Simple Intrinsic Simulation of Cellular
Automata in Oritatami Molecular Folding Model

Daria Pchelina', Nicolas Schabanel®*, Shinnosuke Seki®**, and Yuki Ubukata®

! Ecole Normale Supérieure de Paris, France
2 Fcole Normale Supérieure de Lyon (LIP UMR5668, MC2, ENS de Lyon), France
3 U. of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 1828585, Japan.
4 NTT DATA Corporation, Tokyo, Japan

Abstract. The Oritatami model was introduced by Geary et al (2016)
to study the computational potential of RNA cotranscriptional folding as
first shown in wet-lab experiments by Geary et al (Science 2014). In the
Oritatami model, a molecule grows component by component (named
beads) into the triangular grid and folds as it grows. More precisely, the
¢ last nascent beads are free to move and adopt the positions that max-
imize the number of bonds with the current folded structure. Geary et
al (2018) proved that the Oritatami model is capable of efficient Turing
universal computation using a complicated construction that simulates
Turing machines via tag systems. We propose here a simple Oritatami
system which intrinsically simulates arbitrary 1D cellular automata. Be-
ing intrinsic, our simulation emulates the behavior of cellular automata
in a readable way and in time linear in space and time of the simulated
automaton. The Oritatami model has proven to be a fruitful framework
to study molecular reconfigurability. Our construction relies on the de-
velopment of new mechanisms which are simple enough that we believe
that some simplification of them may be implemented in the wet lab. An
implementation of our construction can be downloaded for testing.

Keywords: Molecular Self-assembly - Co-transcriptional folding - In-
trinsic universality - Cellular automata - Turing universality

1 Introduction

DNA computing encompasses the field which tries to implement computation at
the molecular levels. A recent example is [17], which implements arbitrary 6-bit
cellular automata onto DNA nanotubes, realising a first DNA-based universal
computer (limited to 6 bits of memory). This success of the field was built by
going back and forth between theory, models and experiments. The Oritatami
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model was introduced in 2016 by [4] to study the computational potential of
RNA cotranscriptional folding as first shown in wet-lab experiments by [5].

In Oritatami systems, we consider a finite set of bead types, and a periodic
sequence of beads, each of a specific bead type. Beads are attracted to each other
according to a fixed symmetric relation. In any folding (configuration), a bond is
formed between any pair of beads located at adjacent positions and attracting
each other. At each step, the latest few beads in the sequence are allowed to
explore all possible positions, and adopt only those positions that minimise the
energy, or otherwise put, those positions that maximise the number of bonds in
the folding. “Beads” are a metaphor for domains, i.e. subsequences, in RNA and
DNA (and are thus not limited to 4 types only). The Oritatami model has proven
to be a fruitful framework to study molecular reconfigurability, one of the most
promising directions to reduce error in wetlab molecular implementation as error
might be erased by reconfiguration later on. Indeed, programming Oritatami
systems consists of designing molecules whose shape changes depending on their
contexts, hence achieving some form of reconfiguration. Other models studying
molecular reconfiguration include nubots [16] and signal passing tile assembly
[10, 11]. Previous work on Oritatami includes among others the implementation
of a binary counter [4], the Heighway dragon fractal [7], folding of shapes at small
scale [2], NP-hardness of the rule minimization [6,9], a study of its parameters
[13], and polynomial-time Turing machine simulation [3].

Our contribution. The universality result by Geary et al. in [3] relies on a com-
plicated construction that simulates Turing machines via tag systems [1, 18]. We
propose here a simple Oritatami system which intrinsically simulates arbitrary
1D cellular automata. Being intrinsic [8, 15], our simulation emulates the behav-
ior of cellular automata in a readable way and in time which is linear in the
space and time of the simulated automaton. Precisely, our main result is:

Theorem 1 (Main result). There is a universal finite set of 183 bead types
B such that for any 1D cellular automaton A with Q states and radius r, there
s a delay-2 Oritatami system with bead types in B and periodic transcript with
period precisely

% ((3 +¢q) - 2(Q,)* + 8(2¢ mod 3)) +10g + 610 ~ 14T2(QT)2 log, Q-

that simulates A intrinsically with a supercell shaped as a lozenge with sides of
size O((Qr)?log Q,), where ¢ = [logy(2Q* )] and Q, = 29 < 4Q* 1.

This improves the previous construction in [3] as the number of bead types
is only 183 (instead of 542) and the delay is 2 (instead of 3). Furthermore, our
construction relies on the development of new mechanisms which are now simple
enough to believe that some simplification of them may be implemented in the
wet lab.

An implementation of our construction can be downloaded for testing [14].
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2 Model and Preliminary results

2.1 Oritatami model

Let B be a finite set of bead types. A configuration c of a bead type sequence
p € B* U BY is a directed self-avoiding path cycicy - - - in the triangular lattice
T,> where for all integer i, the vertex ¢; of ¢ is labeled by p; and refers to the
position in T of the (i 4+ 1)-th bead in the configuration. A partial configuration
of p is a configuration of a prefix of p. The class of all the configurations obtained
by applying an isometry of T to a given configuration is called a conformation.

For any partial configuration ¢ of some sequence p, an elongation of ¢ by k
beads (or k-elongation) is a partial configuration of p of length |¢|+ k extending
by k positions the self-avoiding path of c. We denote by C, the set of all partial
configurations of p (the index p will be omitted whenever it is clear from the
context). We denote by c>* the set of all k-elongations of a partial configuration c
of sequence p.

Oritatami systems. An oritatami system O = (p,®,9) is composed of (1) a
(possibly infinite) bead type sequence p, called the transcript, (2) an attraction
rule, which is a symmetric relation @ C B2, and (3) a parameter § called the
delay. O is said periodic if p is infinite and periodic. Periodicity ensures that the
“program” p embedded in the oritatami system is finite (does not hardcode any
specific behavior) and at the same time allows arbitrarily long computation.®

We say that two bead types a and b attract each other when a @ b. Further-
more, given a (partial) configuration ¢ of a bead type sequence ¢, we say that
there is a bond between two adjacent positions ¢; and c¢; of ¢ in T if ¢; ® g;
and |i — j| > 1. The number of bonds of configuration ¢ of ¢ is denoted by
H(C) = |{(Za]) PGy~ Gy, .7 >0+ ]-a and qi l’q]}‘

Oritatami dynamics. The folding of an oritatami system is controlled by the
delay §. Informally, the configuration grows from a seed configuration (the input),
one bead at a time. This new bead adopts the position(s) that maximize(s)
the potential number of bonds the configuration can make when elongated by 0
beads in total. This dynamics is oblivious as it keeps no memory of the previously
preferred positions [3].

Formally, given an Oritatami system O = (p,®,J) and a seed configura-
tion o of a seed bead type sequence s, we denote by C,, the set of all partial
configurations of the sequence s - p elongating the seed configuration o. The
considered dynamics 2 : 2¢»» — 2Co.» maps every subset S of partial configura-
tions of length ¢ elongating o of the sequence s - p to the subset 2(S) of partial

® The triangular lattice is defined as T = (Z?, ~), where (z,y) ~ (u,v) if and only
if (u,v) € Ue=t1{(z +€,y), (z,y+¢€), (x+ €,y +€)}. Every position (x,y) in T is
mapped in the euclidean plane to z - € +y - sW using the vector basis € = (1,0) and
sw = RotateClockwise (€,120°) = (-1 —ﬁ).

27 2
5 Note that we do not impose here a maximal number of bonds per bead (called arity).
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configurations of length ¢+ 1 of s - p as follows:

2(8) = U argmax( max H(n)>

ccs yect \ney Y

The possible configurations at time ¢ of the oritatami system O are the elonga-
tions of the seed configuration o by t beads in the set 2°({o}).

We say that the Oritatami system is deterministic if at all time t, 2'({c}) is
either a singleton or the empty set. In this case, we denote by ¢! the configuration
at time t, such that: ¢ = o and 2'({o}) = {c'} for all t > 0; we say that the
partial configuration ¢! folds (co-transcriptionally) into the partial configuration
c*1 deterministically. In this case, at time ¢, the (t + 1)-th bead of p is placed
in c!*! at the position that maximises the number of bonds that can be made
in a d-elongation of ct.

2.2 Sweeping 2-fan-in 2-fan-out cellular automata

Our construction simulates intrinsically the space-time diagrams of a specific
type of one-way cellular automata where each cell has fan-in and fan-out 2 as
shown in Fig. 2, similar to the gates implemented in [17]. Formally, a 2-fan-in
2-fan-out automaton (2FA) A is given by its set of states [Q] = {0,...,Q — 1}
and its transition function f : [Q]*> — [Q]*. A finite configuration of A is an
even-length word ¢ € [Q]*, and its image by A is ¢ = F(c) where (ch;,¢h; ;) =
f(e2i—1,¢9;) for i = 0..|—;‘ — 1, with the convention that c_; = ¢ = 0. Classi-
cally, any 1D cellular automaton with @ states and radius r can be simulated
intrinsically by a 2FA with Q% ! states using a time rescaling by 7.

Sweeping simulation. Our construction simulates intrinsically any 2FA by sweep-
ing down (even time step) and up (odd time step), see Fig. 2. As a conse-
quence, every other step, the two inputs are read in reverse order and the
transition function is applied with its arguments exchanged. Formally a con-
figuration (c,d) of a sweeping 2FA (S2FA) ([Q], f) consists of an even-length
word ¢ € [Q]* together with a direction d € {1,]}, and has the following dy-
namics: F(c,]) = (¢/,1) where (cy;,ch 1) = f(coi—1,c2) for i = 0..%‘ -1
F(c,1) = (¢,|) where (ch;,q,¢h;) = f(c2i,c2i-1) for i = 0..c|/2 — 1. Clearly,
any 2FA ([Q], f) can be simulated intrinsically in real time by the S2FA
([Q] x {1, 1}, 9) where g((z, 1), (y, 1)) = (', 1), (¥, 1)) with (z,¢) = f(z,y);
and g((z,1), (. 1)) = ((2', 1), (%', 1)) with (3, 2") = f(y, z).

From now on, we consider a S2FA A = ([Q], f), where = 27 is a power of
two with ¢ > 1. We will denote by (z/(x,y),y'(z,y)) the value of f(x,y).
3 Overview of the construction

Due to space constraint, we will expose here the principle of the construction.
The full description of the modules and of the attraction rule is given in the full
version of the present article [12].
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Fig.1: The modules inside a cell: (Left) Schematic view; (Right) 1. Cell Init
highlighted in yellow; 2. Scaffold in red; 3. Read in blue, green and purple; 4.
Lookup Table in yellow and violet; 5. Speedbump in cyan; 6. Write in green.

(a) Blueprint of the Oritatami cell design

In our intrinsic simulation, each cell of the simulated S2FA is affinely mapped
onto a supercell shaped as a hexagon with two short sides (N and S) of lengths
12 and 13, and four long sides (NE, NW, SE and SW) of lengths s and s — 1
where s = O(Q?log Q) (see Fig. 1b and 2). The states are encoded on the sides
of the hexagons as described below. The simulation proceeds by building one
after the other the supercells simulating each of the cells of the simulated S2FA
according to the up-down order given in Fig. 2. Each supercell is the result of the
folding of exactly one period of the transcript. The period of transcript consists
of the sequence of 6 modules, each of them achieving one specific task:

E.E.R.L.SB.

The modules. Their respective roles and positions inside the supercell are
blueprinted in Fig. 1a. [1] is responsible for extending the configuration by one
supercell and reversing the up-down order at the end of the current column of
supercells (see [12]). [S] has two roles: providing a scaffold along which the next
modules will fold, and ensuring that the molecule “resynchronizes” (will be de-
fined later) before writes the two outputs ' and 3’ on the output sides. |R
is responsible for reading the value of the two inputs x and y and translating
accordingly the lookup table of the simulated S2FA, encoded in the next mod-
ule L. |SB]| is responsible for “resynchronizing” the molecule along the scaffold,
annihilating the translation of the lookup table induced by the reading of x and
y by |R|. Finally, writes on the output sides of the supercell the values z’
and y’ dictated by the translated lookup table L/, and exits the supercell at the
entrance of the next one.
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Fig.2: The 10 first super-steps of the Oritatami simulation of the 2-state S2FA
(¢=1) f(z,y) = (y + 1 mod 2, ) from the seed configuration encoding input 00
(to the left in brown): (00,]) > (0100,1) — (011010, ) — (00011110,7) —

(0011110000, |); in white (resp. gray), the down- (resp. up-) hexagonal super-
cells.
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Encoding © and y. The values of x and y are encoded along the sides of the
supercells using “magnetic flipping flaps” of total lengths 4Qx and 4y respec-
tively, as schematically shown on Fig. 1a. When the read module |R| folds along
the side of the neighboring supercells, it gets flattened by these magnetic flaps;
this shifts the progression of the molecule forward by exactly half the lengths of
the flaps. It follows that the module |R| completes its folding A,, = 2(Qz + y)
beads further than it would in absence of the magnetic flaps. This, in turn,
translates the position of the lookup table module |L| by A, along both output
sides of the supercell, placing the entries corresponding to z’(A,,) = 2’ (x,y) and
y'(Azy) = v¥'(z,y) in front of the flipping flaps of the module to be folded
next so that, when folded, the total magnetic length of the flipping flaps on each
output side is 4Qx’ and 4y’ respectively (see Section 4 and Fig. 4 for details).

4 Description of the key mechanisms

Due to space constraints, we will focus on the new mechanisms involved in this
construction. In particular, we will not discuss [I] because its behavior is just
a direct translation of the Module G in [3] (see [12] for details). [S] is simply
hardcoded and only its key part will be discussed next in Section 4.2.

4.1 Modules R, L, and W: The read, lookup, write mechanism

The previous section gave the principle of the interactions between these mod-
ules: the reading of x and y on the input sides by |R| results in shifting the lookup
table L by A, = 2(Qz +y), which aligns the entries corresponding to z’(x,y)
and y'(z,y) properly with the flaps of module which, in turn, writes the
corresponding z’(x,y) and y'(z,y) on the z’- and y’-output sides respectively
using the magnetic flaps as illustrated in Fig. 4. Let us start with Module L.
Refer to Fig. 3 for the alignment of the various parts involved.

Module L. Each output 2/(z,y) and y'(x, y) is encoded in binary into g tables of
Q? bits using bead types Q0 and Q1. The entry indexed Qz +y in the i-th table
for «’ (resp. y’) contains the value of the i-th bit of a’(z, y) (resp. ¥'(z,y)). More
precisely, if we write 2/(z,y) = Zg;ol b;2" in binary, the table for 2’ consists
of the sequence of bead types: |Lookupx | = ([T, 1%, Hg;ol(Q(bi))Q)R, such
that the bead types in ' Lookupy R at indices 0,2Q%,...,(q — 1)2Q? shifted by
Azy = 2(Qz +y) are Q(bo), ..., Q(bg—1). Lookupy is defined similarly.

Module consists of a zigzag glider T0..7 that runs along the two output
sides of the supercell, together with ¢ “magnetic flipping flaps,” equally spaced
by 2Q? beads on each output side (see Fig. 3): ¢ flaps of lengths 2°Q,...,2971Q
on the 2’-output side and of lengths 2°,...,2971 on the y'-output side. We define
a magnetic flipping flap of length £ as the bead type sequence:

SegFF(¢) = U0..5 (T4 P4 (T6 PO TOP3 T2P2 T4P1)'T6 P0..4 U6..8.
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s-8-InitL-2Q*
= 2(q+2) Q8,45
=5 mod 8 % 2@
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Fig.3: Alignment of the various modules

Each flap is either activated (magnetic for |R|) or deactivated (neutral for |R])
depending on whether its “magnetic” beads PO0..3 point outwards, towards the
upcoming neighboring supercell, or inwards, towards the inside of the supercell
currently folding (see Fig. 4). Now, thanks to the alignment of the modules (see
Fig. 3), the i-th flap of starts folding in front of the entries A, +2iQ? of
the lookup table on each output side, that is in front of the pair of beads @2 or
Q12 corresponding to the i-th bit of the value to write on this side. Now, a flap
folds outwards (is activated) by default, unless its initial bead U5 is attracted
by a pair of beads QO corresponding to a bit set to 0. It follows that the i-th
flap of on each side is activated if and only if the i-th of the output is 1;
and as it is of length 2°Q and 2° for the z’- and g/-output side respectively, the
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total numbers of magnetic beads are 4Qz’'(x,y) and 4y'(x,y) on each z’'- and
y'-output side, respectively.

The upcoming neighboring supercell reads #'~01 in binary written by the flaps of its a-input supercell

<« R 21(2:9)-0

PV @

A= 2(Qzty) r A, =2(Qeiy)

The supercell writes on its output side the value z/(z,5)~01 in binary given by the lookup table shifted by A, by fliping the flaps accordingly

(a) 1) Lookup table L, 2) Write and 3) Read |R| modules on the z’-output side
when offset Ay =2 x (4 x24+1) (e (z,y) = (2,1))
The supercell writes on its output side the value of y/(2,y)=10 in binary given by the lookup table shifted by A

A, = 2Qety) A, = 2(Qry)

| GRhe

Lookup table for y; YAHHARAR,

882000 20000 0 %Qj.w.u @(x
o 01 '

/ Lookup table for y

TaIrpTeee’

Rt i
The upcoming neighboring supercell reads y'=10 in binary written by the flaps of its y-input supercell

(b) 1) Lookup table L, 2) Write and 8) Read |R| modules on the y'-output side
when offset Ay =2 x (4 x140) (ie. (z,y) = (1,0))

Fig. 4: Illustration of the border between two neighboring supercells: Interactions
of 1) the lookup table and 2) the write modules within a supercell and 3) the
read module of the upcoming neighboring supercell, when @ = 4 (¢ = 2). The
lookup tables for each bit follow each other and are 2Q? beads long each (2 beads
per bit). The write module folds into ¢ = 2 flipping flaps on each output side of
lengths 4 x 2° and 4 x 2! on the 2’-output side and 2° and 2' on the 7’-output
side. We have highlighted in yellow the folding of bead U5, which decides the
orientation of each flap (in- or out-wards if QO or Q1 is present resp.). We have
highlighted in orange the folding of bead U6, which is attracted by all bead types
QO0..2 and restores the orientation of the write glider to defaults after each flap.

Module |R|. We are now ready to conclude this mechanism by observing that
the read module [R| folds along the write modules of the two neighboring input
supercells, and that it gets flattened each time it folds along an activated flap
(see Fig. 3 and 4), which extends its length by half the number of magnetic
beads P0..3 of the flap. It follows that the end of its folding is shifted forward
by (4Qx + 4y)/2 = Ay, which in turn shifts forward the lookup table module
L by A,y as claimed. Refer to Fig. 6 for a complete view of the folding of |R|.

The full description of the modules [R], 'L| and [W] may be found in the full
version [12] of the present article.

4.2 Modules SB and S: resynchronization using speedbumps

In order for the period of the transcript to end precisely at the exit of the
supercell, regardless of which inputs x and y were read by the read module |R|,
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we need to absorb the A, offset. Precisely, we need to absorb it before the write
module folds to ensure that it is properly aligned with the shifted lookup
table. This is the role of the speedbump module [SB|. Its behavior is illustrated
in Fig. 5.

This mechanism involves two modules: the scaffold module [S], which con-
tains the speedbumps (consisting of alternation of red beads 10..3 and blue beads
E0..3) at the top of its NE corner (assuming the supercell is in the downwards
orientation); the speedbump module |SB| which consists of a matching alterna-
tion of red beads Q2 and blue beads RO..1.

Lemma 1 (speedbump). When a red-blue sequence v = Q24k71(R0..1)4kR0
folds from right to left over a blue-red-blue seed left-to-right sequence o =
(E2E4EG6E0)*(11..310)* (E2E4E6EQ)?* starting from the A-th rightmost position
of o with A < 4k, the A leftmost blue beads of v fold into a zigzag over the red
beads of o, and the folding of v ends at the | A/2] rightmost position of the left
red segment of o, as shown in Fig. 5b.

Corollary 1. When the folding of the speedbump module |SB| completes, the
offset Agy is totally absorbed.

Proof (sketch). Note that the maximum offset when the speedbump module
SB| starts to fold is A = 2(Q? — 1) corresponding to reading input (z,y) =
(Q —1,Q — 1). The matching exponentially decreasing alternation of blue and
red regions from 227 to 4 in [S] and [SB] (see [12]) ensures that the offset is
divided by 2 until it reaches 0, absorbing the total offset as shown in Fig. 5.

Correctness of the folding. Finally, the correctness of the folding is proved by
induction using automated folding tree certificates (see [4,12]). The key is to
choose carefully the size s of the supercell so that all modules are properly
aligned regardless of the inputs x and y. This is ensured by enforcing the position
of every pattern in every module modulo 8 in the supercell as explained in Fig. 3
and detailed in [12].

§Ofrsc1 0 Offset =0  Offset =0 o (b2 orrac; 0 ()ﬁsclr 0 Y (h—2) Offset = 0 Offset = 0
7
J %

(a) Synchronized speedbump: all the top red parts are inside the red speedbumps

24 2¢

New
se o [se 3 New sel
Resynchronized 0”]‘,‘ (’]'T““L 0”‘.‘2“. 2 ‘“30”}” Offset — 6 — 2k New Offset — 6 — k Offset — 12 — 2k
o (k-2 3 (k=2)
124 A AR, GR/7.Y. N T ARARAR

Ton

L i e A

(b) Synchronizing speedbump: each time the
blue part of the molecule passes over a red
speedbump, the offset A is divided by 2.

Fig.5: Speedbumps decrease exponentially the offset of the molecule folding on
top (going from right to left) until it vanishes.
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Read z, = 0
Induces an offset of 2Q<2'z, = 0

Reading a One

Sliding
along the

Read y, = 1
Induces an offset of 2:2'y, = 4

Read y, = 0
Induces an offset of 2x2'y = 0

Fig. 6: Read module consists of 4 parts: ReadX, Turn, ReadY, and Slide along the
scaffold. ReadX and ReadY get flattened each time it passes along an outward
write magnetic flap (encoding a 1). This shifts the molecule by the length of
the corresponding flap. The following part of the molecule is then shifted overall
by Azy = 2(Qz + y). This shift allows then to align the entry corresponding to
(z,y) of the lookup table of each side with the upcoming write modules. The
two glider-based parts “Turn” and “Slide along” are only there to ensure that
after reading each input, the molecule turns at the expected position, regardless
of the offset.
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