
Laboratoire de l’Informatique du Parallélisme
Unité mixte CNRS - ENS Lyon - INRIA - UCB Lyon n◦5668

Internship report

Oritatami model of molecular cotranscriptional folding:
possible and impossible

Daria Pchelina, supervised by Nicolas Schabanel

September 9, 2019

1 Introduction

Molecular folding, also called self-assembly, is a process where sequences of nucleotides or amino-acids are assembled
into shapes [5, 22, 23]. This subject got a lot of attention over the last decades. Indeed, being able to assemble
arbitrary molecular structures has many applications, from medicine [21] and nanotechnologies [20] to computer
science [18]. Many experiments have shown the huge potential of molecular folding. Molecules can assemble into
predefined 2D [19] and 3D-shapes [12] and, moreover, they can perform computations [18].

To study such a complex phenomenon, one needs mathematical models. Wet lab experiments require many
resources and efforts and do not explain the origin of observed events. Therefore, detailed theoretical analysis is
always necessary to fully understand the process. There exist various models of DNA self-assembly: the abstract
Tile Assembly Model (TAM), the kinetic TAM [23], the probabilistic TAM [7], the hierarchical self-assembly [4],
the nubot model [6]...

DNA self-assembly is a powerful instrument, but it has a number of constraints. First of all, DNA sequences are
very stable and do not easily interact with other molecules. Moreover, their folding is possible only after a precise
process of heating and cooling which can be attained only in a particular environment.

By contrast, RNA is much less stable and can be assembled with less efforts. This also means that their folding
behaviour is harder to simulate and control. For instance, in different variants of the hydrophobic-hydrophilic
model [10], even predicting the final shape of a sequence is NP-complete [3].

Transcription is a process where an RNA polymerase (orange in Figure 1) synthesizes a copy (blue) of a gene
(gray). The copy, called transcript, folds upon itself immediately as it is produced by the RNA polymerase.
This is called cotranscriptional folding [13, 15]. Figure 1 illustrates cotranscriptional folding of a transcript into a
rectangular RNA tile designed in [15]. Intuitively, this process is a local energy optimization or, in other words, a
greedy algorithm. Understanding this phenomenon is necessary to study RNA self-assembly.

Oritatami system (OS1) is a simplified mathematical model of cotranscriptional folding introduced in [14] and
based on the experiments from [15]. In this model, nucleotides are abstracted as beads, the molecular sequences are
considered as words on a finite alphabet of bead types and the hydrogen bonds between nucleotides are represented
by a symmetric relation on the alphabet. The dynamics of the system consists in the following: at each moment of
time, a part of the sequence is stabilized on the plane, while the next δ beads are exploring freely the environment
in order to find a position optimizing the energy, which will stabilize the next bead. The formal definition of the
model is given in Section 2.

1The possible confusion with Operating Systems is not that meaningless since Oritatami Systems are Turing complete [16], so we
can use them as an abstraction for computations.

1

Figure 1: An illustration of cotranscriptional folding from [15].

During my internship, I investigated several aspects of Oritatami systems. First, we have considered this
model from the geometric point of view: which shapes can be folded and which can not? The keynote of my
research is the borderline between the shapes which are possible and impossible to fold. I started by fixing an
existing reasoning, got more general results useful for proving unfoldability of certain shapes (Section 3.1) and
applied them in two cases (Sections 3.2 and 3.3). I presented this work during “Journées SDA2 2019” meeting
(https://sda2-2019.sciencesconf.org/279506). There are results showing that all shapes scaled in a certain
way can be self-assembled by an OS [8]. I worked on the last case in a construction folding shapes at a smaller
scale, which is explained in Section 3.4.

The Oritatami model was already proven to have full computational power: it can simulate an arbitrary tag
system [16] and there is a simplified way to simulate a counter [14]. During my internship, I participated in
the exploration of computational properties of this model (see Section 4.2). I took part in the development of a
construction to simulate cellular automata by an OS with Nicolas Schabanel, Shinnosuke Seki, and Yuki Ubukata
(find more details about it in Section 4.1). This is a candidate to be the most elegant and simple way to show
that the Oritatami model is Turing complete, in contrast to the very complicated existing result [16]. Moreover,
we hope to use it as a base to implement Oritatami computations in the wet lab. Now, as we know that an OS
can perform computations, how complex can be a shape produced by it? Following this question asked during
“Journées SDA2” by Guillaume Theyssier, we discovered that any recursively enumerable set can be represented
by the terminal shape of an OS.

Currently, I am involved in the writing of three papers. The first paper, where I fixed a proof and obtained
some new results (Sections 3.1 - 3.3), is going to be the next version of previously published [8]. The second one is
about the simulation of cellular automata (Section 4.1). The last paper in progress describes how any recursively
enumerable set can be produced by an OS (Section 4.2).

Doing only theory up to now, I considered this internship as a possibility to go beyond the world of purely
theoretical research. The Oritatami model is based on wet lab experiments and, even working on theoretical
questions, we need to understand the underlying real processes in order to move forward. The wet lab experiments
which I attended inspired me to contribute to work in this direction and eventually perform experiments myself.

2 Definitions

In this section, we will introduce the Oritatami model. Let us begin by giving the formal mathematical definition
of an assembled part of a transcript in a given moment of time. This is what we call a configuration (a state) of
our dynamical system.

Let us first introduce the triangular lattice T. By definition, T = (Z2,∼) where (x, y) ∼ (u, v) if and only if
(u, v) ∈ ⋃

ε=±1
{(x+ε, y), (x, y+ε), (x+ε, y+ε)}; x ∼ y means that x and y are adjacent.

Given a set of bead types B which is a finite alphabet, a sequence of beads ω ∈ B∗ is called a transcript. A
configuration c is a self-avoiding path on the triangular lattice of length |ω| labeled by beads of the transcript ω.
The i-th position in c is denoted by ci. A configuration of a prefix of ω is called a partial configuration. An example
of a set of bead types, a transcript and a partial configuration is given in Figure 2.

The hydrogen bonds between nucleotides are represented by an attraction rule ♥ ⊆ B2 which is a symmetric
equivalence relation on bead types. Any pair of nonconsecutive adjacent beads attracted to each other forms a
bond. Given an attraction rule ♥ and a configuration c, we denote the number of bonds created by beads in c by
h(c) := |{(i, j) : ci ∼ cj , j > i + 1, ωi♥ωj}|. The number of bonds created by the i-th bead of c is denoted by

2

https://sda2-2019.sciencesconf.org/279506

B = { , , }

ω =

♥ = { ♥ , ♥ , ♥ }

c = h(c) = 4

Figure 2: An example of a set B of bead types, a transcript ω, an attraction rule ♥, and a partial configuration c
whose bonds denoted by red dotted lines.

hi(c). Find an example of an attraction rule and bonds of a configuration in Figure 2.

Let us define the dynamics of an OS, in other words, how its configuration evolves with time. Let us begin with
some intuition about this process. Given a set of beads, a transcript, and an attraction rule, folding starts with
an initial configuration called a seed which determines the positions of several first beads of the transcript. The
forthcoming beads of the transcript are stabilized in their positions one by one: at each step, a fixed number of not
yet stabilized beads move freely “looking for” the configurations maximizing the number of bonds. The next bead
is stabilized according to these favorable configurations.

Given ω ∈ B∗ and its partial configuration c, a partial configuration c′ of size |c|+ δ is called a δ-elongation of
c if its first |c| beads are positioned as in c. We denote by cBδ the set of all δ-elongations of c. If the transcript is
finite and δ > |ω| − |c| then δ-elongations of c do not exist since the end of the transcript is too close. In this case,
we consider the longest existing elongations: cBδ := cB|ω|−|c|. Given c′ ∈ cBδ, its last δ beads are called nascent.
Configuration c′ is called a favorable elongation if it maximizes the number of bonds among all δ-elongations of c,
more formally, if c′ ∈ arg max

γ∈cBδ
h(γ). The set of all elongations and the favorable elongations of a partial configuration

are illustrated in Figure 3

δ

Figure 3: Dynamics of an OS with δ = 3: a partial configuration with the set of its elongations marked by blue
dotted lines (on the left), the three favorable elongations whose nascent beads are highlighted in blue (), and its

successor with the newly stabilized bead circled in green ().

Let us denote by N (c) the number of bonds produced by the nascent beads of a favorable elongation of c:
N (c) := max

γ∈cBδ
h(γ)− h(c).

Let F (c) denote the set of favorable elongations of c, so F (c) := arg max
γ∈cBδ

h(γ).

An Oritatami system (OS) O is a tuple (B,ω,♥, δ) where B is a set of bead types, ω is a transcript, ♥ is an
attraction rule and δ ∈ N \ {0} is a delay.

Given an OS O, consider a partial configuration c of length i < |ω| and one of its 1-elongations c′. We say that
c′ is the successor of c and write c ` c′ if the first nascent bead of all favorable elongations of c is placed at the same
position as the last bead of c′. Figure 3 shows a configuration, its three favorable elongations, and its successor (at
the right).

Given an OS O with a seed σ, which is a partial configuration of the transcript, we say that O is deterministic

if there exists a sequence (ci)
|ω|−|σ|
i=0 of configurations “folded” by O defined as follows. The initial configuration

c0 := σ and for i > 0, ci is the successor of ci−1, i.e., a partial configuration of ω of length i+ |σ| such that ci−1 ` ci.
Notice that inside a configuration ci, the index of a bead is the moment when its final locations is determined.

The beads of the seed have thus indices from 1 − |σ| to 0 and for any i ≥ 0, ci = c01−|σ|, . . . , c
i
i. In this notation,

3

for all i, for any c̃ ∈ F (ci), c̃i+1 = ci+1
i+1. Besides this, given an OS and its configurations, we simplify the notation:

Fi := F (ci) and Ni := N (ci).
Let us define the terminal configuration c∞ of deterministic Oritatami folding of an OS O. If ω is finite, then let

c∞ be equal to c|ω|−|σ|. Otherwise, since for all i, ci is a prefix of ci+1, c∞ is defined as the limiting configuration
of (cn)n∈N. We say that O folds into the configuration c∞.

We call a shape a subset of points of the triangular grid. Given a configuration c, the shape of c is just the set
of positions of all beads in c (we forget the bead types and the bonds). Then the terminal shape of an OS is the
shape of its terminal configuration.

We say that an OS is nonblocking if for all i, at least one favorable elongation of ci can be prolonged (otherwise,
the last bead of any elongation is blocked from all sides). This notion was introduced by me and Nicolas Scha-
banel during my internship to fix an existing proof. In this report, we mostly talk about nonblocking OSs except
Section 3.2.3, where we discuss the difference between blocking and nonblocking ones.

3 Geometric properties of Oritatami

Self-assembly was introduced in the first place as a method to fold nanostructures out of molecules. For DNA, there
are many theoretic and experimental results showing that it can self-assemble into complex shapes in 2D [19] and
in 3D [5,12]. Here we investigate which structures can be folded by RNA using the Oritatami model.

A purely geometric outcome of self-assembly of any OS is a shape on the triangular lattice. In this section, we
investigate how to fold certain shapes and which shapes cannot be assembled at all.

Sections 3.1-3.3, are focused on the limits between the shapes that can be folded and the ones that can not. I
got involved in this subject since the beginning of my internship, when I tried to fix an already written reasoning
about the shape which could be assembled by a system with a delay δ but not less; you can find it in [8]. I ended
up obtaining more general results (Section 3.1) and applying them to self-assembly of a straight line (Section 3.2)
and, eventually, to the delay-borderline shape mentioned above (Section 3.3).

In Section 3.4, we consider a large family of shapes which can be assembled by OSs with a small delay and a
constant number of bead types. We will see what was done on this subject and how I tried to move it forward:
even though no result was obtained yet, it is a work in progress.

3.1 How to see that a shape cannot be assembled

There are shapes that cannot be assembled at all, for instance, non connected ones. Moreover, among connected
shapes, infinite shapes with finite cut are also impossible to fold [9]. Eventually, we would like to understand
which shapes are foldable and which are not. In order to do this, we shall be able not only to construct systems
assembling foldable shapes, but also to prove nonexistence of such systems for unfoldable shapes. In this section,
we will develop necessary tools for “unfoldability” proofs.

Consider a deterministic nonblocking OS O = (B,ω,♥, δ). By definition, its folding is determined by configura-
tions c0, c1, . . . , c∞.

For j < k < j + δ, we say that the step j is crucial for the k-th bead if all favorable nascent configurations of
cj place this bead in its correct position in c∞, while it was not the case at the previous step. More formally, j is
crucial for the k-th bead if for all c′ ∈ Fj , c′k = c∞k and there exists c′′ ∈ Fj−1 such that c′′k 6= c∞k . We call a step j
crucial if there exists k such that j < k < j+δ and the j-th step is crucial for the k-th bead. Figure 4 illustrates
the favorable elongations at step j − 1 (on the left) and at step j (on the right) in the case where j is crucial for
the k-th bead.

The next claim says that if at step i there is no favorable nascent elongation placing the ε-th bead at its correct
place, then there is a crucial step between i and i+ ε.

Claim 1. If for some ε ≤ δ, there is c′ ∈ Fi, c′i+ε 6= c∞i+ε then there exists j, i < j < i+ε such that the j-th step is
crucial.

Proof. Since the bead i+ε is stabilized at step i+ε−1, for any configuration c′′ in Fi+ε−1, c′′i+ε = c∞i+ε. That means
there exists j ∈ {i+1, . . . , i+ε−1} such that Fj “starts” to consist only of configurations correctly placing the
(i+ε)-th bead.

The following lemma gives us upper bounds on the decrease of Ni.

4

k

k

j−1 ∞

k

j−1 j ∞

k

Figure 4: Example of a crucial step j: already placed beads are yellow (), terminal positions of not yet placed
beads are grey (), nascent beads of favorable elongations are highlighted in different colors, δ = 5.

Lemma 2. For any step i of folding,

(1) Ni−1 ≤ Ni + hi(c
i)

(2) if i is crucial, then Ni−1 ≤ Ni + hi(c
i)− 1

Proof. Consider any favorable δ-elongation of ci−1, c′ ∈ Fi−1. In Figure 5, its nascent beads are blue (). Recall
that c′i = c∞i and thus, any elongation of c′ by one bead is a δ-elongation of ci. Consider such elongation c′′, whose
nascent beads, {c′i+1, . . . , c

′
i+δ−1, c

′′
i+δ}, are circled violet () in Figure 5. Counting the number of nascent bonds

created by beads {c′i, c′i+1, . . . , c
′
i+δ−1, c

′′
i+δ} = {c′i, c′′i+1, . . . , c

′′
i+δ−1, c

′′
i+δ}, we can consider them as nascent beads of

c′ together with the bead c′′i+δ or as the bead c′i together with the nascent beads of c′′:

Ni−1 ≤ h(c′)− h(ci−1) + hi+δ(c
′′) = hi(c

i) + h(c′′)− h(ci−1) ≤ hi(ci) +Ni
This inequality proves (1).

Furthermore, if the step i is crucial then there exists j, i < j < i+δ such that for all c̄ ∈ Fi, c̄j = c∞j and there
exists c′ ∈ Fi−1 such that c′j 6= c∞j . We choose such c′ ∈ Fi−1 and use the reasoning given above to get the following

inequality: Ni−1 ≤ hi(ci) + h(c′′)− h(ci−1).
Since c′′j = c′j 6= c∞j , elongation c′′ is not in Fi and thus, h(c′′) − h(ci−1) < Ni. Combining the last two

inequalities, we get (2):
Ni−1 < hi(c

i) +Ni

c∞i−1 c′i

c′′i+1 c′′i+2

c′i+1 c′i+2

c′′i+δ−1

c′i+δ−1

c′′i+δ

Figure 5: Illustration of Lemma 2 : the nascent beads of c′ are
blue (), the nascent beads of c′′ are violet ().

δ

Figure 6: Illustration of Claim 4 : an upper bound
on Ni.

Corollary 3. For all i, Ni is greater or equal to the diference between the number of crucial steps and the number
of bonds created during the first i steps:

Ni = N0 +

i∑
j=1

Nj −Nj−1 ≥
i∑

j=1

1{j is crucial} −
i∑

j=1

hj(c
j)

.

5

The next claim gives us an upper bound on the number of bonds created by a δ-elongation.

Claim 4. For any i ≥ 0, Ni ≤ 4δ + 1.

Proof. As shown in Figure 6, each of the first δ − 1 beads of a δ-elongation can create at most 4 bonds since two
of 6 its neighbors are its predecessor and its successor in the elongation. The last bead can create at most 5 bonds
since it has no successor. This gives us Ni ≤ 4(δ − 1) + 5 = 4δ + 1.

Corollary 3, together with Claim 4, give us a strong constraint on any OS: the number of crucial steps can never
exceed the number of created bonds by more than 4δ + 1. Thus, to prove that a shape can not be assembled, it
is enough to show that any OS folding this shape would have too many crucial steps and would not create enough
bonds. Let us now use these tools to obtain results about foldability of certain shapes.

3.2 Straight line

In this section, given a seed, which is a straight segment, and a delay, we try to extend the line as far as possible.
More precisely, we investigate the maximal length of a straight line which can be folded by an OS with the seed σ
and delay δ.

3.2.1 A nonblocking OS cannot fold too long straight lines

Let us suppose that a line of length |σ| + N is foldable. Consider a nonblocking OS ON = (B,ω,♥, δ) such that
the shape of its N -th configuration cN is a line of length |σ|+N . In this part, we will find an upper bound on N .
This kind of bound (though, a greater one) was already discussed by Jacob Hendricks and Matthew J. Patitz, but
here we present a different proof.

Let us notice that since ON folds into a line, at each step i ≤ N , the i-th bead creates no bonds: hi(c
i) = 0. Let

d = d δ2e. The following lemma shows that during folding of a line, there is at least one crucial step at each segment
of length d.

Lemma 5. For all k ∈ {0, 1, . . . , bNd c − 1}, there exists ik ∈ {kd+ 1, . . . , kd+ d} such that ik is a crucial step.

Proof. It is enough to prove that at any step i of folding, all favorable nascent elongations place the (i+ d+ 1)-th
bead at an incorrect position. Indeed, after this, by Claim 1, we obtain the result.

Suppose by contradiction that for some i, 0 ≤ i ≤ N−d−1, for any c′ ∈ Fi, c′i+d+1 = cNi+d+1. Since cN is a

straight line, it follows that for all k between i and i+d+1, c′k = cNk . Let us now consider a δ-elongation c̃ which is
obtained by rotating the nascent part of c′ around c′i by π

3 clockwise. The elongations c′ (nascent beads are marked
violet:) and c̃ (nascent beads are marked blue:) are shown in Figures 7 and 8 respectively. This action creates
no intersections and does not change the number of bonds since the first d+1 nascent beads of c′ are at the line and
the last δ−d−1 beads are contained in a ball with radius d with center in c′i+d+1 (since δ−d−1 = b δ2c−1 < d). The
ball (filled by pink in Figures 7 and 8) contains no neighbors of the configuration ci (thus, c′ has no bonds with ci),
and rotations of this ball around c′i by π

3 do not intersect ci. Thus, c̃ is also a favorable elongation of ci which leads
to contradiction since c̃i+1 6= c′i+1.

Corollary 6. The number of crucial steps among steps from 1 to N is greater or equal to bNd c.

The next lemma gives an upper bound on the length of a foldable straight line.

Lemma 7. Given a seed σ and a delay δ, there is no nonblocking OS assembling a straight line of length greater
than |σ|+ 2δ2 + 5δ + 2.

Proof. Since no bonds are created during folding, by Corollary 3 and Corollary 6,

NN ≥
N∑
i=1

1{i is crucial} − hi(ci) =

N∑
i=1

1{i is crucial} ≥
⌊
N

d

⌋
.

Then, using Claim 4, we obtain
⌊
N
d

⌋
≤ Nn −N0 < Nn ≤ 4δ + 1. Therefore, we get an upper bound on the line

length: N ≤ d δ2e(4δ + 2) ≤ 2δ2 + 5δ + 2.

6

.

. . .

ci0 cii c′i+1 c′i+d+1

c′i+δ

Figure 7: Elongation c′ from Lemma 5.

c̃i+1

c̃i+d+1
c̃i+δ

. . .

. . .

c′i+1 c′i+d+1

c′i+δ

ci0

. . .

. .
.

. . .

cii

Figure 8: Elongation c̃ from Lemma 5.

3.2.2 A nonblocking OS folding a not-so-long straight line

Now we know that straight lines of length greater than 2δ2 + 5δ + 2 cannot be folded by nonblocking OSs. Then
which lines can be folded? It turns out that for δ ≥ 9, there is an OS that assembles deterministically into a line
of length 2b δ3c − 1 from a seed of length at most 4, and becomes nondeterministic just after. The OS illustrated in
Figures 9 and 10 does this in the case where δ is a multiple of 3 (δ = 3d). The cases where δ = 3d+1 and δ = 3d+2
are similar, find them in Figures 11-14.

−1 d− 1

d2d− 1

2d

3d

Figure 9: Line folding at step 0 for δ = 3d:
the seed is red (), nascent beads are blue
()

−1 d− 1 d 2d− 1

2d3d4d− 1

Figure 10: Line folding at step d− 1 for δ = 3d: the seed is red (),
folded beads are yellow (), nascent beads are blue ()

The folding of this OS proceeds as follows. During the first d − 1 steps, the first 3d beads of all favorable
elongations are placed as in Figure 9 (or symmetrically). Thus, at step d− 1, the first d− 1 beads create a straight
segment (yellow beads in Figure 10). Besides that, starting from the step d−1, the first 4d−1 beads of all favorable
elongations are placed as in Figure 10 (or symmetrically). Therefore, at step 2d− 1, the first 2d− 1 beads form a
straight line, and that is precisely what we need.

As you see, the step d − 1 is crucial: at this moment, the favorable elongations do not form three layers as in
Figure 9 anymore but pass to two layers as in Figure 10 which guarantees that the next d beads also form a straight
segment.

However, it is yet unknown if we can fold segments of length strictly greater than δ by a nonblocking OS. Besides
that, since the upper bound from the previous section is quadratic, there is a huge gap to fill between foldable and
unfoldable straight lines.

3.2.3 A blocking OS that easily folds into an infinite line

Initially, we did not see that some OSs are blocking, so we worked with nonblocking ones without precising it in the
definitions. Our first blocking OS was inspired by videos about shrimps and chameleons: this OS looks a bit like a
chameleon’s tongue or a party horn (see Figure 15). In this section, we will describe this chameleon OS which we
discovered with Nicolas Schabanel.

In the previous section we saw that any OS folding a line has a crucial step each d steps. A crucial step means
breaking links from ancient favorable elongation to create new, “more interesting”, favorable elongations. For a
nonblocking OS, ancient elongations can be rejected only when new elongations create strictly more bonds, and in

7

−2 d− 1

d2d− 1

2d

3d

3d+ 1

Figure 11: Line folding at step 0 for δ = 3d+
2: the seed is red (), nascent beads are blue
()

−2 d− 1 d 2d− 1

2d3d+ 1 3d4d− 14d

Figure 12: Line folding at step d− 1 for δ = 3d+ 2: the seed is red
(), folded beads are yellow (), nascent beads are blue ()

−3 d− 1

d2d− 1

2d

3d

3d+ 1

3d+ 2

Figure 13: Line folding at step 0 for δ = 3d+ 2:
the seed is red (), nascent beads are blue ()

−3 d− 1 d 2d− 1

2d3d+ 1 3d3d+ 24d− 14d4d+ 1

Figure 14: Line folding at step d − 1 for δ = 3d + 2: the seed is
red (), folded beads are yellow (), nascent beads are blue ()

this case, the number of bonds Ni grows and finally reaches the upper bound which makes it impossible to fold
too long lines. Blocking OSs, in contrast, can get rid of ancient elongations just by blocking them geometrically: if
no favorable elongation can be prolonged, then the new ones will appear without increasing the number of bonds.
That is precisely what the chameleon OS does.

. . .

−2 −1 0 1 2 i−2 i−1 i i+1

i+2

i+3i+4

i+5
i+6

Figure 15: Folding of the chameleon OS: the seed is red (), folded beads are yellow (), nascent beads of a
favorable elongation are blue ().

The chameleon OS uses 18 beads B := {b0, . . . , b17} and the attraction rule ♥ is such that for all 0 ≤ i ≤ 17,
we have bi♥bi+5 mod 18 and bi♥bi+6 mod 18. The transcript is just a periodic sequence: ω = (b0b1 . . . b17)N, and the
seed c0 = b0b1b2. Finally, the delay of the system δ = 6.

It turns out, that at each step of folding, there are two symmetrically equivalent favorable elongations which are
blocking: they cannot be prolonged (nascent beads of a favorable elongation are marked blue in Figure 15). Since
both of them stabilize the next bead at its terminal position, the folding is correct and results in a straight infinite
half-line.

3.3 Shape S∞
δ

Delay is an important parameter of an OS: intuitively, it is how far the not yet stabilized part of the sequence can
“see”. This raises a question of how the power of an OS changes with delay. Is it monotonous? Are systems with
greater delay more powerful? In this section, we describe a “δ-borderline” shape for which there is an OS with

8

delay δ assembling it, but there is no OS with lesser delay folding into this shape. This example confirms that the
power of an OS might increase strictly with delay.

The results from this section are initially based on Section 6 from [8]. I made definitions more precise, added
a missing constraint which is that an OS should be nonblocking, changed the design of a shape, and simplified all
proofs.

For δ > 4, let S∞δ denote the shape shown in Figure 17, its construction is described below. First, in Section 3.3.1,
we prove that this shape is foldable by a nonblocking OS with delay δ. In Section 3.3.2, we show that no nonblocking
OS with lesser delay can assemble it.

δ−
1

δ−1 δ−
1δ+1

δ

×2δ2
.

Figure 16: The shape S0
δ (green and yellow beads:) and the snake L0 (green beads:) for δ = 6.

The shape S0
δ for δ = 6 is given in Figure 16. Notice that S0

δ is a concatenation of a thick “path” of width two
and a thin “path” of width one. The latter one, colored in green in Figure 16, is called the snake and is denoted by
L0. The central part of L0 is periodic and consists of a “bend” of size 4(δ − 1) beads repeated 2δ2 times. Taking
into account the beginning and the end of L0, its size is equal to M := |L0| = 8(δ − 1)δ2 + 3δ − 2.

We denote by S∞δ the infinite union of translated copies of S0
δ shown in Figure 17. More precisely, S∞δ =

⋃
n∈N

Snδ

where Snδ := Sδ + pn and p is the period vector, connecting the end of a shape with the beginning of the next
one. Let Ln denote the snake of Snδ . The snake, walking back and forth between two yellow walls, is crucial in this
construction: it is the reason why this shape cannot be folded with delay less than δ. The snake is also the trickier
part to fold with delay δ.

.

S0
δ

.

S1
δ

. . .

.

Snδ

. . .

Figure 17: The shape S∞δ .

3.3.1 An OS that folds S∞δ

In this section, we prove that the shape S∞δ is foldable with delay δ. To show this, we construct a nonblocking OS
Oδ = (Bδ, ωδ,♥, δ) folding into S∞δ with the seed σ which consists of three beads marked red () in Figure 18.

The transcript, ωδ = (ω0
δ)N, is a repeated transcript of S0

δ : the n-th copy of ω0
δ folds into the shape Snδ .

Figure 18 represents the result of folding of ω0
δ , the shape S0

δ . For the sake of simplicity, we split ω0
δ in several parts

called modules which are marked with different colors and labeled by capital letters in Figure 18. By definition,
ω0
δ = AB(CD)2δ2+1EA′F (DC̃)2δ2+1GH.

9

A

B
CD

E

A
FDC

G

H

...

...

...

...

...

...

...

...
'

~

Figure 18: The partition of the shape S0
δ for δ = 6.

Before we move forward to the detailed description of the modules, let us notice that the bead types in modules
denoted by different letters are different. Besides that, A, A′ and H are made of repeated sequences, while all the
other modules consist of distinct beads. More precisely, let |A′| = m′ := 8δ3 + 12δ2 + 4δ + 8 and |A| = m :=
m′ + (2δ + 4). Let k and l satisfy 0 ≤ l < 2δ + 2 and m′ = k(2δ + 2) + l. Then A′ = (a1 . . . a2δ+2)ka1 . . . al and

A = a−1a0a1 . . . a2δ+2A
′; H = h0(h1h

δ−3
2 h3)8δ2+3.

Let us now totaly describe the modules together with the relation ♥: Table 19 gives the sequence of beads for
each module and defines the relation ♥ on the bead types inside each modul (see the third column of Table 19). To
define ♥ completely, besides the relations of beads inside each module, we need to give the relations between the
beads of distinct modules (see Table 20). Bonds inside modules and between modules are illustrated in Figures 21 -
24. Notice that since A and A′ consists of the same beads we merge them in Table 20; we also merge C and C̃
since their beads have the same relations with beads from other modules. Up to now, we described the bonds inside
the shape Sδi , besides that, we shall take into account its connection with the next shape. There are three bonds
between the modules H,F of Sδi and the first two beads of the module A of Sδi+1: they are the only bonds between
modules of distinct shapes.

module sequence ♥ inside the module

A a−1a0(a1 . . . a2δ+2)k+1a1 . . . al {ai♥ai+2 | − 1 ≤ i ≤ 2δ} ∪ {a2δ+1♥a1, a2δ+2♥a2}
B b1 . . . b4δ {bi♥bi+2 | 1 ≤ i ≤ 4δ − 2, i 6= 2δ + 1, 2δ + 4} ∪ {b2δ♥b2δ+3, b2δ+3♥b2δ+6}
C c1 . . . c4δ+5 {ci♥ci+2 | 1 ≤ i ≤ 4δ + 2, i 6= 4, 5, 7, 2δ + 2, 2δ + 5} ∪

{c2♥c7, c4♥c7, c6♥c9, c2δ+1♥c2δ+4, c2δ+4♥c2δ+7}
C̃ c̃1 . . . c̃4δ+5 as for C

D d1 . . . d2δ+1 {di♥di+2 | 1 ≤ i ≤ 2δ − 1, i 6= 2} ∪ {d1♥d4}
E e1 . . . e10δ+10 {ei♥ei+2|1≤i≤10δ+8, i 6=4, 5, 7, 2δ+2, 2δ+5, 4δ+5, 6δ+4, 8δ+4} ∪ {e2, e4♥e7,

e6♥e9, e2δ+1♥e2δ+4, e2δ+4♥e2δ+7, e4δ+4♥e4δ+7, e6δ+3♥e6δ+6, e8δ+8♥e8δ+11}
A′ (a1 . . . a2δ+2)ka1 . . . al as for A

F f1 . . . f2δ+5 {fi♥fi+2 | 1 ≤ i ≤ 2δ + 2, i 6= 2δ} ∪ {f2δ♥f2δ+3}
G g1 . . . g4δ+4 {gi♥gi+2 | 1 ≤ i ≤ 4δ + 2, i 6= 2, 4, 2δ + 2} ∪ {g1♥g4, g3♥g6, g2δ+1♥g2δ+5}
H h0(h1h

δ−3
2 h3)8δ2+3

Table 19: Transcripts of the modules and the ♥ rule inside modules.

As all parameters of Oδ are defined, we will now prove that it is a deteministic nonblocking OS whose terminal
configuration is equal to S∞δ .

Given a deterministic OS and its configuration ci, we say that ci is straightforward if it has only one favorable

10

A A′ B C C̃ D E F G H

A
A′

al♥b1,
al♥b2

al−2♥f2,
al♥f2

B b4δ−1♥c1, b4δ♥c2
C
C̃

c4δ+2♥d2,
c4δ+4♥d1,
c4δ+4♥d2

c4δ+2♥g2,
c4δ+4♥g1,
c4δ+4♥g2

D d2δ♥c1, d2δ+1♥c2 d2δ♥e1,d2δ+1♥e2

E e10δ+9♥a1

e10δ+9♥a2

F f2δ+1♥a−1 f2δ+2♥d1,
f2δ+4♥d1,
f2δ+4♥d2

G g4δ+3♥h0

H h3♥a0 h1♥c4δ+4, h1♥c4,
h3♥c4δ+3, h3♥c3

h1♥e4δ+4, h1♥e4,
h3♥e4δ+3, h3♥e3

h3♥f2δ+3

Table 20: The ♥ rules between modules.

elongation equal to ci+δ: Fi = {ci+δ}. This means that all beads are already at their treminal positions. It turns
out that almost at each step i of folding of Oδ, c

i is straightforward. It happens because every bead can create only
the bonds that are present in the terminal configuration, so there is no ambiguity during folding. Let us explain it
in details.

Let P denote the set of indices in ωδ of the beads {c5, c6, c4δ+5, d1, e5, e6, e4δ+4, e4δ+5, f2δ+5}, they are violet in
Figure 21. Let P−δ = {i− δ| i ∈ P} denote the steps at which the last bead of a δ-elongation is in P .

Claim 8. During folding of all modules except G and H, at each step i /∈ P−δ, ci is straightforward.

Proof. Indeed, at each step i, each bead in the elongation ci+δ, placing all beads in their terminal positions, creates
all bonds it can create (we built our system in such a way that any bead of an elongation can be attracted only be
the beads with which it creates bonds in the terminal configuration). Moreover, for all these steps, if all the first
i− 1 beads are stabilized, only the terminal position of the i-th bead permits it to create all its bonds. The bonds
of the central part of the shape are shown in Figure 21. The bonds and certain beads of the left part of S0

δ are
shown in Figure 23. Figure 24 shows the central repeated part of the shape in details. Finally, the right part of S0

δ

is illustrated by Figure 22.

If a step i is from P−δ then the last bead of its δ-elongation is one of the beads filled with violet in Figure 21:
the positions of these beads are not directly determined by their predecessors. However all the other beads are
stabilized: all favorable elongations agree on the first δ− 2 nascent beads, for the same reason as previously. Thus,
since δ > 4, the folding of all the parts specified in Claim 8 is correct. Let us now prove that modules G and H
are also correctly folded. All the beads of G and the first bead of H (h0) are determined by the previous beads,
whereas the next δ − 3 beads of H create no bonds at all.

Let us show that H is folded correctly. Since H and its neighborhood are periodic, we only need to show it
for the period. A part of folded H is given in Figure 24. Suppose we are at step i and the last stabilized bead
was h3 (it is in the corner of the snake). The only beads of a δ-elongation that can create bonds are at positions
i+ 1, i+ δ − 1, i+ δ. Their types are h1, h3, h1 respectively. No elongation can create all these 3 bonds, and there
is a single elongation creating two bonds with the beads i + δ − 1 and i + δ. In this elongation, all beads except
the last one are placed in their final positions. During the next δ− 2 steps, nothing changes: no other beads create
bonds in the elongation, and all beads until i+ δ− 1 are at their final places. At step i+ δ− 2, the last bead of the
elongation can create a bond, but it changes nothing. At step i+ δ − 1, we have just stabilized the corner bead, so
we are in the situation where we started and all beads are at their correct terminal positions.

The only remaining part to treat is the connection between module the module H and the module A of the next
copy of S0

δ . Figure 22 illustrates the bonds between last beads of H and first beads of A. Let t be such that the last

11

bead of ct is the right top corner bead of the snake in the Figure 22 (its type is h3). At this step, there is only one
favorable elongation creating two bonds, they are highlighted in orange; this elongation coincides with the terminal
configuration. For all the next steps until the end of the module H, the situation is the same: only the prefix of
the terminal configuration creates all possible bonds. Thus, this part is also correctly folded. This concludes our
proof that the shape S∞δ is foldable by the nonblocking OS Oδ.

...

...

...

...

...

...

...

...

Figure 21: Central part of the terminal configuration of S0
δ : bonds

which are not present in the terminal configuration are blue and
dashed, others are red and dotted.

f
2δ+1

f
2δ+3

h3

a-1

a0

d2

d1

f
2δ+2

f
2δ+4

b4δ-1

b4δ

c1

c2

h3

Figure 22: Bonds between the module H of
Snδ and the module A of Sn+1

δ .

h3
e4δ+3

h1
h3
h1

e4
e3e4δ+4

h0
h1

c4δ+3
c4δ+4 h1h3g

4δ+3

g
1

g
2

Figure 23: Bonds in the left part of S0
δ , modules

D, C̃,G,H, and E.

c3
c4

h3
h1

c4δ+3
c4δ+4 h1h3

h3
c4δ+3

h1
h3
h1

c4
c3c4δ+4

Figure 24: Bonds in the central repeated part of S0
δ ,

modules C,D, C̃, and H.

3.3.2 S∞δ cannot be folded with delay less than δ

In this section, we prove that there is no OS with delay less than δ which would fold into S∞δ . The idea of the proof
is similar to the one about a straight line from Section 3.2.1: we show that an OS folding S∞δ would not create
enough bonds to compensate the number of crucial steps. This happens during folding of the snake which has a
small number of neighbors and thus, not enough potential bonds.

Reasoning by contradiction, consider δ′ < δ and a nonblocking OS O = (B,ω,♥, δ′) with seed σ which assembles
into S∞δ . Thus, the set of positions occupied by beads in c∞ is equal to S∞δ .

12

The following lemma shows that during folding, the snake in one of the copies of S0
δ is constructed contiguously:

the beads marked green in Figure 16 are added one by one, with no yellow beads between them.

Lemma 9. There exists n such that the beads of Ln form a contiguous subsequence of c∞.

. . .

c∞j
c∞j−1
x

. . .

Figure 25: Illustration for Lemma 9 for δ = 5: the snake beads are marked green and orange (,), corners are
orange (), the first bead outside the snake is yellow (), the bead x is circled in red ().

Proof. First notice that there exists n such that Ln contains no beads from the seed σ. This holds since |σ| is
finite and there are infinitely many snakes in S∞δ . We will now prove that the snake Ln form a contiguous sequence
in the resulting configuration. Suppose by contradiction that there exists a bead not in Ln which appears in c∞

between a pair of beads from Ln. Consider the first such bead, denote its position by j. By definition, c∞j /∈ Ln,
c∞j−1 ∈ Ln and the distance between c∞j−1 and c∞j is 1. The only points of Ln with neighbors in S∞δ \ Ln are the
corners (marked orange in Figure 25), so c∞j−1 is a corner of Ln, and it is not the last one. As a corner, c∞j−1 has
three neighbors from S∞δ , one of which, call it x (circled in red in Figure 25), is from Ln and does not appear in
c∞j .

Since the folding is infinite, each bead from S∞δ , except beads from the seed, has a predecessor and a successor
in the folding sequence. The bead x has only two neighbors in S∞δ and one of them, which is c∞j−1, is not its
predecessor (since it is the predecessor of another bead c∞j /∈ Ln) nor successor (since it is stabilized before x) which
leads to contradiction.

Let us fix n from Lemma 9 : beads of the snake Ln form a contiguous subsequence in c∞ and none of them is
from the seed. We denote by l the index of the first element of this subsequence, so Ln = {c∞l , c∞l+1, . . . , c

∞
l+M−1}.

From now on we will only consider Snδ , forgetting about the rest of the shape S∞δ . The only reason why the
shape in our construction is infinite is that in the last proof we need a part which would not contain beads from
the seed. We could attain this by other means, for instance, by fixing the size of the seed |σ| and considering the

shape
|σ|⋃
n=0

Snδ . We use the variant with an infinite number of copies to make the shape independent of the seed size.

Ln consists of sequences of beads of length δ−1 whose first beads, called corners, constitute the set {c∞l+k(δ−1) | 0 ≤
k ≤ 4δ2 + 3}. The corners are marked orange in Figures 25 and 26. We can consider Ln as a concatenation of those

(δ−1)-sequences: Ln =
4δ2+2⋃
k=0

{c∞l+k(δ−1), . . . , c
∞
l+k(δ−1)+δ−2} ∪ {c∞l+(4δ2+3)(δ−1)}.

The following lemma shows that if Ni > 1 then there is at least one crucial step among the next (δ′−1) beads
of Ln.

Lemma 10. For i ∈ {l, l+1, . . . , l+M−δ′}, if Ni > 1 then there is j, i < j < i+δ′ such that the j-th step is crucial.

Proof. It is enough to prove that if Ni > 1 then, for some ε ≤ δ′, at least one favorable nascent elongation places
the (i+ ε)-th bead at an incorrect position: there is c′ ∈ Fi, c′i+ε 6= c∞i+ε. Indeed, after this, by Claim 1, we obtain
the result.

13

Suppose by contradiction that for all ε ≤ δ′, for all c′ ∈ Fi, c′i+ε = c∞i+ε. This means that Fi consists of a single

elongation c′, equal to ci+δ
′
. Notice that there is at most one corner bead among the nascent beads of c′ since

δ′ < δ. Only corner beads can create bonds, so we get that N (c′) ≤ 1 < Ni which leads to contradiction.

. . .

c′i

c′i+δ′
. . .

Figure 26: Illustration for Lemma 10 for δ = 6 and
δ′ = 5: the nascent part of c′ is highlighted in blue
().

. .
.

c̃l+δ′

c̃l+1

. . .

c∞l+1

c∞l

Figure 27: Elongations c̃ from Lemma 11 in the case
where the single bond of c′ is with some yellow bead at
the top.

Lemma 11. At the beginning of the snake Ln, the number of nascent bonds is greater than one: Nl > 1.

Proof. All configurations in Fl stabilize the bead l+1 at position c∞l+1. Therefore, Nl > 0: otherwise any elongation
would be favorable and the bead l+ 1 would not be stabilized. Suppose by contradiction that Nl = 1 which means
that the nascent beads of a favorable elongation of cl create a single bond. Consider a favorable elongation c′ ∈ Fl;
the single nascent bond of c′ is formed either by a nascent bead and a bead from cl or by a pair of nascent beads.

In the first case, notice that the single bead from cl creating a bond with a nascent part of some elongation
of cl is among the 5 beads at the top and a diagonal row of width 2 at the bottom. The area, accessible by a
δ′-elongation of cl whose first nascent bead is in c∞l+1, is covered with pink dots in Figure 27.

Suppose that the single bond is made with one of the five top yellow beads, circled in red () and blue ()
in Figure 27. Consider three δ′-elongations c̃ whose nascent beads are marked red (), blue (), and violet () in
Figure 27. In the case where the bond is with the 4 top-most beads (circled in red in Figure 27) it was created by
the last bead of the elongation, and one of the elongations c̃ also creates this bond. If the bond is with the remaining
top bead (circled blue) then it could be also created by the bead before the last, and the blue elongation c̃ also
creates this. Thus, in any case, one of these elongations is favorable. This leads to contradiction since c̃l+1 6= c∞l+1.

Suppose now that the single bond is with the yellow beads in the bottom. As shown in Figure 28, we denote
the right beads of the row by r1, . . . , rδ′ , starting from the top; the left beads are similarly denoted by l1, . . . , lδ′ .
The single nascent bond is either to the left or to the right of the yellow beads, so it is either between li and c′l+j
or between ri and c′l+j for some 1 ≤ i, j ≤ δ′. Notice that in the first case, either i = j = 1 or j ≥ i + 1 since the
shortest path between c∞l and the neighborhood of li is of length i + 1 for i > 1. In the case of rj , for the same
reason, j ≥ i.

Suppose there is a bond between li and c′l+j . Consider the δ′-elongation c̃ whose nascent beads are marked blue
() in Figure 28. The first nascent beads (c̃l, c̃l+1, . . . , c̃l+i) just follow the left part of a yellow row. The beads
(c̃l+i, . . . , c̃l+d i+j−1

2 e) form an horizontal line from right to left. The bead c̃l+d i+j+1
2 e goes to the south-west if j−i is

even and to the south-east otherwise; the next beads (c̃l+d i+j+1
2 e, . . . , c̃l+j) form an horizontal line from left to right,

below the previous one. The last δ′ − j beads form a south-east line. Notice that by definition of S∞δ , at step l, all
cells of the top half of the (δ′ + 1)-ball around c∞l are empty, so this elongation will not intersect or touch beads
from cl. Whether j−i is even or not, choosing the position of c̃l+d i+j+1

2 e, we guarantee that c̃l+j is the west neighbor

of c̃l+i, and they create a bond. Therefore c̃ has at least one nascent bond, so it is a favorable configuration which
leads to contradiction since c∞l+1 6= c̃l+1.

14

Suppose there is a bond between ri and c′l+j . Consider the δ′-elongation c̃ whose nascent beads are marked
violet () in Figure 28. It is constructed in the same way as in the previous case. Here, c̃l+j is the east neighbor of
ri, this means that c̃ is a favorable elongation which contradicts c∞l+1 6= c̃l+1.

If the single bond is between two nascent beads, we denote these beads by c′l+i and c′l+j , where 1 ≤ i < j ≤ δ′;
this means that ωl+i♥ωl+j . Consider the δ′-elongation c̃ shown in Figure 29, whose nascent beads are marked pink
(), it is constructed in the same way as in the previous cases. Here, c̃l+j is the north-west neighbor of c̃l+i, so
they create a bond. As in two previous cases, this contradicts c∞l+1 6= c̃l+1 and, therefore, we have proved that
Nl > 1.

. . .

. .
.

. .
.

. . .

. . .

. . .

. . .

. . .

c∞l+1
c∞l

r1

ri−1

ri

l1

li−1

li

c̃l+1

c̃l+i

c̃l+b i+j−1
2 c

c̃l+b i+j+1
2 c

c̃l+j

c̃l+δ′

c̃l+1

c̃l+2

c̃l+i

c̃l+b i+j−1
2 c

c̃l+b i+j+1
2 c c̃l+j

c̃l+δ′

. . .

. . .

Figure 28: Elongation c̃ from Lemma 11 : marked violet in the
case where the bond is to the right of the yellow line, blue oth-
erwise.

.

. . .

. .
.

c∞l+1

c∞l
c̃l+1 c̃l+i c̃l+b i+j−1

2 c

c̃l+b i+j+1
2 cc̃l+j

c̃l+δ′

. . .

Figure 29: Elongation c̃ from Lemma 11 in the
case where the single bond of c′ is between c′l+i
and c′l+j .

Let us partition the snake Ln into sequences of length δ′−1. The next lemma states that there is a crucial step at
each (δ′−1)-segment.

Lemma 12. For all k ∈ {1, . . . , b M
δ′−1c − 1}, there exists a crucial step ik ∈ {l+k(δ′−1)+1, . . . , l+(k+1)(δ′−1)}

and Nl+(k+1)(δ′−1) > 1.

Proof. The first part of the base case, when k = 0, follows from Lemma 11 : since Nl > 1, by Lemma 10 , there
exists i0 ∈ {l+1, . . . l+δ′−1} such that the step i0 is crucial. Let us now compute Nl+(δ′−1):

Nl+(δ′−1) −Nl =

l+(δ′−1)∑
i=l+1

Ni −Ni−1 ≥
l+(δ′−1)∑
i=l+1

1{i is crucial}−hi(ci) ≥ 1

since there are no corner beads: for all i ∈ {l+1, . . . l+δ′−1}, hi(ci) = 0. Thus, Nl+(δ′−1) > 1 which concludes the
proof of the base case.

Suppose the condition holds for all k ≤ n; let us prove this for k = n+1. By induction hypothesis, Nl+(n+1)δ′ > 1.
Thus, by Claim 1, there exists in+1 ∈ {l + (n + 1)(δ′ − 1) + 1, . . . , l + (n + 2)(δ′ − 1)} such that the step in+1 is
crucial.

Let us now prove that Nl+(n+1)δ′ > 1. Since δ′ < δ, there is no more than 1 corner bead among the beads
indexed by {l + n(δ′ − 1) + 1, . . . , l + (n + 1)(δ′ − 1)}. Let us calculate the difference between Nl+(n+1)(δ′−1) and
Nl+n(δ′−1):

Nl+(n+1)(δ′−1) −Nl+n(δ′−1) =

l+(n+1)(δ′−1)∑
i=l+n(δ′−1)+1

Ni −Ni−1 ≥ 1−
l+(n+1)(δ′−1)∑
i=l+n(δ′−1)+1

hi(ci) ≥ 1−1 = 0

15

since there is at most one corner bead, hence, at most one index i such that hi(ci) = 1: for all others it is equal to
0. Thus, Nl+(n+1)(δ′−1) ≥ Nl+n(δ′−1) > 1 by induction hypothesis.

Denote the set of the first b 5(δ−1)3

δ′−1 c crucial steps from Lemma 12 by I = {ik | 0 ≤ k ≤ b 5(δ−1)3

δ′−1 c−1}. The set of

the first 5(δ−1)2 indices of the corners is denoted by C = {l+k(δ−1) | 0 ≤ k ≤ 5(δ−1)2−1}.

In the following claim, we directly apply Lemma 2 to all the cases.

Claim 13. For i ∈ {l + 1, . . . , l + 5(δ−1)3−1}

(1) If i ∈ C \ I then hi(c
i) = 1, so Ni −Ni−1 ≥ −1.

(2) If i ∈ C ∩ I then hi(c
i) = 1 and step i is crucial, so Ni −Ni−1 ≥ 1− 1 = 0.

(3) If i /∈ C ∪ I then hi(c
i) = 0 so Ni −Ni−1 ≥ 0.

(4) If i ∈ I \ C then hi(c
i) = 0 and step i is crucial, so Ni −Ni−1 ≥ 1.

Since M = 8(δ − 1)δ2 + 3δ − 2, we have l + 5(δ−1)3−1 < l + M − δ′, so all results given above are valid for
l ≤ i ≤ l + 5(δ − 1)3 − 1. Let us consider the difference between Nl+5(δ−1)3−1 and Nl. By Claim 13,

Nl+5(δ−1)3−1 −Nl =

l+5(δ−1)3−1∑
i=l+1

Ni −Ni−1 ≥
∑
i∈I\C

1 +
∑
i∈C\I

(−1) = |I| − |C| =
⌊

5(δ − 1)3

δ′ − 1

⌋
− 5(δ − 1)2

Thus, since Nl > 1 and δ ≥ δ′ + 1,

Nl+5(δ−1)3−1 >
5(δ − 1)3

δ − 2
− 1− 5(δ − 1)2 + 1 =

5(δ − 1)2

δ − 2
≥ 5δ − 5 ≥ 5(δ′ + 1)− 5 ≥ 4δ′ + 1

which leads to contradiction by Claim 4.

3.4 Scaling and folding

If a shape is foldable by some OS, then it can be covered by a self-avoiding path which is the terminal configuration
of this OS. Thus, a shape is foldable only if its induced graph on the triangular lattice has a Hamiltonian path.
The latter question is NP-hard [2], thus, it is also NP-hard to decide if there is an OS that folds into a given finite
shape [9]. Even though it is hard to know if an arbitrary shape can be self-assembled, it turns out that a “scaled”
version of any shape is foldable.

This section is based on the results from Sections 2-5 of [8]. Together with Nicolas Schabanel, I worked on the
elimination of the last case in a construction supplementing the results mentioned above.

Intuitively, scaling means partitioning the triangular lattice into identical shapes and considering them as points
of a new, upscaled, triangular lattice. Formally, a scaling scheme is an homothetic linear map λ from the triangular
lattice to itself, together with a cell mold µ containing the origin, which is a shape of an upscaled cell. Given a
scaling scheme (λ, µ), the image of a point p after scaling is a shape µ whose origin is placed in λ(p). In [8], three
scaling schemes are considered, we denote them An,Bn, and Cn. We work on another, more compact, scaling
scheme D2 which was not studied yet. Schemes A3,B3,C3, and D2 are illustrated in Figure 30.

There are two important results about scaled shapes in [8]. First, for any connected finite shape S, for any
scaling scheme among A2,B2, and C2, there is an OS with delay |S| which assembles S at a given scale. This result
is interesting but somehow unrealistic because of a huge delay. However, in slightly larger scales, we have the same
result with a small constant delay: any shape can be folded by an OS with delay 1 at all scales An,Bn, and Cn for
n ≥ 3.

However, being interested in folding of tiny shapes, we would like to find a way to fold figures at a smaller scale
than A3,B3, and C3. With Nicolas Schabanel, I worked on a construction of an OS with delay 3 folding any shape
at scale D2, much more compact than the latter ones. The main idea of the proof is the same as for the results about
larger scales. To proof the foldability, we build a Hamiltonian path which covers the shape and can be obtained
as a terminal configuration of some OS with a given delay. We build this path inductively: starting from the path

16

A3
B3 C 3 D2

Figure 30: Illustration of the scaling schemes A3,B3,C3 and D2: cell boundaries are orange, images of the triangular
grid after scaling is brown.

covering one scaling cell and inserting segments covering other cells, one by one, until the whole shape is covered.
All we need is to find how to insert a new path segment filling a cell depending on the neighborhood of this cell,
such that the path would stay foldable when this segment is added.

In the construction of an OS folding shapes at scale D2, there is one case left to treat: we need to design two
segments of the Hamiltonian path passing by cells A,B,C, and D in Figure 31 which would satisfy a number of
conditions. There are many hidden details in this problem: depending on the already covered adjacent cells and
the order in which they were covered, we get different constraints on the path segments. For instance, in Figure 31,
only two cells are already occupied around A and B, while in Figure 32, we consider the case where they have 6
covered neighbors.

My approach was to to consider all Hamiltonian paths covering the cells, keep only the paths satisfying the
majority of necessary conditions and then, when there is not so many cases to check, analyse the result. I got this
data in the end of my internship, so we did not have time to analyse it: it is still a work in progress.

Figure 31: The problematic case. Cells are added in
the alphabetic order, both path segments begin and
end in the violet cells.

Figure 32: Example of the Hamiltonian paths: al-
ready covered cells are blue.

4 Oritatami and computability

Molecular computing [1, 18] gets a lot of attention these days. Indeed, it allows to perform nano-scale parallel
computations biologically: isn’t it exciting? A lot of progress has been done in the area of DNA computations [11,24].
In this section, we investigate computational properties of Oritatami.

4.1 Simulating cellular automata

It was shown that any tag system (and, therefore, any Turing machine) can be simulated by an OS [16]. However,
the design of such an OS is very complex and not intuitive: a simpler model was needed to get closer to the

17

experimental implementation. There is a much simpler and more elegant way to prove the computational universality
of Oritatami folding by simulating 1D cellular automata. The simplicity of this system makes it a good candidate
for an implementation in the wet lab.

I got involved in the development of this construction with Nicolas Schabanel, Shinnosuke Seki, and Yuki
Ubukata. I participated in a simplification of one of the modules. In this section, we will first see an overview of
the whole construction and then closely examine the part I worked on. Most of the figures from this section are
made by Nicolas Schabanel for his talk at “Journées SDA2”.

Our aim in this work is to simulate any 1D cellular automaton. First of all, using the classical folklore result,
we consider a shifted automaton of radius 1

2 instead of an arbitrary automaton, this simplification is illustrated in
Figure 33.

The idea of our construction is to create a space-time diagram of computation of an 1
2 -automaton by moving in

a zig-zag way, like it is shown in Figure 34. Each cell of a diagram has a rhombus shape, as in Figure 35. Folding a
given cell, our system “reads” two input states, denoted x and y in Figure 35, applies the transition function and
“writes” the corresponding two output states x′ and y′ on the other sides of the cell.

t t+1

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

r

t
t+1

t +1+r

...

Figure 33: A reduction from a CA of radius r
to a shifted 1

2 -automaton.

Up

Down

Figure 34: The order
of visiting the space-
time diagram.

x

y

x'(x,y)

y'(x,y)

1. Init

2. Scaffold

3. Read x,y

4. Place anchors
for writing x',y'

5. Synchronize

6. Write x',y'

Figure 35: Scheme of the modules in
the cell transcript.

The transcripts for all cells of the diagram are equal: reading, applying the transition function and writing differ
only in the geometric way in different cells. Thus, all cells are made of the same sequence of beads. In other words,
the transcript is periodic and consist of an infinite number of repetitions of the cell transcript. All we need now is
to describe the cell transcript.

A cell consists of several modules, their scheme is shown in Figure 35. The first module, marked green, controls
the shape and the symmetry of the cell depending on its position in the space-time diagram: this is what “makes
the turn” once we go to the next step of computation. The scaffold module, red in the figure, is the skeleton of the
cell: it has the same shape in all cells and is used as a landmark for the rest of the transcript. The reading part,
which is blue, folds upon the output sides of two adjacent cells, reading two input values. It is designed in such a
way that after reading x and y, the transcript has an offset of 2(Qx + y) where Q is the number of states. This
shift is crucial for the next part of folding, orange in the figure, which applies a transition function to the input
placing special marks in order to correctly fold the output values later. Writing starts at a precise position in the
cell transcript, so we should remove the offset before it launches. That is why we need the synchronization part,
marked brown, which absorbs a misalignment of the transcript using the scaffold as a guideline. After this, comes
the writing part of the cell transcript, colored in violet.

I, together with Nicolas Schabanel, worked on the synchronization part. Using a segment of the scaffold as a
benchmark, this part should absorb an offset which is bounded by some constant depending on Q. We arrange the
beads of the synchronization module in such a way that being well aligned with the scaffold, they form a straight

18

segment. If the transcript is in advance, then some of its parts fold into a zigzag which shortens these parts twice
until the transcript is well aligned with the scaffold, e.g., the offset is absorbed. Figure 36 shows the synchronization
process more precisely: we see the scaffold module at the bottom, its red beads are the benchmarks used by the
synchronization module (at the top). If the transcript is well-aligned, the pink beads of the synchronization module
are in front of the yellow beads of the scaffold while the green beads are aligned with the blue beads. Otherwise,
once some pink beads are in front of the blue ones, they form a zigzag which absorbs at least one half of the offset
each time. Since this pattern repeats log(Maximal offset) times, the shift is guaranteed to be absorbed in the end
of the synchronization part.

Figure 36: The synchronization module at work: the scaffold is at the bottom, the synchronized part is on the top.

An essential detail in the design of the scaffold and the synchronization parts is the lengths of the pink, green,
yellow, and blue segments, they are shown in Figure 37.

2k
1 5

2k
0
+1 2k

1
+1

4k
0
+5

4k
0
+4

2k
0
+2 2k

1
+2

2 4

4k
1
+5

4k
1
+5

2k
i
+1

2k
i
+2

4k
i
+5

4k
i
+4

2k
2q-1

 + 1

2k
2q-1

+2

4k
2q-1

+5

4k
2q-1

+4

Figure 37: The lengths of segments of beads of different types, k0 = 0, ki+1 = 2i − 1.

Figures 38 - 41 show why each blue segment of a scaffold absorbs at least one half of an offset by making the
pink beads form a zigzag.

2k

Figure 38: ∆ = 4k, then
∆′ = ∆

2 .

2k

Figure 39: ∆ = 4k + 1,
then ∆′ = b∆

2 c.

2k

Figure 40: ∆ = 4k + 2,
then ∆′ = ∆

2 .

2k

Figure 41: ∆ = 4k + 3,
then ∆′ = b∆

2 c.

4.2 Making complex terminal shapes

During the “Journes SDA2” conference mentioned above, Guillaume Theyssier asked whether there is an OS pro-
ducing an uncomputable terminal shape. Intuitively, this question is about how far we can go: since the Oritatami
model is computationally universal, can it produce an uncomputable outcome? Together with Nicolas Schabanel,
Shinnosuke Seki, and Guillaume Theyssier, we found out that there is such an OS. Moreover, any recursively enu-
merable set can be represented by the terminal shape of the OS that we built. The main idea of this construction
is, given a set, to simulate a Turing machine describing this set in parallel on all inputs (we do it using the system
from the previous section). The second step is, for each input, to write down in a fixed cell if the Turing machine
halts on this input or not. The question asked by Guillaume Theyssier and some ideas about the construction we
found were inspired by a similar result for the Tile Assembly Model [17]. However, the Oritatami model is very
different: it is much more constrained in space and cannot perform parallel computations, so our proof has many
supplementary details. This is a research in progress, and I am highly motivated to keep working on it.

19

5 My contributions, ongoing work, and further research

My internship covered several subjects: I have obtained complete results in some of them and just moved a little
forward in others. Anyway, a lot of work is in progress right now and we have many interesting open questions.

I attempted to complete the construction of an OS folding very compact scaled shapes. My approach consisted
in using brute force on Hamiltonian paths with specific properties in order to find the required path segments,
this is explained in Section 3.4. I collected the necessary data and now we need to analyze it. Once it is done,
we will either complete the construction of an OS, or, if there are no appropriate paths, significantly change this
construction. In the future, we shall consider foldability of scaled shapes by blocking OSs: this might allow to
reduce the scale.

Working on the limits between foldable and unfoldable shapes, I fixed and simplified an existing design of a
delay-borderline shape (see Section 3.3). Doing this, I found a missed constraint leading me to the notion of blocking
OSs which were not considered before and are not studied yet: eventually, we need to understand how well this
model reflects the experiments and which class of shapes is foldable in this context.

I also obtained general tools for proving unfoldability of various shapes, which are given in Section 3.1, and
applied them in a particular case: I got an upper and a lower bound for a length of a straight line foldable by a
nonblocking OS, as it is explained in Section 3.2. There is a huge gap between these bounds: one is quadratic in
δ and the other one is linear. We would like to make them tighter, and this is an open question. Besides that, we
found a blocking OS folding an infinite straight line (see Section 3.2.3) which is the first step in understanding the
difference between blocking and nonblocking OSs.

Studying computational properties of Oritatami, I took part in the development of an OS simulating 1D cellular
automata, it is explained in Section 4.1. This is a paper in progress. This system is simple enough and we hope to
implement some simplifications of its parts in the wet lab. The first step of these experiments would be to build
the synchronization part I worked on since its mechanics is rather simple and it is easy to visualize.

Inspired by a question asked by Guillaume Theyssier about uncomputable terminal configurations, we proved
that any recursively enumerable set can be represented by a terminal shape of an OS (see Section 4.2). This
construction is quite complex and we are in the process of checking all the details in order to write a paper. The
fact that such a highly constrained model as Oritatami can produce such complex shapes raises another question: are
there even more constrained computational models able to construct a representation of any recursively enumerable
set?

References

[1] Leonard M. Adleman. Molecular computation of solutions to combinatorial problems. Science, 266(11):1021–
1024, November 1994.

[2] Esther M. Arkin, Sndor P. Fekete, Kamrul Islam, Henk Meijer, Joseph S.B. Mitchell, Yurai Nez-Rodrguez,
Valentin Polishchuk, David Rappaport, and Henry Xiao. Not being (super)thin or solid is hard: A study of
grid hamiltonicity. Computational Geometry, 42(6):582 – 605, 2009.

[3] Bonnie Berger and Tom Leighton. Protein folding in the hydrophobic-hydrophilic (HP) is NP-complete. In
Proceedings of the Second Annual International Conference on Computational Molecular Biology, RECOMB
’98, pages 30–39. ACM, 1998.

[4] Ho-Lin Chen and David Doty. Parallelism and time in hierarchical self-assembly. SIAM J. Comput., 46(2):661–
709, 2017.

[5] J. Chen and Nadrian Seeman. Synthesis from DNA of a molecule with the connectivity of a cube. Nature,
350(6319):631–633, 1991.

[6] Moya Chen, Doris Xin, and Damien Woods. Parallel computation using active self-assembly. http: // arxiv.
org/ abs/ 1405. 0527 , 2014.

20

http://arxiv.org/abs/1405.0527
http://arxiv.org/abs/1405.0527

[7] Matthew Cook, Yunhui Fu, and Robert Schweller. Temperature 1 self-assembly: Deterministic assembly in 3D
and probabilistic assembly in 2D. Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms,
11 2009.

[8] Erik D. Demaine, Jacob Hendricks, Meagan Olsen, Matthew J. Patitz, Trent A. Rogers, Nicolas Schabanel,
Shinnosuke Seki, and Hadley Thomas. Know when to fold ’em: Self-assembly of shapes by folding in oritatami.
https://arxiv.org/abs/1807.04682, 2018.

[9] Erik D. Demaine, Jacob Hendricks, Meagan Olsen, Matthew J. Patitz, Trent A. Rogers, Nicolas Schabanel,
Shinnosuke Seki, and Hadley Thomas. Know when to fold ’em: Self-assembly of shapes by folding in oritatami.
In DNA Computing and Molecular Programming, pages 19–36. Springer International Publishing, 2018.

[10] Ken A. Dill. Theory for the folding and stability of globular proteins. Biochemistry, 24(6):1501–1509, 1985.

[11] David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, and Damien Woods.
The tile assembly model is intrinsically universal. 2012 IEEE 53rd Annual Symposium on Foundations of
Computer Science, pages 302–310, 2011.

[12] Shawn M. Douglas, Hendrik Dietz, Tim Liedl, Björn Högberg, Franziska Graf, Adam H. Marblestone, Surat
Teerapittayanon, Alejandro Vazquez, George M. Church, and William M. Shih. Design and self-assembly of
DNA into nanoscale 3D shapes. In SIGGRAPH Talks, 2009.

[13] Kirsten L. Frieda and Steven M. Block. Direct observation of cotranscriptional folding in an adenine riboswitch.
Science, 338(6105):397–400, 2012.

[14] Cody Geary, Pierre-Etienne Meunier, Nicolas Schabanel, and Shinnosuke Seki. Programming biomolecules that
fold greedily during transcription. In MFCS 2016, volume 58 of LIPIcs, pages 43:1–43:14, 2016.

[15] Cody Geary, Paul W. K. Rothemund, and Ebbe S. Andersen. A single-stranded architecture for cotranscrip-
tional folding of RNA nanostructures. Science, 345(6198):799–804, 2014.

[16] Cody W. Geary, Pierre-Étienne Meunier, Nicolas Schabanel, and Shinnosuke Seki. Proving the turing universal-
ity of oritatami co-transcriptional folding. In 29th International Symposium on Algorithms and Computation,
ISAAC 2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan, pages 23:1–23:13, 2018.

[17] James I. Lathrop, Jack H. Lutz, Matthew Patitz, and Scott Summers. Computability and complexity in
self-assembly. Theory of Computing Systems, 48:617–647, 06 2008.

[18] Natasa Jonoska and Nadrian C. Seeman. Computing by molecular self-assembly. Interface focus, 2 4:504–11,
2012.

[19] Paul Rothemund. Rothemund, p.w.k.: Folding DNA to create nanoscale shapes and patterns. nature 440,
297-302. Nature, 440:297–302, 04 2006.

[20] Karthikeyan Subramani, Ameen Khraisat, and Anne George. Self-assembly of proteins and peptides and their
applications in bionanotechnology. Current Nanoscience, 4:201 – 207, 05 2008.

[21] Gunjan Verma and Puthusserickal Hassan. Self assembled materials: Design strategies and drug delivery
perspectives. Physical chemistry chemical physics : PCCP, 15, 08 2013.

[22] GM Whitesides, JP Mathias, and CT Seto. Molecular self-assembly and nanochemistry: a chemical strategy
for the synthesis of nanostructures. Science, 254(5036):1312–1319, 1991.

[23] Erik Winfree. Algorithmic self-assembly of DNA. Ph.D. Thesis, California Institute of Technology, 1998.

[24] Damien Woods, David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, and Erik Winfree. Author
correction: Diverse and robust molecular algorithms using reprogrammable DNA self-assembly. Nature, 08
2019.

21

https://arxiv.org/abs/1807.04682

	Introduction
	Definitions
	Geometric properties of Oritatami
	How to see that a shape cannot be assembled
	Straight line
	A nonblocking OS cannot fold too long straight lines
	A nonblocking OS folding a not-so-long straight line
	A blocking OS that easily folds into an infinite line

	Shape S
	An OS that folds S
	S cannot be folded with delay less than

	Scaling and folding

	Oritatami and computability
	Simulating cellular automata
	Making complex terminal shapes

	My contributions, ongoing work, and further research

