-up of each task (i.e., how they take advantage of more processing power)
nor of the amount of work in each task; it is only informed that a task or a job
is completed at the time of its completion. As in [3,16,6], we consider that the
processors can be divided fractionally: fractional allocation is usually realized
through time multiplexing in real systems.

Schedules. A schedule Sp on p processors is a set of piecewise constant functions4

ρij : t 7→ ρtij where ρtij is the amount of processors allotted to the task Jij at
time t; (ρtij) are arbitrary non-negative real numbers, such that at any time t:∑
ij ρ

t
ij 6 p.

The jobs. The dependencies are defined as in [16] (extending the definition
of [3,4]): each job Ji consists of a directed acyclic graph (DAG for short)
({Ji 1, . . . , Jimi

},≺), where task Jij is released as soon as all tasks Jik, such

4 Requiring the functions (ρij) to be piecewise constant is not restrictive since any
finite set of reasonable (i.e., Riemann integrable) functions can be uniformly approx-
imated from below within an arbitrary precision by piecewise constant functions. In
particular, all of our results hold if ρij are piecewise continuous functions.
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that Jik ≺ Jij , are completed. Job Ji is completed as soon as all its tasks are
completed. Each task goes through a sequence of phases J1

ij , . . . , J
qij
ij with differ-

ent degrees of parallelism. Each phase Jkij consists in an amount of work wkij and

a speed-up function Γ kij . At time t, during its k-th phase, each task Jij progresses

at a rate Γ kij(ρ
t
ij) which depends on the amount ρtij of processors allotted to Jij

by the scheduler, i.e., the amount of work accomplished between t and t+ dt in
each task Jij during its k-th phase is: dw = Γ kij(ρ

t
ij)dt.

Given a schedule Sp of the jobs {J1, J2, . . .}. A job or a task is alive as soon
as it is released and until it is completed. Let cij denote the completion time of
task Jij . The release time rij of a task Jij is: rij = ri (the release time of Job
Ji) if Ji,j does not depend on any other task (i.e., if Jik 6≺ Jij for all k); and
rij = max{cik : Jik ≺ Jij}, otherwise. Let ckij denote the completion time of

the k-th phase of task Jij : c
k
ij is the first time t′ such that wkij =

∫ t′
ck−1
ij

Γ kij(ρ
t
ij) dt

(with c0ij = rij). Each task Jij completes with its last phase, thus: cij = c
qij
ij .

Job Ji is thus completed at time ci = maxj cij . A schedule is valid if all jobs
eventually complete, i.e., if ci <∞ for all i.

Cost of a schedule. The flowtime Fi of a job Ji is the overall time Ji is alive
in the system, i.e., Fi = ci − ri. The maximum flowtime of a schedule Sp is the
maximum of the flowtimes of the jobs: MaxFlowTime(Sp) = maxi Fi. Our goal is
to design a scheduler that minimizes the maximum flowtime, which corresponds
to the largest response time of the system, which is a classic measure of quality
of service. We denote by OPTp = inf{MaxFlowTime(Sp) : valid schedule Sp},
the optimal cost on p processors.

Speed-up functions. As in [4,16,6], we assume that each speed-up function is non-

decreasing and sub-linear (i.e., such that for all i, j, k, ρ < ρ′ ⇒ Γk
ij(ρ)

ρ >
Γk
ij(ρ′)

ρ′ ).
Non-decreasing means that allocating more processors to a job will not slow the
processing of that job, and sub-linear means that efficiency decreases as the
number of processors increase. As in [4,16,6], two types of speed-up functions
will be of particular interest here:

– the sequential phases (Seq) where Γ (ρ) = 1, for all ρ > 0 (the task progresses
at a constant rate even if no processor is allotted to it, similarly to an idle
period); and

– the parallel phases (Par) where Γ (ρ) = ρ, for all ρ > 0.

We say that a job Ji is SeqPar if each of the phases of its tasks is either sequential
or parallel. An instance is SeqPar if all of its jobs are SeqPar. For any task Jij
of a SeqPar job Ji, we define Seq(Jij) and Par(Jij) as the overall sequential and
parallel works in the task respectively:

Seq(Jij) =
∑

k: kth phase of Jij is sequential

wkij and Par(Jij) =
∑

k: kth phase of Jij is fully parallel

wkij .

We denote by Par(Ji) =
∑
Jij∈Ji Par(Jij) the total amount

of parallel work in the tasks of a SeqPar job Ji. We denote by
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Seq(Ji) = maxJij1≺···≺Jijk
∑k
`=1 Seq(Jij`), the maximum amount of sequential

work along a chain of tasks in job Ji. We denote by Par(J) = maxi Par(Ji) and
Seq(J) = maxj Seq(Ji) for any set of jobs J = {J1, . . . , Jn}.

Lemma 1 (Trivial lower bound, [3,16]) For any SeqPar instance
J1, . . . , Jn, we have: OPT1(J) > maxi(Par(Ji),Seq(Ji)).

Non-clairvoyant scheduling with precedence constraints. As in [4,16,6], we con-
sider that the scheduler knows nothing about the progress of each tasks and is
only informed that a job or a task is completed at the time of its completion;
in particular, it is not aware of the different phases that each task goes through
(neither of the amount of work nor of the speed-up function). Furthermore, tasks
are released as soon as they become available without noticing the scheduler of
the precedence constraints: if two tasks complete as other tasks are released, the
scheduler is unable to guess which spawns which. In particular, as in [16], the
order in which the tasks of a given job are released depends heavily on the com-
puted schedule, and the scheduler cannot even reconstruct the DAG a posteriori
in general. It is only aware at all time of the IDs of the current alive jobs and of
their alive tasks.

Competitiveness and resource augmentation. We say that a given scheduler Ap
is c-competitive if it computes a schedule Ap(S) whose maximum flowtime is at
most c times the optimal clairvoyant maximum flowtime (that is aware of the
characteristics of the phases of each task and of the DAG of each job), i.e., such
that MaxFlowTime(Ap(J)) 6 c · OPTp(J) for all instances J . A scheduler Ap
is s-processor c-competitive if it computes a schedule Asp(J) on sp processors
whose maximum flowtime is at most c times the optimal maximum flowtime
on p processors only, i.e., such that MaxFlowTime(Asp(J)) 6 c · OPTp(J) for
all instances J [9]. A scheduler A is universally scalable if for every ε > 0,
there is a constant cε such Ap is (1+ε)-processor cε-competitive. A family of
algorithms Ap,ε is existentially scalable if for every ε > 0, there is a constant cε
such algorithm Ap,ε is (1+ε)-processor cε-competitive.

Par→Seq instances. A special case of SeqPar job will be of particular interest
here. A job is said to be Par→Seq if it consists in one single task consisting of
only two phases: one single parallel phase followed by one final sequential phase.
An instance is said to be Par→Seq if all its jobs are Par→Seq. As we will be
show in Section 6, proving the competitiveness of our algorithm on Par→Seq
instances (proved in Section 4) will be enough to conclude its competitiveness
on instances with arbitrary speed-up functions and precedence constraints.

3 The Lower Bound on the Competitive Ratio

Theorem 2 There is no deterministic non-clairvoyant 1-processor c-
competitive algorithm for any c <

√
n/4 for maximum flowtime even in

the case that each consists of a single SeqPar task.
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Proof. Consider a deterministic non-clairvoyant algorithm A on 1 processor. Let
n be the square of an even integer: n = 4m2. The adversary releases 2 jobs Ji
and J ′i at each time t = i ∈ {0, 1, . . . , n/2−1}. Each job is composed of a parallel
phase followed by a sequential phase of length 1. The amount of parallel work
in each job is determined on-the-fly by the adversary according to the schedule
computed by A so far (since A is non-clairvoyant, the adversary can set the
phases afterwards). The total amount of parallel work within each pair of jobs
Ji, J

′
i will always be equal to 1. This unit of parallel work is split between Ji and

J ′i as follows. Consider each time slot [t, t+ 1] with t ∈ {i, i+ 1, . . .}. Both jobs
remain in a parallel phase as long as A allots at most 1/

√
n processors to each

of them during each time slot [t, t + 1] and t 6 i +
√
n/2 − 1. Then, either we

reach t = i +
√
n/2 and then the adversary sets the amount of parallel work in

each job to 1
2 ; since none of the jobs is allotted more than 1/

√
n processors on

average, none of their parallel phases can be completed at time i +
√
n/2 and

the instance is correctly defined. Otherwise, one the of job, say Ji, is allotted
more than 1/

√
n processors during time slot [t, t+ 1]. Then, the adversary sets

the amount of parallel work in Ji and J ′i to the total amount of processors each
received from A between i and t (which sums to some w < 1), and gives the
remaining parallel work 1− w to J ′i .

The optimum can complete both parallel phases in each pair of jobs during
the time unit after their release and thus guarantees a maximum flowtime of 2
for each job.

We claim that MaxFlowTime(A) >
√
n/2. Indeed, either there is one pair of

jobs Ji, J
′
i that were never allotted more than 1/

√
n processors each in each time

slot [t, t + 1] for t ∈ {i, . . . , i +
√
n/2 − 1}. Then, both of their parallel phases

could not be completed at time t = i+
√
n/2− 1 and their flowtime is >

√
n/2.

Otherwise, one job in each pair was allotted at least 1/
√
n processors for its final

sequential phase. Let n + T be the completion time of the last completed job.
n+ T has to be at least n/2 · 1/

√
n+ n, the total amount of processors wasted

on sequential phases plus the total amount, n, of parallel work in the instance.
It follows that MaxFlowTime(A) > T >

√
n/2 >

√
n/4 ·OPT.

4 Analysis of the Batching Algorithm on Par→Seq
instances

We consider here only Par→Seq instances. Section 6 will show that one can
reduce the general case to this simpler case. Recall our batching algorithm for
job without precedence constraints, named OBEqui (for Online Batching Equi):
it maintains at all time two batches; at the beginning, one batch contains the first
released jobs, and the other one is empty; then repetitively, the jobs contained
in the older batch are all scheduled together using the Equi algorithm (each
alive job in the batch receives an equal share of the processors) until all of them
completes, while OBEqui collects all the jobs released in between in the other
batch; OBEqui then switches the batches and restarts. We denote by Bk the
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kth batch of jobs scheduled by OBEqui. This section is dedicated to proving
the following theorem.

Theorem 3 The simple non-clairvoyant batching algorithm OBEqui is (1+ε)-
processor O( logn

ε2 )-competitive for maximum flowtime on Par→Seq instances, for
all ε > 0.

First, we give a lower bound on the optimal cost that we will use extensively.

Excess. The maximum parallel work in excess of a SeqPar instance {J1, . . . , Jn}
is defined as:

Exc(J) = min
{
W : ∀(t 6 t′)

∑
ri∈[t,t′] Par(Ji) 6 t′ − t+W

}
,

i.e. the maximum quantity of parallel work received during any time interval
that cannot be scheduled on 1 processor within this interval. By minimality of
Exc, consider a time interval [t, t′] such that

∑
ri∈[t,t′] Par(Ji) = t′ − t+ Exc(J),

no schedule can complete the parallel work received during [t, t′] before time t′+
Exc(J), it follows that the flowtime of some job released in [t, t′] is at least Exc(J).
Together with Lemma 1, we obtain the following lower bound that we will use
to analyze our algorithms.

Lemma 4 (Lower bound) For all SeqPar instance J1, . . . , Jn,
OPT1(J) > max(Exc(J),Seq(J)).

We use the following notations: γk denotes the completion time of the kth
batch, Bk, (γ0 = −∞ by convention); ρk denotes the release time of the first
job in Batch Bk; nk denotes the number of jobs in Batch Bk. Note that for
all k > 2, max(ρk−1, γk−2) < ρk 6 γk. Note also that the processing of batch Bk
begins exactly at time βk =def max(ρk, γk−1).

Let T (n, ε) =
(

8
ε + 32

ε2

)
log n ·max(Exc(J),Seq(J)).

The main idea of the analysis is to show that if the previous batch lasts at
most T (n, ε), then the next one will be completed in time at most T (n, ε) as
well. The batch Bk contains all the jobs released between time ρk and time βk =
max(ρk, γk−1). Its processing starts at time βk and ends at time γk. We will
show the following:

Lemma 5 For all τ > T (n, ε), if βk − ρk 6 τ then γk − βk 6 τ .

Proof. Since all the jobs in Bk are released in [ρk, βk], the total amount of
parallel work of this batch is at most βk − ρk + Exc(J) by definition of Exc.
Assume that OBEqui is run on 1 + ε processors with ε 6 1

2 (this assumption
is not necessary but simplifies the calculations bellow). We now follow the lines
of [15]. We partition the processing period of the batch Bk in two sets: A is
the set of all instant t ∈ [βk, γk] such that a fraction at least 1 − ε

8 of the alive
jobs of Bk are in a parallel phase; Ā is its complementary set, i.e. the set of all
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instant t ∈ [βk, γk] such that a fraction more than ε
8 of the active jobs of Bk are

in their final sequential phase. By construction,

γk − βk =
∫
A
dt+

∫
Ā
dt.

At each instant t ∈ A, the amount of parallel work decreases at a rate at least
(1 + ε)(1− ε

8 ). It follows that:∫
A
dt 6 Par(Bk)

(1+ε)(1− ε
8 ) 6 (τ + Exc(J))(1− ε

4 ),

since ε 6 1
2 . Let Seq(Bk) = maxJi∈Bk

Seq(Ji). Clearly, Seq(Bk) 6 Seq(J). As
in [15], we cover Ā with a minimum number q of non-overlapping intervals of
length Seq(Bk). At the beginning of each of these q intervals, a fraction larger
than ε

8 of the alive jobs in Bk are in their final sequential phase and will then
be completed at the end of the interval. It follows that the number of alive
jobs decreases by at least a factor 1 − ε

8 after each of these intervals. Thus,
q 6 − log(1− ε

8 ) nk. Then∫
Ā
dt 6 q · Seq(Bk) 6 − lognk

log(1− ε
8 )Seq(J) 6 8

ε · log n · Seq(J).

It follows that:

γk − βk 6
(
1− ε

4

)
(τ + Exc(J)) + 8

ε · log n · Seq(J).

We are now left with proving that:(
1− ε

4

)
(τ + max(Exc(J),Seq(J))) + 8

ε · log n ·max(Exc(J),Seq(J)) 6 τ

whenever τ > T (n, ε) =
(

8
ε + 32

ε2

)
log n · max(Exc(J),Seq(J)). This holds since

by subtracting τ from both sides of this inequation, we get:

− ε
4τ +

(
1− ε

4 + 8 logn
ε

)
max(Exc(J),Seq(J))

6
(
− ε4
(

8
ε + 32

ε2

)
log n+ 1− ε

4 + 8
ε log n

)
max(Exc(J),Seq(J))

6 0. ut

By immediate induction, the flowtime of every job is at most 2T (n, ε): T (n, ε)
for waiting to be scheduled, plus T (n, ε) for its batch to be completed. Thus,
Theorem 3 follows by the lower bound for OPT given in Lemma 4.

5 The General Lower Bound

This section will be devoted to proving the following theorem.

Theorem 6 For all ε > 0, there is no deterministic non-clairvoyant (1 + ε)-
processor c-competitive algorithm for c < 1

2 · log n. This holds even if instances
are restricted such that each job consists of a single Par→Seq task.
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Consider a deterministic non-clairvoyant algorithm A on 1 + ε processors.
Let n = b · m be the product of two integers such that: m ∼ n1−1/

√
logn and

b ∼ n1/
√

logn = e
√

logn. Let F = log n. The adversary releases m jobs J i1, . . . , J
i
m

at each integer time t = i ∈ {0, 1, . . . , b− 1}; the set J i1, . . . , J
i
m is referred as the

ith batch with 0 6 i < b. Each job is composed of a parallel phase followed by a
sequential phase of length 1. The adversary will ensure that the total amount of
parallel work in each batch is at most 1, so that the optimum can schedule all
the parallel work between t and t+ 1 on one processor and thus complete every
job within 2 time units, i.e. OPT1 6 2.

The adversary sets the parallel work of the jobs in each batch as follows. Let
jit denote the number of alive jobs in the i-th batch at time i+t (ji0 = m). At each
time i+ t, with t ∈ {1, . . . , F}, and as long as jit−1 > 0, the adversary sorts the
jit−1 surviving jobs of the batch by non-decreasing average number of processors
allotted by A during [i+ t− 1, i+ t]. The adversary selects the maximum k such
that the amount of processors allotted by A to the k first jobs in that order is
at most 1/F . The adversary sets these k first jobs in a parallel phase during
[i+ t− 1, i+ t] and sets the jit −k others in their final sequential phase (they are
thus completed at time t). Note that after that jit = k. All the surviving jobs (if
any) are forced to enter their final sequential phase at time t = i+ F .

Note that at most 1/F parallel work is injected into the jobs of the batch in
each time slot; since the lifetime of each batch is at most F , each batch contains
at most one unit of parallel work in total, which ensures that for this instance
OPT1 6 2 as claimed earlier. We will now prove that MaxFlowTime(A) =
Ω(log n).

Let sit denote the total amount of processors allotted by A during [i+t, i+t+1]
to the surviving jobs of the i-th batch.

Lemma 7 For all i and t < F such that jit > 0, we have: jit+1 = jit if sit 6
1
F ;

and jit+1 >
jit
F ·sit
− 1, otherwise.

Proof. During [i+ t, i+ t+ 1], if sit 6
1
F , all the jobs are set in a parallel phase

and are still alive at time i+t+1, thus jit+1 = jit . Otherwise, each alive job in the
i-th batch is allotted on average sit/j

i
t processors. It follows, by the maximality

of k, that (k + 1)sit/j
i
t >

1
F and thus jit+1 = k >

jit
F ·sit
− 1.

Simple algebraic manipulation yields the following corollary:

Corollary 8 For all i and t < F such that jit > (1+ε)F 3 and sit >
1
F , we have:

jit+1 >
(
1− 1

F 2

)
· jit
F ·sit

.

Let ∆i = {t : 0 6 t < F and jit > (1 + ε)F 3 and sit >
1
F } denote the set of

the time slots in the lifetime of the ith batch, where it receives from A at least
1
F processors, and where the number of alive jobs is at least (1 + ε)F 3, so that
the lower bound of the corollary above applies. Let T i = #∆i denote the size of
∆i and ti+ = max∆i. Note that the maximum flowtime of the jobs in the i-th
batch is at least T i.

10



Note that as long as jit > (1 + ε)F 3, we have jit+1 < jit only for t ∈ ∆i, and
jit+1 = jit otherwise. If the lifetime of the ith batch is F , then the maximum
flow time of A is F and we are done. Let us now assume that the flowtime of all
batches is less than F . It follows that for all i, jit < (1 + ε)F 3 for some t < F , in
particular: ∆i 6= ∅, ti+ > T i > 0, and ji

1+ti+
< (1 + ε)F 3 (indeed, since jit+1 < jit

only for t ∈ ∆i as long as jit > (1 + ε)F 3, this threshold is crossed exactly
between ti+ and 1 + ti+).

Let si = 1
T i

∑
t∈∆i sit denote the average amount of processors allotted to

the batch during the time slots in ∆i. Note that si > 1
F by construction. By

Corollary 8,

(1 + ε)F 3 > ji
1+ti+

> ji0
∏
t∈∆i

1−1/F 2

F ·sit
> m(

F ·si
1−1/F2

)Ti ,

by log-concavity of the product. Now, by taking the log of both ends of the
inequality above,

T i > logm−log((1+ε)F 3)

log
(

F ·si
1−1/F2

) , (1)

since si > 1
F and thus log

(
F ·si

1−1/F 2

)
> 0.

To get the Ω(log n) lower bound on some T i, it suffices now to show that
some batch gets a small enough average amount of processors si compared to
1/F .

Lemma 9 For large enough n, there exists a batch i such that si 6
e

F

Proof. Consider some constant K to be chosen later. We proceed by contradic-
tion and assume that for all batches, si > K/F . Since the lifetime of every of the
b batches is at most F by construction, the total amount of processors used by
Algorithm A is at most (b+ F )(1 + ε). But, each batch i receives si processors
on average during T i time. It follows that:

(1 + ε)(b+ F ) >
∑b−1
i=0 T

i · si >
∑b−1
i=0

si

log
(

F ·si
1−1/F2

) · (logm− log((1 + ε)F 3)), by (1).

But s 7→ s/ log(a · s) is increasing for s > e/a. Assume K > e · (1− 1/F 2). Now
si > K/F for all i by hypothesis, so:

(1 + ε) · n1/
√

logn ∼ (1 + ε)(b+ F ) > b · K/F
log(F ·(K/F ) / (1−1/F 2)) · (logm− log((1 + ε)F 3))

= b · K
log(K/(1−1/F 2)) ·

(1− 1√
log n

) logn−O(log logn)
1

1+ε logn

∼ (1 + ε) · K
logK · n

1/
√

logn

We obtain thus a contradiction for large enough n when K is chosen so that
K > e and K

logK > 1, which is true for K = e for all ε > 0. ut

To conclude, consider now a batch i such that si 6 e
F . By (1),

MaxFlowTime(A) > T i >
(1− 1√

log n
) logn−O(log logn)

log(e/(1−1/F 2)) > (1− o(1)) · log n · OPT1

2 .
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6 Reduction from the general setting to Par→Seq
instances (omitted due to space constraints)

Using reductions from [3,15,16], we are able to show that Theorem 3 extends to
the general setting, as follows:5

Theorem 10 For all ε > 0, for all instance J1, . . . , Jn with arbitrary
speed-up functions and precedence constraints, there exists a simple algorithm

OBEqui ◦Equi that is (1+ε)-processor (κ(J)+1)cε
2 ·log n-competitive, where κ(J)

denotes the maximum number of independent tasks in a job of the instance, and
cε 6 16( 1

ε + 4
ε2 ) for ε 6 1

2 .
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