20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Oritatami systems assemble shapes no less
complex than tile assembly model (aTAM)

Anonymous author
Anonymous affiliation

Anonymous author
Anonymous affiliation

Anonymous author
Anonymous affiliation

Anonymous author
Anonymous affiliation

—— Abstract

Oritatami systems are a model of molecular co-transcriptional folding: the transcript (the “molecule”)
folds as it is synthesized according to a local energy optimisation process, in a similar way to how
actual biomolecules such as RNA fold into complex shapes and functions while being synthesized
(transcribed). We introduce a new model, called turedo, which is a self-avoiding Turing machine on
the plane that evolves by marking visited positions and that can only move to unmarked positions,
hence growing a self-avoiding path. Any oritatami can be seen as a particular turedo. We show that
any turedo with lookup radius 1 can conversely be simulated by an oritatami, using a universal
bead type set. Our notion of simulation is strong enough to preserve the geometrical and dynamical
features of these models up to a constant spatio-temporal rescaling (as in intrinsic simulation). As
a consequence, turedo can be used to build readily oritatami “smart robots”, using our explicit
simulation result as a compiler. Furthermore, as our gadgets are simple enough, this might open the
way to a readable oritatami programming, and these ingredients could be regarded as a promising
direction to implement computation in co-transcribed RNA nanostructures in wetlab.

As an application of our simulation result, we prove two new complexity results on the (infinite)
limit configurations of oritatami systems (and radius-1 turedos), assembled from a finite seed
configuration. First, we show that such limit configurations can embed any recursively enumerable
set, and are thus exactly as complex as aTAM limit configurations. Second, we characterize the
possible densities of occupied positions in such limit configurations: they are exactly the Il,-
computable numbers between 0 and 1. We also show that all such limit densities can be produced
by one single oritatami system, just by changing the finite seed configuration.

None of these results is implied by previous constructions of oritatami embedding tag systems or
1D cellular automata, which produce only computable limit configurations with constrained density.

Note that, reframing our results, we prove that doodling without lifting the pen nor intersecting
lines and using only a 1-local view to decide for the drawing directions produce drawings as complex
and as dense as can be.

2012 ACM Subject Classification Author: Please fill in 1 or more \ccsdesc macro

Keywords and phrases Molecular Self-assembly, Co-transcriptional folding, Intrinsic simulation,
Arithmetical hierarchy of real numbers, 2D Turing machines, Computability

Digital Object Identifier 10.4230/LIPIcs...

© Anonymous author(s);
Bv licensed under Creative Commons License CC-BY 4.0

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Is)

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

e

78

79

80

81

82

83

Anonymous author(s)

1 Introduction

Oritatami systems were introduced in [10, 11] to investigate the computational power of
molecular co-transcriptional folding, in which an RNA sequence (transcript) folds upon itself
into an intricate structure while being synthesized (transcribed). This phenomenon has
proven programmable in-vitro [13], in which Geary, Rothemund, and Andersen demonstrated
how to encode a rectangular tile-like structure in a transcript and its folding pathway so that
this transcript folds cotranscriptionally along the pathway into the encoded structure. This
RNA Origami architecture has recently been highly automated by their software ROAD
(RNA Origami Automated Design) [9]. ROAD extends the scale and functional diversity of

RNA scaffolds, and is thus a promising direction for the design of RNA-based computation.

DNA tile self-assembly did rely on the cellular automata theory to build up the abstract
Tile Assembly model (aTAM) [24] which in turn allowed to develop experimental settings
simple enough to be implement in vitro, such as the Sierpinski triangle [22]. On the opposite,
RNA origami was born first in-vitro and the oritatami system was created [12] to answer the
lack of theoretical framework to design computations for cotranscriptional-based assembly
systems. In this paper, we introduce the turedo model, implementable in oritatami, which,
as opposed to oritatami, is simple enough to program, to wish for a design equivalent to the
Sierpinski triangle experiment for cotranscription-based in-vitro systems.

An oritatami system consists of a “molecule” (the transcript) made of “beads” that
attract each other. The molecule grows by one bead per step and, at each step, the § most
recently produced beads are free to move around to look for the position that maximizes the

number of bonds they can make with each other (hence the folding is co-transcriptional).

This process ends up self-assembling a shape incrementally. It is known from [12, 21] that
oritatami systems are Turing universal. They can also build arbitrary shapes [5] modulo
a small universal constant upscaling, or specific fractals [18]. However, oritatami systems
remain notably challenging to design. Indeed, the only shapes that can be built by [12, 21]
are space-time diagrams of cyclic tag-systems or 1D cellular automata; and [5] requires to
hardcode the whole shape in the transcript. In this article, we introduce a new computational
model (turedo) that abstracts away the technical details of attraction rules and bead sequence
of oritatami, but embraces the geometrical aspects of them, as opposed to the classical
one-dimensional computational models. We demonstrate that turedos can be simulated up to
upscaling by oritatami systems. Our simulation allows thus to take full advantage of turedo
computations in building shapes, and can be used as a compiler to design powerful oritatami
systems as demonstrated below.

Oritatami systems and Turedos. The classical model of Turing machines has already been
considered in other settings than the one dimensional bi-infinite tape, in particular in higher
dimensions [2]. A popular class of Turing machines in Z” is that of turmites [17], which are
free to move on the plane but do it by just looking at their current internal state and the
tape content at their current position. In this paper we introduce a somewhat orthogonal
class of Turing machines on the plane, that we call turedosl, which can look at the tape
content around their position to decide their move (like in [2]), but are constrained to move
only in a self-avoiding way.

Both our models (oritatami and turedos) have two strong constraints: they are sequential

! Inspired by the nicely coined terminology for turmites, as a reference to toredo navalis (shipworms) that
would only grow self-avoiding tunnels in wood if they were infinite.

XX:1

XX:2

84

85

86

87

88

89

90

91

92

93

04

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

Oritatami systems assemble shapes no less complex than tile assembly model (aTAM)

and self-avoiding (i.e. each position of the plane can only be visited once and becomes an
obstruction for future moves). They can be seen as the sequential counterpart of aTAM
model of self-assembly [20, 6] or freezing cellular automata [14, 3, 19]. But they are not just
finite state automata growing a self-avoiding path in a regular way, their computational power
is in their ability to make moves depending on the configuration of neighboring positions.

Our main result is that oritatami can simulate turedos of lookup radius 1. Our notion
of simulation is strong enough to preserve the geometrical and dynamical features of these
models up to a constant spatio-temporal rescaling: the oritatami reproduces the whole
dynamics of the turedo using macro-cells and a constant spatio-temporal rescaling. This
definition is similar to intrinsic simulations developed for cellular automata [4] or self-assembly
tilings [6].

» Theorem 1.1 (Main result 1). There is a universal bead type set B such that for any
turedo T of radius 1 with alphabet of size Q, there is a delay-3 oritatami system based on B
with period A = ©(Q%log Q) which simulates intrinsically Tat space-scale O(Q>\/log Q) and
time-scale A.

Theorem 1.1 is proved in section 3.

Complexity of limit configurations. The Turing universality results in [12, 21] induce
undecidability results of the form: given an oritatami, a seed and a position, determining
whether the position will be visited is undecidable. However these embeddings are such
that the limit configurations obtained are always computable, because the space-time of the
simulated tag system (or cellular automaton) computation is progressively constructed in a
predictable way in a fixed region of oritatami’s space. Precisely, in any limit configuration
¢” obtained this way, the map z + ¢*(z) is computable because there is a computable time
bound 7(z) such that if position z is not visited after 7(z) steps of the run, then it will never
be visited (see Lemma 4.1).

The first application of our simulation result is to prove that we can produce uncomputable
limit configurations from finite seeds with oritatami (section 4). This implies that there are
oritatami runs from finite seeds where there is no computable time bound 7(2) on the visit
time of position z. Results on uncomputable limit configurations were already obtained in
the model of directed aTAM [16]. However the construction used takes full advantage of
the massive parallelism allowed in the aTAM model and cannot be translated to the turedo
settings. Our construction is actually simpler than that of [16] and shows that sequential
self-avoiding models can organize information in the plane in such a way that some regions
allow 'uncomputable come backs.’

» Theorem 1.2 (Main result 2). There exists a fized oritatami with delay 3 and a fized finite
seed o such that the limit configuration co produced is uncomputable as a map.

The second application of our simulation result is about (upper) density of occupied
positions in the limit configurations obtained from finite seeds. Density is a natural geometrical
parameter to test the ability of our models to produce complex infinite self-avoiding paths from
finite seeds. We show that such densities are exactly the Ilo-computable numbers between 0
and 1 (Theorem 5.3), where IT,-computable means being the limsup of a computable sequence
of rational numbers [25]. In particular turedos and oritatami can produce limit densities
which are not recursively approximable (i.e. not the limit of any computable sequence of
rational numbers). We actually show that the whole spectrum of density can be obtained
in a single turedo by varying the seed (Theorem 5.3). Using our simulation framework, the
following result is shown for oritatamis in section 5.

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

Anonymous author(s)

» Theorem 1.3 (Main result 3). For any € > 0, there exists an oritatami of delay 3 such
that for any Iy-computable number d € [0,1 — €], there is a finite seed o such that the limit
configuration co reached from it has density of occupied positions ezactly d.

Note that the densities that can be produced in the (directed) aTAM model or freezing
cellular automata from finite initial configurations cannot be more complex (see Lemma 5.1).

The organization of the paper is as follows: we first present oritatami and turedo models
and the notion of simulation (section 2); then, we establish our main simulation result
(section 3) and its two applications (sections 4 and 5).

2 Definitions and Models

Oritatami systems. Let B be a finite set of bead types. A configuration c of a bead type
sequence p € B* U B is a directed self-avoiding path cycice+++ in the triangular lattice T,2
where for all integer i, the vertex ¢; of ¢ is labeled by p; and refers to the position in T of the
(¢ + 1)-th bead in the configuration. A partial configuration of p is a configuration of a prefix
of p.

For any partial configuration ¢ of some sequence p, an elongation of ¢ by k beads (or
k-elongation) is a partial configuration of p of length |c| + k extending by k positions the
self-avoiding path of c. We denote by C, the set of all partial configurations of p (the index
p will be omitted whenever it is clear from the context). We denote by ™" the set of all
k-elongations of a partial configuration ¢ of sequence p.

An oritatami system O = (p,®,0) is composed of (1) a (possibly infinite) bead type
sequence p, called the transcript, (2) an attraction rule, which is a symmetric relation & ¢ BZ,

and (3) a parameter ¢ called the delay. O is said periodic if p is infinite and periodic.

Periodicity ensures that the “program” p embedded in the oritatami system is finite (does not
hardcode unbounded behavior) and at the same time allows arbitrarily long computaution.3
We say that two bead types a and b attract each other when a @ b. Furthermore, given
a (partial) configuration ¢ of a bead type sequence ¢, we say that there is a bond between
two adjacent positions ¢; and ¢; of ¢ in T if ¢; ®¢; and |¢ — j| > 1. The number of bonds of
configuration c of ¢ is denoted by H(c) = [{(4,7) : ¢; ~¢j, j >i+1, and ¢; ®q;}|.

Oritatami dynamics. The folding of an oritatami system is controlled by the delay 6.
Informally, the configuration grows from a seed configuration (the input), one bead at a time.

This new bead adopts the position(s) that maximize(s) the potential number of bonds the
configuration can make when elongated by 0 beads in total. This dynamics is oblivious as it
keeps no memory of the previously preferred positions [12].

Formally, given an Oritatami system O = (p,#,0) and a seed configuration o of a seed
bead type sequence s, we denote by C, , the set of all partial configurations of the sequence
s+ p elongating the seed configuration ¢. The considered dynamics 2 : 2¢er 5 ol maps
every subset S of partial configurations of length ¢ elongating o of the sequence s - p to the

® The triangular lattice is defined as T = (Z°,~), where (z,y) ~ (u,v) if and only if (u,v) €
Uees1{(z + €,y), (z,y + €), (x + €,y + €)}. Every position (z,y) in T is mapped in the euclidean plane

to z - € +y - SW using the vector basis € = (1,0) and sW = RotateClockwise (€,120°) = —%, —‘/?g) We
will denote by nw, né, €,5&, W,sw the six canonical unit vectors in T.

® Note that we do not impose here a maximal number of bonds per bead (called arity).

XX:3

XX:4

163
164
165
166
167
168
169

170

171
172
173
174
175
176
177
178

179

180
181

182
183

184

185

186

187

188

189
190
191
192
193

194

Oritatami systems assemble shapes no less complex than tile assembly model (aTAM)

subset Z(S) of partial configurations of length £ + 1 of s - p as follows:

2(5) = U argmax(max H(n))
ceS 'yEch U€7>(5_1)

The possible configurations at time ¢ of the oritatami system O are the elongations of the
seed configuration o by ¢ beads in the set 2'({5}).

We say that the Oritatami system is deterministic if at all time ¢, 2'({c}) is either a
singleton or the empty set. In this case, we denote by ¢ the configuration at time ¢, such
that: ¢” = o and 2'({c}) = {c'} for all ¢ > 0; we say that the partial configuration ¢’ folds
(co-transcriptionally) into the partial configuration M deterministically. In this case, at
time ¢, the (¢ + 1)-th bead of p is placed at ¢'*" at the position that maximises the number
of bonds that can be made in a §-elongation of .

Turedos: Self-avoiding Turing Machines. A turedo is a Turing machine working
on the plane with a lookup neighborhood (like in [2]), that can only move in a
self-avoiding way. We fix the following set of elementary hexagonal4 moves Ny =
{¥ =(1,1),N8 = (1,0),58 = (0,-1), S = (-1,-1),5W = (=1,0),NW = (0,1)} in Z° and de-
note by B(r) the hexagonal ball of radius r centered on (0,0), 4.e. the set of positions in Z
that can be written as a sum of at most r vectors from Ng. We also denote by b(r) the size
of B(r), and c,(r) = (u € B(r) » c(z +u)) the restriction of a configuration c to the ball of
radius 7 centered on z. Finally, we fix a universal blank symbol L representing unoccupied
positions.

» Definition 2.1. A turedo is defined by T = (A,Q,qq,7,0) where A is the tape alpha-
bet, L € A, Q is the set of head states with initial state qy € Q, r is the lookup radius,
d:Q X ABM Q X N x AN {L} is the local transition map.

A tape configuration is an element of AZQ. A global state is an element of

2
Sr = AX x 7% x Q (tape configuration, position of head and head state). The turedo T
induces a global map Fr : S — St defined as follows:

(¢,2,q) ife(z) # L ore(z+d)+ L,
FT(Cv 2, Q) = I I

(c,z+d,q) else,
where (¢',d,a) = §(q,c.(r)) and ¢'(2) = a and ¢'(u) = c(u) for u# z. When the first case
occurs, we say that the machine is blocked.

The key point of the above definition (which justifies the qualification of ’self-avoiding’)
is that the only way tape configurations can be altered is by turning a blank symbol into a
non-blank symbol, and therefore the head cannot go back to a previously visited position
(except when the machine is blocked in which case the global state is a fixed point). Positions
holding a blank symbol are therefore seen as empty positions where the head can possibly
move to.

* The triangular lattice for oritatami uses orientation east-west while the set of elementary moves Ny in
turedo contains north-south. It is of course harmless since oritatami are invariant by rotation and could
be defined with another triangular lattice. This choice is justified by the main simulation result of the
paper where macrocells in oritatami in our figures appear in the same orientation as the hexagonal cells
in turedos.

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

Anonymous author(s)

Limit configuration and freezing time. Given an initial global state s € S for a turedo
of global map Fr, let us consider the sequence (c",z,,q,) = Fy(s) for n € N. By the
self-avoiding property, it holds that for any z € Z* the sequence of symbols (¢"(2)),en is
ultimately constant, and, denoting its limit co (z), we then have defined a tape configuration

e € AZ2 which is called the limit configuration reached by F starting from s. Said differently,
using the standard Cantor topology for tape configurations [15], we have that the sequence
of configurations (c¢"),, converges to co . Moreover, we can associate to the system and the
initial global state s, the freezing time map 7 : Z? = N such that 74(z) is the minimal ¢ for
which the tape content of cell z at time ¢ is cq (z).

Programming turedos. Thanks to the freedom allowed in their local maps, turedos are
in general much easier to design than oritatami systems. The basic building block to
design complex turedos is the zigzag movement which allows to embed any 1D Turing
machine/cellular automaton computation. They can also be used as thick wires to transport
information from one region to another. Our zigzag toolbox is detailed in appendix.

Simulations. Any oritatami with delay § can be seen as a particular turedo of radius ¢ + 1:
indeed, an oritatami transition is completely determined by the position in the sequence of
beads, coded as a state of the turedo, and the local configuration in a ball of radius § + 1.

Our main result proven in the next section is a converse to this observation: any turedo
of radius 1 can be simulated by an oritatami system of delay 3. The general idea is to
reproduce the dynamics up to a linear spatio-temporal scale factor like in similar notions
already considered for cellular automata or self-assembly tilings [4, 7, 3]. More precisely,
each cell of the simulated system is represented by a macro-cell in the simulator system, the
macro-cells form a linearly distorted hexagonal lattice, and a constant number of time steps
is allowed for the simulator to reproduce one step of the simulated system. This notion of
simulation is very strict and allows to relate properties of the limit configurations in the
simulated system to the corresponding limit configuration in the simulator. This can be done
without further hypothesis for computability of limit configurations, but can also be done
for the density of non-blank states as soon as the simulation uses macro-cells that are filled
densely and constantly.

The complete formalization of the notion of simulation used is given in appendix together
with lemmas on computability and density of limit configurations.

3 Delay-3 oritatami systems simulate radius-1 Turedos

This section provides an overview of the design implying main Theorem 1.1. As for the 1D
cellular automaton simulation in [21], our simulation proceeds in three phases: 1) reading
the neighboring letters, 2) preparing for writing the new letter on the boundaries of the
macro-cell and 3) exiting to the computed next location. However, we must solve a significant
number of new challenges to adapt to turedos. Turedos are free to move in every direction:
the shape of the macrocells must then be isotropic. Furthermore, the reading process must
be non-blocking. Thus we cannot use the reading mechanism in [21], nor the writing flip-flap
mechanism which would block any further return to a previously visited border; we cannot
use its hardcoded exit mechanism, as the exit direction has to deduced from the symbols
read. Moreover, as we need to return to a random side after reading and writing on all sides,
our oritatami system must be able to absorb up to 4 times the side length before exiting to
the new macrocell and starting the next period of the transcript. It follows that we cannot

XX:5

XX:6

239
240
241
242
243
244
245

246

247
248
249
250
251
252
253
254
255
256
257
258
259

260

261
262
263
264
265
266
267
268

269

Oritatami systems assemble shapes no less complex than tile assembly model (aTAM)

[o

RRTIRCA 4. S‘Peedbuva
05
“

=. write

1 1

Figure 1 Principle of the macrocell operation. The shift of the reading layer at the end of its

folding (and thus of the writing layer) is) .. read;=1 Wi = W2 + Ws.

store information on the boundary of the macro-cell as in [21], but need to store information
inside the macrocell to avoid increasing the macrocell side length uncontrollably. Similarly
the speedbump module introduce in [21] must be adapted to fit inside a compact space.

To solve all those issues, we have developed new tools that we believe to be simple,
powerful and generic enough to have their own interest. We also believe that some of them
could serve as a guideline for a first biochemical implementation of computation using RNA
co-transcription. We have a fully functional implementation of our system which can be
freely downloaded from [1] to be run on the oritatami simulator [23].

Bit-weight encoding of a Turedo. Consider a radius-1 turedo. First, we get rid of its
internal state and orientation by encoding them in the symbols of the tape configuration.
We then encode each symbol of the resulting tape alphabet A as a string of ¢ bits where
q = [logy #.A]. The blank symbol L is encoded by the reserved word 0?. Let @ = 27. In
the following we assume that the neighboring cells of the current position are numbered
in counterclockwise (CCW) order from 0 to 5 where 5 denotes the cell previously visited
by the turedo. Our simulation assumes that the turedo transition function is a function
F:(29°% - 29%{0,...,4}, that reads the g bits bi0s---,b; 41 encoding the symbol in the
ith CCW neighboring cell for ¢ = 0..5, and outputs the ¢ bits of the symbol to be written
and the CCW index of the next cell to go to.” Furthermore, we assume that F' is encoded
as a tuple ((w;;), ®) such that F((b;;)) = (I)(Zi,j w;;b;;) where the 6¢ bit-weights (w;;) are
non-negative integers. All transition function F' can be encoded this way using the weights
wi; = 277 We denote by W = Z” w;; the sum of the weights of the bits. Encoded this
way, the size of the transition table of F' is exactly W + 1 for every bit and exit direction.

Principle of the macrocell operation. Fig. 1 presents a schematic overview of the key

operations in the macrocell. The transcript consists in five parts:

1. the scaffold of the macrocell folds, on each side of the macrocell, in front of the position
of each bit to be read, “read pockets” (in blue) of size egal to the weight given by the
transition function to that bit; it also builds one “exit pocket” (in orange) per side.

2. the read layer folds counterclockwise and fills the read pockets (outlined in blue) when
it senses a 0, and jumps over it when it senses a 1, pushing the transcript forward by a
shift corresponding to the sum A of the sizes of the pockets sensing a 1 (A = wy + wy in
the figure);

® The case of attempting to exit towards the CCW neighboring cell n°5 from which the turedo came, is
purposely ignored as it would unnecessarily complicate the construction.

Anonymous author(s) XX:7

Entry point

7. Uturn block Corner
?-\;e';‘é’;':g interchange
block g North-east
1. Writing block
North-west
Readin,
bluckg 13. Speed bump Middle interchange
y block
/){\\ 14. 18. North-east
\S / North-west Exit block
Exit block

5. North-east

Middle Reading block

interchange

12. North-west

Writing block Corner

¢ interchange
orner

interchange
& 9. South-east

Writing block 2

Middle

2. South-west interchange

Reading block

15. 17. South-east
South-west Exit block
Exit block

I 4. South-east
Middle)
interchange Reading block

16 Exit point
11. South-west South /

Writing block 3 gouen EXit 10. South Corner

Writing
Corner Reading block Middle I;Im;kg interchange

interchange block ;> interchange
/2 VORIV VAR N N\

Figure 2 A macrocell for a turedo with ¢ = 3 bits (Q = 8 tape symbols) together with the order
in which layers and modules are used along its boundary as well as snapshot of important modules:
(a)-(e) the read pocket in all possible situations: reading a 0/ L(b,d,e) or a 1 (a,c) from a neighboring
cell (a—d) (or not (e)) and through its exit layer (a,b) or directly from its write layer (c,d) — (f)-(h)
all possible situations for the write module: writing a 0 (g,i) or a 1 (f,h), through the exit layer (h,i)
or directly (f,g) — (j) the shift-absorbing speedbump — (k) the exit layer folds along the exit pocket —
(N-(m) the write layer has placed a kicking O76 bead in the corner that detaches the exit layer from

the pocket and concludes the folding by exiting to the SW. ‘ Zoom in for details ‘

XX:8

270
271
272
273
274
275
276
277
278
279

280

282
283
284
285
286
287

288

289

290

292
293
294
295
296
297
298
299

300

302
303
304
305

306

307
308
309

310

311
312
313

314

Oritatami systems assemble shapes no less complex than tile assembly model (aTAM)

3. the write layer contains all the transition tables of the simulated turedo, one for each
bit to write on each side, and one for each exit-or-not decision on each side; this layer
folds clockwise, and as it is translated forward by A, it folds the Ath entry of each
transition table at the writing spots (in purple) that trigger the foldings of the transition
table entries. The shift A accumulated by the reading layer allows then to write the
place output pattern on each side. It also places a “kicking bead” (in purple) in the
exit pocket on the computed exit side and no-kicking beads in the other using the same
shift-principle;

4. the speedbump module (outlined in green) absorbs the shift so that the next layer starts
without any shift regardless of the values read by the read layer;

5. the exit layer folds counterclockwise, following the border until it hits the kick (outlined
in yellow) and folds upon itself to the next macrocell.

Observe that the reading layer needs to "read” the bit from neighboring cells and still make

room for the two next layers to fold between its layer and the neighboring cells. This explains

why our oritatami systems has delay 3: it has to read through 3 layers.

This presentation was just an overview of the macrocell. The complete description of the
macrocell is given in Fig. 2. An actual execution of 20 steps of the simulation of a turedo
is illustrated in Fig. 7 in appendix. We will now present some of the key tools used in our
design.

Folding meter and pockets. Our construction relies on two new simple and powerful tools:

a folding meter is a 4n-periodic transcript whose period has 4 equally spaced articulation
points, so that it can either: 1) follow a border if it is strongly attracted to it; 2) fold
upon itself in a compact zig-zag form if the attraction to the border is weak; 3) reveal an
hardcoded structure if the attraction to its surrounding is mild.
a pocket is a box which triggers the compact folding of a folding meter and which allows to
hide a portion of it in a compact space. The entrance to such a pocket can be conditionned
by the surrounding. For instance, the read folding meter enters a read pocket if and
only if its reading head rq88 or rq36 is not attracted by the beads encoding a 1 in its
neighborhood (see Fig. 2(a—e)), otherwise it folds into an hardcoded glider and exit the
pocket rightaway.

Furthermore, several folding meters can be layered on top of each other in opposite direction

as long as their periods match. Synchronizing and desynchronizing the two layers allow to

trigger the various behaviors as well, by varying the strength of their bonds. For instance, the

write layer folds into spikes encoding 0 or 1 when it passes over the read layer in Fig. 2(f-i)

because its bonds are weaker with the read layer when the latter is desynchronized after

having been suck into the pitfalls that surround this area. Folding meters are presented in

details in appendix J.2

The read and write blocks. Fig. 3 shows in details the actual oritatami implementation of
the read and write blocks and how write pockets of size equal to the size of the transition
tables are used as interconnected vessels to place the correct entry of the table over the write
module.

Layer interchange. Each layer is heavily interacting with its neighboring layers inside a
macrocell. It follows that unwanted interferences may occur between layers of neighboring
macrocells. For this purpose, we use three different variants of bead types in each layer: one
for each half of each side, plus one in the middle (see Appendix J.16 and J.17).

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

Anonymous author(s)

transition table for bit n°2 transition table for bit n°1 transition table for bit n°0
&

v.

The write
layer is
shifted
forward

by A
1 1 1 half-
write write write periods

entry n°’A
is writtcnd +A
1
—— — —amm g \ A
-‘__'—.......... Ty f— -
no shift

no shift shift forward by w

0,

added added half-periods
read w,=1 read w,=0 read w,=1

Figure 3 The read and write blocks: (bottom) when the read layer folds, it fills every read pocket
facing a 0 on the neighboring macrocell, but skips the read pocket if it faces a 1, which increases the
shift forward of the read layer by the weight of the corresponding bit; this yields a total additional
shift of wy half-periods in the figure — (top) the transition tables are stored in the write layer
transcript: one per half-period; the size of the write pockets is set to WV half-periods to accomodate
all the unused entries in the transition tables and the transition table is located in the write layer so
that its first entry is aligned with the write module when the shift is 0; when the write layer starts
to fold, it is shifted forward by A =), .. read(i,j)=1 Wij half-periods, the total shift accumulated by
its preceding read layer (each transition table is highlighted in a different color in the figure); this
implies that the part of the write layer folding over each write module (highlighted in blue) is the
one encoding the A-th entry of the transition table for each bit to write on the macrocell side as
expected; this part will fold into a prescribed shape which will be read as 0 or a 1 by the read layer

of its upcoming neighboring macrocell. This is an actual oritatami simulation. ’ Zoom in for details ‘

Setting up the exit module. As the exit pocket needs to accommodate the remaining of
the exit layer before it exits, it must have room to fold in a compact shape a folding meter
of length up to four macrocell-side long. As the exit pocket belongs to the macrocell side, we
need to solve a fix point problem. Moreover, as a different amount of the exit layer will fold
into each exit pocket, we need a mechanism to make sure that in all cases, the transcript
will exit at the same position on the macrocell side, without interfering with the fix point
resolution above. The latter problem is solved by using a pair of “loose ropes” of equal
length, one on each side, “pulling” on the exit pocket to adapt its position to the macrocell
side. These two important points are detailed in Appendices J.15 and J.18. This concludes
the overview of the proof of Theorem 1.1.

4 Uncomputable Limit Configurations and Freezing Time

A configuration ¢ € A22 is computable if there is a Turing machine which on input z € z?
computes c¢(z). We are interested in the computability of limit configurations obtained from
finite initial configurations (i.e. everywhere L except on a finite region).

As said in the introduction, constructions of Turing universal oritatami systems known so
far [21, 12] do not produce uncomputable limit configurations. The key reason is that they
have a computable escape direction: a direction u € Z? and a computable non-decreasing
function p such that p(t) — oo and for any ¢ € N, the position z; of the head after ¢ steps
verifies u + z; = p(t) where ’+’ denotes the scalar product (i.e. the head globally moves away
along the direction u). Such a computable escape direction appears naturally in these
simulations because they are fundamentally simulations of space-time of one-dimensional
systems: they work by growing successive 1D finite configurations and stacking them along a

XX:9

XX:10

337
338

339

340
341

342

343
344
345
346

347

348
349

350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

372

373
374
375
376

377

378

Oritatami systems assemble shapes no less complex than tile assembly model (aTAM)

direction u that corresponds to the time of the simulated system. The simulation never goes
back to previously stacked layers simply because computing one step of the 1D system is
performed using the last stacked 1D configuration only. More generally (proof in appendix):

» Fact 4.1. For any turedo reaching limit configuration co. from a finite global state s, the
maps z = co (2) and z = 74(2) are Turing-equivalent. Moreover they are both computable if
the dynamics admits a computable escape direction.

In the next result, we construct a turedo that goes back uncomputably close to the origin
uncomputably often in spite of following a self-avoiding trajectory. Precisely, we prove that
turedos of radius 1 and therefore oritatami are powerful enough to embed any recursively
enumerable set into their limit configurations reached from a finite initial configuration. As
a consequence, both models produce uncomputable limit configurations.

» Theorem 4.2. There exists a fized turedo of radius 1 which, when started from a fized
global state s with a blank tape configuration, reaches an uncomputable limit configuration
and therefore has an uncomputable freezing time map Ts.

Proof sketch. The basic idea, illustrated in Fig. 4a, is to build a turedo which runs a Turing
machine simulation to test all Turing machines for halt in parallel and that, when it finds
that some machine ¢ has halted, interrupts momentarily its computation and goes to write a
flag in a prefabricated area p(i) located at a computable position in ¢ (initially all areas p(i)
are empty). Areas of type p(i) are progressively filled in some uncomputable and unknown
order, but, at the limit, it holds that p(i) contains a flag if and only if the machine i halts.
Therefore the limit configuration is uncomputable because it can solve the halting problem
when used as an oracle.

The key to implementing this idea is the layout of the paths to reach the areas p(i): when
we proceed as shown in Fig. 4a, no more than i paths will go across the area p(i), i.e. the
ones that correspond to the halting Turing machines with j < i. As a zigzag of thickness
O(j) is enough for the turedo to reach area j, place a flag and go back, then the flag in area
p(¢) (if any) will never be placed higher than 0(i?) (see appendix). It follows that these
area have quadratic size and their ground basis can be set up in advance by the turedo as it
simulates the Turing machines in parallel (in particular, the turedo will start the simulation
of machine 4 only after the ground basis of area p(i) is set up). Of course, Figure 4a is a
simplification and does not represent all movements of the turedo’s head: in particular, when
moving towards area p(i), the turedo needs to carry on the information 7 and to bubble
up the ground basis of each area crossed over along the way, and it cannot carry those in
its state set. All the implementation details are given in appendix. Using our simulation
framework (and in particular Lemma C.2 in appendix), main Theorem 1.2 follows directly
from Theorems 1.1 and 4.2.

5 Characterization of Possible Densities of Limit Configurations

We can define the (upper) density d(¢) of non-blank cells in configuration ¢ as follows:

#{z € B(n):c(z) + L}
b(n) '

d(c) = limsup

This choice is natural and gives a translation-invariant notion, but it is not unique (we could
replace the sequence (B(n)), by another Fglner sequence [8]). The problem is that, in a
simulation, the lattice of cells is distorted into a macro-lattice of macro-cells in such a way

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

Anonymous author(s)

——>at most k paths cross the k-th area

S——
==

Wr=1=1

M] halts M, halts M, halts

-

slowly growing
computation

Parallel TM simulation

(a) Sketch of the turedo building an uncomputable limit (b) Sketch of the turedo building a limit con-
configuration. figuration with an arbitrary density d € II,.

Figure 4 Sketch of the two turedo constructions in sections 4 and 5.

Figure 5 The linear map A between the turedo world and the oritatami world induces a tilt
between the concentric balls in the both worlds. This simulation tilt must be compensated by
providing to the simulated turedo a pair of vectors as an input, so that it fills a proper discretization
of the oritatami world balls when simulated: (left) the shortest radius vectors v}, vy of a ball in the
oritatami world that can be mapped exactly in the turedo world — (right) when the two corresponding
vectors vq, vy in the turedo world are supplied to the turedo as an input, the turedo can use them to
build a proper discretization of large enough balls in the oritatami world — (middle) both turedo and
oritatami worlds superposed (the target balls are drawn in purple and the discretized turedo ones in
blue).

that the macro-balls do not have the same shape as genuine balls, as shown in Fig. 5. Said
differently, the reference Fglner sequence is distorted into another one and this can change
the density. To circumvent this problem and produce more robust results, we will consider
all possible linearly distorted balls from the start: for any pair v, vy € Z? of non-colinear
vectors, we consider the (upper) density Elvl’w of non-blank state after distortion of the
lattice by the pair v; and vy (formal definition in appendix).

We first prove that the computational complexity of c_l,,hv2 (¢) is I5-bounded as soon as ¢
is produced as the limit of a computable process on finite configurations such that the set of
non-blank positions is monotonically increasing and with diameter growing in a computable
way. This bound applies to turedos but also all systems cited in section 1.

» Lemma 5.1 (Densities of any self-assembling systems are II, — proof in appendix). Let ¢
be the limit configuration reached from some finite seed by some system among oritatams,
turedos, freezing cellular automata or directed aTAM. Then for any pair of non-colinear
vectors vy, Vs, the upper density c_lvl,vz(coo) is a Ila-computable number.

For non-deterministic systems (both turedos and aTAM), we can state a similar lemma say-
ing that, starting from any finite seed, there is always one orbit converging to a configuration
with II, density.

XX:12 Oritatami systems assemble shapes no less complex than tile assembly model (aTAM)

el

Figure 6 Increasing the density by folding a filled hexagon inside the macrocell expanded by 50,

100 and 200 extra 2n-periods on each side. Actual oritatami simulation ‘ Zoom in for details ‘

s Arbitrarily dense simulation. The next theorem is a stronger version of Theorem 1.1,
s7 enforcing a constant and arbitrarily large density inside each macrocell of the oritatami
;s simulation of a given turedo. Precisely, if we consider the cell partition of the oritatami
0 plane into disjoint identical copies of a macrocell tile M induced by the map A from the
wo turedo world to the oritatami world, where each copy A(z) + M covers exactly the macrocell
s corresponding to the turedo position z (see Fig. 5 and Appendix C), then:

w2 P Theorem 5.2. For any turedo T of radius 1, and for any € > 0, there exists an oritatami
w3 system of delay 3 that simulates T and such that the number of occupied positions in each
ws macrocell tile A\(z) + M in the oritatami limit configuration is exactly k for all non-L
ws position z of the turedo limit configuration (and 0 for L position), with k = (1 —€) - #M.

406 This result is obtained by 1) expanding of the macrocell with a straight line of length L in
w07 the middle of each side so that the empty triangles between the macrocells become negligible
ws and 2) inserting a sequence in the scaffold that folds into a filled hexagon of radius L(1 + a)
wo inside the space freed inside the macrocell by the expansion. The factor o > 0 is necessary to
a0 account for the increase of the exit pocket induced by the increase of the side length (more
a1 transcript needs to fit into the pocket) (see Fig. 6). Picking L large enough concludes the
a2 proof. The case of density 1 is treated in Appendix I.

a3 Arbitrary II,-density. We conclude with the construction of a turedo of radius 1 that
s is able to produce limit configurations with any possible density when starting from the
a5 appropriate finite configuration. By possible density we mean any real number d € [0, 1]
ss which is II,-computable [25], i.e. such that there exists a computable sequence of rational
a7 numbers (g,) with d = limsup,, ¢,,. The construction is rather technical but the overall idea
ns is simple (see Fig. 4b): at step n, leave a large annulus empty then densely fill another large
a9 annulus in such a way that the surface ratio between these annuli is ¢,, and that their sizes
a0 are large enough to dominate all the previously constructed annulus in anterior steps. The
= exact sequence of annuli is computed by the turedo in a sublinearly growing (hence negligible)
a2 corridor.

w23 P Theorem 5.3. There exists a turedo of radius 1 such that for any Ily-computable number
o d €[0,1] and any pair of non-colinear vectors vy, vy, there is a finite initial global state such
w5 that the limit tape configuration ¢~ reached from it verifies: dvhw(cw) =d.

426 The Ils-computability limitation is unavoidable as shown in Lemma 5.1, hence our
w27 result is optimal and actually gives a characterization of densities of limit configurations
2s of continuous sequential self-avoiding systems (resp. turedo, resp. oritatami) started from
»9 finite configurations. Using our simulation framework and Theorem 5.2 we directly deduce
w0 Theorem 1.3.

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

Anonymous author(s)

—— References

1

10

11

12

13

14

15

16

17

18

Anonymous. Turedo to oritatami compiler: https://hub.darcs.net/turedo2oritatami/
turedo2oritatami.

Sebastian Barbieri, Jarkko Kari, and Ville Salo. The group of reversible turing machines.
In Cellular Automata and Discrete Complex Systems, pages 49—-62. Springer International
Publishing, 2016.

Florent Becker, Diego Maldonado, Nicolas Ollinger, and Guillaume Theyssier. Universality in
freezing cellular automata. In Sailing Routes in the World of Computation - 14th Conference
on Computability in Europe, CiE 2018, Kiel, Germany, July 30 - August 3, 2018, Proceedings,
pages 50-59, 2018.

Marianne Delorme, Jacques Mazoyer, Nicolas Ollinger, and Guillaume Theyssier. Bulking ii:
Classifications of cellular automata. Theor. Comput. Sci., 412(30):3881-3905, 2011.

Erik D. Demaine, Jacob Hendricks, Meagan Olsen, Matthew J. Patitz, Trent A. Rogers, Nicolas
Schabanel, Shinnosuke Seki, and Hadley Thomas. Know when to fold ’em: Self-assembly
of shapes by folding in oritatami. In DNA Computing and Molecular Programming - 2/th
International Conference, DNA 2/, Jinan, China, October 8-12, 2018, Proceedings, volume
LNCS 11145, pages 19-36, 2018.

D. Doty, J. H. Lutz, M. J. Patitz, R. T. Schweller, and S. M. Summer. The tile assembly
model is intrinsically universal. In Proceedings of the 53rd Annual Foundations of Computer
Science (FOCS), 2012.

David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, and
Damien Woods. The tile assembly model is intrinsically universal. In FOCS2012: Proceedings
of the 53rd Annual IEEE Symposium on Foundations of Computer Science, pages 302-310,
2012.

Erling Fglner. On groups with full banach mean value. MATHEMATICA SCANDINAVICA,
3:243, dec 1955.

Cody Geary, Guido Grossi, Ewan K. S. McRae, Paul W. K. Rothemund, and Ebbe S. Andersen.

RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds.
Nature Chemistry, 13:549-558, 2021.

Cody Geary, Pierre-Etienne Meunier, Nicolas Schabanel, and Shinnosuke Seki. Programming
biomolecules that fold greedily during transcription. In MFCS2016: Proceedings of the 41st
International Symposium on Mathematical Foundations of Computer Science, volume 58 of
LIPIcs, pages 43:1-43:14, 2016.

Cody Geary, Pierre-Etienne Meunier, Nicolas Schabanel, and Shinnosuke Seki. Oritatami:
A computational model for molecular co-transcriptional folding. International Jounal of
Molecular Sciences, 9(2259), 2019.

Cody Geary, Pierre-Etienne Meunier, Nicolas Schabanel, and Shinonsuke Seki. Proving the
Turing universality of oritatami cotranscriptional folding. In ISAAC 2018: Proceedings of the
29th International Symposium on Algorithms and Computation, volume 123 of LIPIcs, pages
23:1-23:13, 2018.

Cody Geary, Paul W. K. Rothemund, and Ebbe S. Andersen. A single-stranded architecture
for cotranscriptional folding of RNA nanostructures. Science, 345:799-804, 2014.

E. Goles, N. Ollinger, and G. Theyssier. Introducing freezing cellular automata. In J. Kari,
I. Térmé, and M. Szabados, editors, Exploratory Papers of Cellular Automata and Discrete
Complex Systems (AUTOMATA 2015), pages 65-73, 2015.

Petr Kurka. Topological and symbolic dynamics. Société Mathématique de France, 2003.
James 1. Lathrop, Jack H. Lutz, Matthew J. Patitz, and Scott M. Summers. Computability
and complexity in self-assembly. Theory Comput. Syst., 48(3):617-647, 2011.

Diego Maldonado, Anahi Gajardo, Benjamin Hellouin de Menibus, and Andrés Moreira.
Nontrivial turmites are turing-universal. J. Cell. Autom., 13(5-6):373-392, 2018.

Yusei Masuda, Shinnosuke Seki, and Yuki Ubukata. Towards the algorithmic molecular
self-assembly of fractals by cotranscriptional folding. In CTAA2018: the 23rd International

XX:13

https://hub.darcs.net/turedo2oritatami/turedo2oritatami
https://hub.darcs.net/turedo2oritatami/turedo2oritatami
https://hub.darcs.net/turedo2oritatami/turedo2oritatami

XX:14 Oritatami systems assemble shapes no less complex than tile assembly model (aTAM)

483 Conference on Implementation and Application of Automata, volume 10977 of LNCS, pages
484 261-273. Springer, 2018.

s 19 Nicolas Ollinger and Guillaume Theyssier. Freezing, bounded-change and convergent cellular
486 automata. CoRR, abs/1908.06751, 2019.

a7 20 Matthew J. Patitz. An introduction to tile-based self-assembly and a survey of recent results.
488 Natural Computing, 13(2):195-224, 2014.

a9 21 Daria Pchelina, Nicolas Schabanel, Shinnosuke Seki, and Yuki Ubukata. Simple intrinsic
490 simulation of cellular automata in oritatami molecular folding model. In Yoshiharu Kohayakawa
401 and Flavio Keidi Miyazawa, editors, LATIN 2020: Theoretical Informatics - 14th Latin
492 American Symposium, Sao Paulo, Brazil, January 5-8, 2021, Proceedings, volume 12118 of
493 Lecture Notes in Computer Science, pages 425-436. Springer, 2020.

a4 22 Paul W. K. Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly of DNA
495 Sierpinski triangles. PLoS Biology, 2:2041-2053, 2004.

a6 23 Nicolas Schabanel. Simple OS simulator: http://perso.ens-1lyon.fr/nicolas.schabanel/
497 OSsimulator/.

a8 24 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,
490 1998.

soo 25 Xizhong Zheng and Klaus Weihrauch. The arithmetical hierarchy of real numbers. In Mirostaw
501 Kutytowski, Leszek Pacholski, and Tomasz Wierzbicki, editors, Mathematical Foundations of
502 Computer Science 1999, pages 23-33, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

http://perso.ens-lyon.fr/nicolas.schabanel/OSsimulator/
http://perso.ens-lyon.fr/nicolas.schabanel/OSsimulator/
http://perso.ens-lyon.fr/nicolas.schabanel/OSsimulator/

503

. Appendix

505
506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539
540

Table of Contents

A

B

c

D

K

Omitted figures of the macrocell
Appendix: Zigzag Toolkit for Turedos
Appendix: Formalizing Simulation

Appendix: Definition of EUWZ and B, ,,, and transfert of density through
simulation

Appendix: Proof of Fact 4.1

Proof of Lemma 5.1

Appendix: Construction of Theorem 4.2

Appendix: Construction of Theorem 5.3

Achieving density 1: a delay-3 oritatami filling the plane

The oritatami modules

J.1 Notations
J.2 Folding meter and Pocket
J.3 Multi-layer interactions
J.4 Transcript
J.5 Scaffold
J.6 Layer ordering and pocket sizes. L.
J.7 Read pocket
J8 Writemodule
J.9 Write pocket
J.10 U-turn moduleo
J.11 Corner module
J.12 Exit pocket
J.13 Exitinterchange trap
J.14 Step and shift modules
J.15 Exitmodule oL
J.16 Corner interchange block L
J.17 Middle interchange blocko oo
J.18 Determining the macro-cell size: solving the fix point.

J.19 Tracker speed bump

The turedo-to-oritatami compiler

16

17

21

22

23

23

25

29

35

XX:15

XX:16

s« A Omitted figures of the macrocell

Figure 7 A path of 20 macrocells for ¢ = 3-bits turedo whose internal state is always 1 and whose
exit direction depends on the number f of unoccupied neighborings macrocells: if f < 2, it exits to
the CCW-most free macrocell; if f = 3, it exits to the free macrocell in the middle; and otherwise, it

exits to the CW-most free macrocell. This is an actual oritatami simulation. ‘ Zoom in for details

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

B Appendix: Zigzag Toolkit for Turedos

Zigzag transducers. First, if turedos are heavily constrained compared to general 2D
Turing machines, they can easily embed 1D finite-state transducers and 1D Turing machines:
by progressively filling a region of space by making zigzags, a turedo can compute the iterated
applications of a 1D transducer on a finite word where each successive zigzag represents the
result of an iteration of the 1D transducer. Moreover any finite-state machine can be used to
expose useful information at the end of each of the zigzag for latter use. More precisely, if we
fix two non co-linear directions d.)T (for time) and d.s) (for space) in Ny with d.)T + d.)s € Ny,
a zigzag construction starting from pObitiOH zo if such that the beginnings of zigs and ends
of zags will stick to the base line zg + N dT and the zigzags will only occupy a cone of
space between z; + N - dT and z; + N - (dT + ds) for some z; = zg + xdT Concretely, it is
straightforward to build a turedo M with neighborhood Ny such that (see Figure 8):

Figure 8 Example of a zigzag computation by a turedo: the t-th zigzag is represented in dark
gray, its length [, verifies I, = [,;,; =4 and [,_, = 3.

the t-th zig visits cells zg + (2t — l)d_T) to zg + (2t — 1)d_)T + (I, — 1)(73 and the t-th zag
visits cells 2y + 2td_T) + (I, — l)d_)s to zg + 2td_)T where [, denotes the width of the ¢-th
zigzag;

in some component of states of M, the ¢t-th zig contains a word wu; of length [;, the t-th
zag a word v; of length [;; v; is obtained by applying some finite-state letter-to-letter
transducer on u;, and u;4q is obtained by applying another finite-state letter-to-letter
transducer on v; and possibly append a new letter at the end determined by the state of
some finite-state automaton run on v; (so we have |l;11 — ;| < 1);

-
in some other component of states of M position zy + (2t + 1)dr (first position of
(t + 1)-th zig) encodes the state of some finite-state automaton run on v; and position

>/,
zo + (2t + 2)dr (last position of (¢ + 1)-th zag) encodes the state of some other finite-state
automaton run on us4q.

Note that, in particular, one can simulate a 1D Turing machine by progressively building
its space-time diagram in such a zigzag construction. In this case, the zig steps allow to move
the simulated Turing head in one direction of the 1D tape, and the zag steps in the other
direction. The additional information encoded at the beginning of zigs and at the end of
zags can also be linked to the Turing machine: for instance, we can encode the information
of whether some counter in the simulated Turing machine is non-zero.

Zigzag snakes. As seen above, turedos can perform arbitrary 1D computations in some
organized regions of space. Zigzag snakes are a means to transport unbounded information
(i.e. information that might not fit inside turedo’s state set) from one region of space to
another following possibly complicated paths. They are constant width zigzags where the
width represents the information transmitted in unary. They globally move in some direction
d_)T while their zigzag oscillations of constant width are done in direction d_)s, where d_T) and

— — —
dg verify dp + dg € Np. They can additionally do two things:

XX:17

XX:18

579
580

581
582

583
584

585

586

588

589
590
591
592

593

594

595

596
597

598

599
600
601
602

603

604
605
606
607

608

Figure 9 Example of zigzag snakes trajectory following obstacles. Zig phases are in dark gray,
zag phases in light gray, and obstacles in black. Initially only black cells are occupied.

they can globally shift along direction Cl_fg to climb obstacles or in direction —d_S) when
there is no occupied cell to block them (as if there was a gravity field in direction —d.)s)
The possible d_; shifts are limited to one unit per zigzag, so the snake can only follow
’smooth’ curves. To do so, the turedo holds a shift value § € {—1,0,1,2} in its state and
the tape alphabet can possibly hold a marking information from {b, —1,0} used to detect

-
the beginning and the end of the snake along direction dg: b stands for beginning, and

—1 and 0 are used to mark the one but last and last position in direction d.)g The ¢ value
is used during the zig phase and updated during the zag phase. The zigzag cycle is as
follows for a snake at position z € Z? with shift value § at the beginning of the cycle (see
Figure 9):

1. the zig phase starts by putting the mark 0’ in position z and moving in direction
;5 until one of the following happens: either § < 0 and it reaches a position 2 such
that 2' — d_T) has a marking information equal to §, in which case the next move is
in direction d—T) and the zag phase begins; or § = 1 and it reaches a position 2 with
2 - d_)T empty, in which case the next move is in direction d_)T if6=1and d_j)" + d_)S if
0 = 2 and the zag phase begins.

2. the zag phase consists in moving in direction —d—)s; it marks its two first steps by 0
and —1 respectively, and it goes on until one of the following happens:

a. terminating with no shift: if position z — d_)T is marked by b and z — d_s) is
occupied and z + d_)T is empty, then move to z + d_)T, update § to 0 and start a new
zig;

b. terminating with simple obstacle in current zag: else if z — d_; is occupied
but z + d.'z: is free, then move to z + d.)T, update to +1 and start a new zig;

c. terminating with simple obstacle in next zig: else if z + d.]: is occupied but
z— d_7: has the mark ’b’, then move to z + d_)T + d_s), update 0 to +1 and start a new
zig;

d. terminating with double obstacle: else if z + d_)T is occupied and z — d_T) has no
mark ’b’, then move to z + d—';" + d—s), update § to +2 and start a new zig;

e. terminating with free fall: else if z — d_>T is marked by b and z — d_s) is empty,

— — — . .
then move to z — dg, next move to z — dg + dp which is supposed to be empty;

XX:19

Figure 10 U-turn of a zigzag snake. In dark gray the forward snake and in light gray the backward

snake.
609 update § to —1 and starts a new zig;
610 f. any other situation is unspecified and will not be used in our constructions.
611 zigzag snakes can also make U-turns, i.e. change their global movement vectors from
612 (d.q)«, d.)s) (forward snake) to (—d.)T7 d.)s) (backward snake) while preserving their width (see
613 Figure 10). After the U-turn, the positions that were at the end of zigs or beginning of
614 zags for the forward snake become obstacles for the backward snake. The decision to
615 make a U-turn is done at the end of a zag when encountering an obstacle, it is triggered by
616 a combination of the internal state of the head and the symbol read on the obstacle. We
617 will only use U-turns in regions were the snake is going straight (6 = 0) and no obstacle
618 is present that would block the backward snake. Suppose the width of the forward snake
619 is w. The algorithm of the U-turn consists in first going on in the same global direction
620 while reducing the size of the snake of one unit after each zigzag and marking a line of
621 direction d_)T above the 0 mark of the last zag of the forward snake. Do this until the snake
622 is reduced to one unit. Then use that marked vertical line as reference to do the opposite
623 operation: go in the backward direction and increase by one unit after each zigzag, until
624 the 0 mark of the last 238 of the forward snake is seen, precisely when reachlng a position
625 z such that z — dT ds is marked by 0. Then move to position z — dT and at this point
626 the first zig of the backward snake can begin with the correct reference width given by
627 occupied cells z to z + (w — 1)d_)5
628 Zigzag snakes are useful because of the information they carry in their width. To use

60 them in the context of a complex turedo with many components, we need two additional
630 constructions:

631 Creating a snake of a given length: this is done by first marking a segment of
632 the desired length along some direction and then using the second phase of the U-turn
633 construction. More precisely, suppose that some zigzag transducer is working with base
634 line zg + N - d_T) and space direction —d_; and that it reaches position zg + (¢ + 2w — 1) - d_T)
635 after having marked 2w — 1 position along this baseline. Then the second phase of the
636 U-turn is triggered using this marked baseline to create a snake of global movement

i - - - .
637 (—=dr,dg), of width w and that starts a zig at position zg + ¢ - dr + dg (see Figure 11).

XX:20

A

Figure 11 Creation of a zigzag snake of width 3. In dark gray the zone occupied by the zigzag
transducer that marked 5 positions along its base line (in red). In light gray the created snake.

Figure 12 A successful equality test on the width of a zigzag snake. In dark gray the obstacles,
in green the start marker and in red the stop marker. In blue the unary counter inside the snake
which is represented in light gray.

s = Equality test on the width of a snake: when the snake moves without shift (§ = 0),

639 it can realize some simple computational task inside an additional component of states
640 while maintaining its standard movement like a constant space zigzag transducer would
641 do. In particular, it can hold a unary counter no larger than its width, and updating it
642 according to some information read on the obstacles that force its d_T) movement. Using
643 this technique, an equality test between the width of the snake and the distance between
644 some start/stop markers read on the obstacles can be done as follows (see Figure 12):
645 - the test subroutine is launched at a zig after the end of the previous zag reads some
646 start marker on the adjacent obstacle;

647 - then the subroutine run inside a subset of states and consists in reducing some unary
648 counter by one unit at each zag starting from the full width of the snake;

649 - when the unary counter is reduced to 1 at the end of a zag, the result of the test is

650 true is the blocking obstacle has a stop mark, and false otherwise.

XX:21

s C Appendix: Formalizing Simulation

e2 Recall that every oritatami system with delay § is a turedo with radius § + 1, it follows that
63 the definitions next apply to oritatami systems simulating turedo as well.

654 In the following definition, we formalize a notion of simulation that captures the ability of
es a turedo 77 to reproduce all the dynamics of a turedo 75 up to a spatio-temporal re-scaling.
es More concretely, to each step of 75 that modifies the configuration at some position, 7;
67 responds in a constant number of steps by adding a constant size pattern in the corresponding
s position in some scaled-up hexagonal lattice of macro-cells (to have a concrete idea in mind
69 the reader can think of macro-cells as hexagonal balls of radius r, but our definition below
o allows other kind of macro-cells). In this way, the precise evolution of T3 can be recovered
e1 from the evolution of 7;.

662 The following definition implements the above idea allowing redundancy of coding (several
3 macro-cell contents in the simulator can encode the same cell letter of the simulated system)
e« and representation of state of the simulated head as a mixed coding into both tape and head
o5 state of the simulator.

ss P Definition C.1. We say that a turedo T; = (A;, Ql,q?,rl,él) of global map F; simulates
s7 another turedo To = (As, Qg,qg,rg, 02) of global map F if:

668 there exists a finite macrocell tile M < Z® and a linear transformation X : z’ > 72
669 associated to two non-colinear integer vectors (i.e. a 2 X 2 matriz with integer coefficients),
670 which defines a macro-lattice such that macro-cell tiles tile the plane heragonally when
671 placed on the macro-lattice, precisely:

672 M+ X2) N M+ Au) = @ as soon as z # u and Z° = U,ez2 N(2) + M,

673 M+NgnM+Mz)+@ < z€ AXNg)u{(0,0)},

674 for each a € Ay there is a collection of tape patterns P, < A{V[with P, N P, = @ whenever
675 a# b, and P, = {L™}; this defines a tape decoding map ¢ : X — (AQ)Z2 defined on
676 the set X of configurations c € A122 such that (Vz € 22) Cia(z)+M € Uaea, Py, as follows:
677 o(c)(2) = a if eixz)+mr € Pas

678 for each qo € Qo there is a collection of state patterns R, S Aiw X M X Q1 with
679 Ry, N R,, = @ whenever q, # py; this defines the set X S Sy, of decodable global
680 states (¢, x,q1) of Ty which are exactly those verifying: for all z, ¢|x(z)+m € Ugea, Po if
681 x € XNz)+ M and (cpaz)em, = AN(2),q1) € Uge, Ry, if v € XN(2) + M;

682 the above elements define a global state decoding map ¢* : X — (A2)22 x Z% x Qs by
683 & (cr,z1,q1) = (¢, 22, q2) where zy is the unique point such that z; € M(z3) + M and g
684 is the unique state such that (c|x(z)+m> 21 — AN(22),q1) € Ry,, and cy(22) = L and, for
685 all z # 25, c2(2) = a where a is the unique symbol such that P, 3 ¢|x(z)+m

686 there is a set of local constraints defining the subset of valid global states X € X as
687 follows: for each “oriented domino” (a,v,b) € Ay X Ni X Ag there is a subset of valid
688 tape patterns P,) € Py € A{V[, and

2
689 X+ = {(Clwzlvql) €EX:VzeZ aVU € NH761|)\(z)+]\/[€ P(CQ(Z),'U,CZ(Z""U))? where (627227(]2) = ¢+(Cl7zlvql)};

690 moreover we ask that for any global state (cy, 29, qs) there is a corresponding global state
+ . +

691 (c1,21,q1) € X7 with ¢™ (c1, 21, q1) = (2,22, 42);

692 a time rescaling factor T = 1,

2
s such that for any configuration co € (A3)* and z € Z> such that ca(z) = L, and
s for any global state (c1,2z1,q1) € X* such that ¢" (¢1,21,q1) = (¢2,22,q2), it holds that
T T
ws Fy (c1,21,q1) € X7 and ¢"(Fy (c1,21,¢1)) = Falea, 22, q2).

XX:22

696
697
698

699

700
701
702
703

704

705
706
707
708
709
710
711
712
713

714

715

716

717
718
719

720

722

723

724

725
726
727
728
729

730

732

733

735

736

Note that the relation between F* 1T and Fy through ¢* can be iterated along the considered
orbits and that blank letter L is represented by a L pattern only. This makes Definition C.1
strong enough to preserve computability and density of limit configurations as shown in the
following lemmas.

» Lemma C.2. Taking notations of definition C.1, suppose that turedo T, simulates turedo
Ty and that ¢35 is the limit configuration reached by Ty from global state (cy, 22,q2) and
¢’ is the limit configuration reached by T, from global state (ci,21,q1) € X' such that
¢ (er,z1,q1) = (¢2,22,q2). Suppose also that ¢y is finite and ¢y infinite. Then it holds
#(cs’) = ¢1°. In particular, ¢y is computable from c5 .

Proof. Take any ez’ By the definition of limit configurations, there is a freezing time tin
such the value of cio(z") is obtained after tiu steps at position 2" in the orbit of 7;. The same
holds for 73 and ¢5° and we denote by tiu the corresponding convergence times. Now take 7 =
max(t?, MAX e (") + M tim). By the simulation, we have ¢+(F1TT(01, 21,q1)) = Fy (ca, 22,¢2).
We also know by the assumption that the run of F, starting from (cs, 29, ¢qs) is infinite
(because it must produce an infinite c5 starting from a finite c;). The same is true for F}
starting from (cy, z1,q1). We deduce that the heads of F, will not visit cell 2" after time 7
and similarly for all cells A(z") + M of Fy. It follows that (c({o)p\(zn)JrM € Py (.n. This being
true whatever the choice of z", we thus showed ¢(c;”) = co . The fact that cg is computable
from ¢;° follows immediately. <

D Appendix: Definition of Evl’vz and B, ,,, and transfert of density
through simulation

Let vi,v9 € Z® be two non-colinear vectors. Denote by H(vi,vs) the closed pseudo-
hexagon in the real Euclidean plane with extremal points: vy, vo, vy — v1, —=¥1, =V2, V1 — Vg,
and by B, ,,(n) the pseudo-ball made of integer points inside H(nvy,nvy)
By, v,(n) = Z° n H(nvy,nvy). We then define the associated (upper) density of non-blank
cells in configuration ¢ by:

#{z € By, uy(n) : c(2) # 1}
#B'ul,vz (Tl) .

EUM)Q (¢) = limsup

We can now state a density transfer lemma for simulations that use coding patterns with
a constant number of non-blank cells.

» Lemma D.1. Tuking notations of definition C.1, suppose that turedo T, simulates turedo
Ty in such a way that, for some k € N, the number of occurrences of L in each pattern of P,
fora € Ay and a £ L is always k. Then for any non-colinear pair of vectors (vy,vs), there
is a pair (’Ull,’UIQ) such that, if c5 is the infinite limit configuration reached by Ty from global
state (ca, 22, q2) with ¢y finite and ¢; is the limit configuration reached by T; from global
state (c1,21,q1) € X* with ¢" (c1,21,q1) = (c2, 29, q2), then dy, ,,(c7) = % cdy 1 (cg)
where | M| denotes the size of M.

Proof. First, the hypothesis of Lemma C.2 are fulfilled so we have ¢(ci°) = ¢5’. The 2 X 2
matrix defining map A being non-singular (on field Q) we deduce that there are vector (v}, vy)
such that (Nvy, Nvy) = A(vy, vs) for some integer N = 1 ((v1,v2) can be reached from a
Q-vector and then it suffices to multiply by the least common multiple of denominators).

This means that the cells of 73 in pseudo-ball B, . (n) are simulated by macro-cells in 7;

!
2

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

XX:23

whose union is

U(n) = g Ma,b) + M.

(a,b)EBUr] .’vrz(n)
Let us denote by dg; the density of non-blank cells in ¢}’ restricted to some finite set S:

der o #{" €S : ")+ L}
S,1 #S

and similarly dg o for ¢5 . From the hypothesis and the choice of U(n) above we have:

| M| -k
dp L ()2 = R dy(nyn

vy,

because to each blank cell in B, ,; corresponds a blank macro-cell in U(n) and to each
non-blank cell in B, ,; corresponds a macro cell with exactly |M| -k non-blank cells.
Remark that #U(n) € Q(n?) and #(U(n) \ Bnuv, Nv,) € O(n) (by the tiling property of
macro-cells on the macro-lattice), so diy(n),1 = dBy,, x.,(n)1 + 0(1). Moreover for any integer
i with |i| < N it also holds dp, . (Nn+i),1 = dBy,, o, (n)1 +0(1). We conclude that

| M| -k _ M| -k

= 00 . . 3 S
duj y(c2) = lmsupdp,, |, ()2 = limsup T Bt T T dy, 0, (c1).

<

E Appendix: Proof of Fact 4.1

Proof. To compute 7,(z) from ¢ (z) one just computes step by step the orbit until reaching
the first step ¢ such that the configuration at z is equal to ¢”(2). Then 7,(z) = t. Conversely,
one computes ¢ (z) from 7,(z) by just computing the orbit for 7,(z) steps and returning
the value obtained at position z.

If we suppose that u € Z’isa computable escape direction associated with computable
map u, then the map

a:zEZszaX{t:ﬂ(t)$U'Z}

is also computable because pu(t) = oo and u is non-decreasing. Then 7,(2) < a(z) + 1 and
thus 7, is computable (by simulation during «(z) + 1 steps). <

F Proof of Lemma 5.1

To prove Lemma 5.1 we actually show a more general result.

» Lemma F.1. Let (ct)teN be a sequence of configurations of AZZ converging towards ¢
and verifying the following:

1. ¢'(z) = L implies ct’(z) =1 foranyt <t,

2. (t,2) » c'(2) is computable,

3. there is ¢ computable such that for all t and any z ¢ B(¢(t)) it holds ¢'(z) = L.

This lemma applies to turedo starting from finite initial configurations (in this case the
sequence (ct) is the orbit of tape configurations, and ¢ is just a linear map), but also to
directed aTAM self-assembly system [20, 16] and freezing cellular automata [19].

XX:24

770
771
772
773

774

775

776
77

778

Proof. Denote by d; ,, the proportion of non-blank cells in B,, ,,(n) for the configuration
ct7 and denote by de ,, the proportion of non-blank cells in B,, ,,(n) for configuration .
Clearly d, ,, is a rational number computable from ¢t and n by computability of (¢, z) + A (2).
Moreover, by hypothesis 1, (d;) is monotone increasing so we have do, ,, = sup; d ,, and
therefore

Evhvz(cw) = inf sup sup d; ,, = inf sup sup d ,,.
m nzm t m.ot nzm
Note also that if ny = ny = ¢(t) then d, ,, is smaller than d, ,, by hypothesis 3. We deduce
that g, + = sSup,»,, di» is a rational number computable from ¢ and m. Finally we have
dy, v, (¢) = inf,, sup, @m,+ and [25, Lemma 3.2] shows that it is a II;-computable number. <

= G Appendix: Construction of Theorem 4.2

Snake pile Main zigzag transducer

’Tetum mark

start

®
stop

Figure 13 Schematic overview of the execution around a marking zone: snakes (in light gray)
corresponding to machines i, i, and i3 with halting time T'(i;) < T'(i5) < T(i5) but i, < i, and
i3 < iy. In green a snake launching zone, in red a snake ending zone, in blue a U-turn after a

successful equality test. Tests are represented in dark gray.

0 Main zigzag transducer for the Turing simulation. The zigzag transducer has global

w1 directions (d_T), d—)s) and run two algorithms in parallel that share the global variable m:

Algorithm 1 — Turing simulation

MACHINES < @
n <0
loop forever:
1. nen+1
782 2. MACHINES <« MACHINES U {n}
3. for each ¢ € MACHINES do:
a. simulate n steps of machine ¢ starting from an empty tape
b. if ¢ has halted during the simulation then
i. if necessary, wait until m >4
ii. MACHINES « MACHINES \ {i}
iii. launch a zigzag snake subroutine of width ¢

XX:25

XX:26

783

784
785
786
787
788
789

790

792
793
794
795

796

797
798
799

800

801
802
803
804
805
806
807
808
809
810

811

812
813
814
815
816
817
818

819

Algorithm 2 — Marking

m < 0

T
loop forever:
wait 2m + 3 zigzags
mem+1
at a zag do T « stop
at the next zig do T « @
wait m — 1 zigzags and at the last zag do T « start
at the next zigdo T « @
wait 2m + 3 zigzags

Moreover, at each zig or zag, it writes the value of variable T € {@, start, stop}
in some component of the alphabet at the positions of the base line of the zigzag
transducer. From the algorithm above the marks follow the following pattern for
successive values of m along direction d_)T on the base line: a stop marked at the end
of a zag then m zigzags finished by a start mark at the last zag, then m zigzags without marks.

Zigzag snake subroutine for flagging. The zigzag snake subroutine is as follows:
when the subroutine is triggered by the main zigzag transducer on value 4 (halting machine
and desired snake width) it freezes the Turing simulation algorithm (Algorithm 1) but it
waits for the end of a loop of the marking algorithm (Algorithm 2) before freezing it ;
freezing means that the zigzag movements continues but the content of the simulation
tape is copied unchanged from one zigzag to the next; then it does ¢ more zigzags to
ensure that the last marked zone is far enough;

next, it marks a segment of length i along d_q: and puts a return mark at the end of this
segment;

next the zigzag movement of the transducer is stopped and a snake creation is launched
as described earlier (see Figure 11);

once created the snake of width ¢ moves in direction —d_T) and uses space direction —d_s);
it then adapts by small shifts its trajectory to obstacles it encounters (see Figure 9 for
the detailed mechanism, in the present case obstacles are actually either the base line of
the main zigzag transducer or previously launched zigzag snake as shown in Figure 13);
when reading a start marker on an obstacle, it starts an equality test (see Figure 12)
and replicates the start marker at the end of the next zig, on the “back” of the snake:
the replicated marker is therefore shifted by one unit in direction —d_T); the same is done
for the stop marker;

if the test is successful, then a U-turn is launched (see Figure 10); the construction is such
that any snake will eventually encounter a start/stop test zone of length corresponding
to its width;

when the backward snake move in direction d_T) after the U-turn, it does not perform tests
when encountering start/stop test marker by it copies it like the forward snake did;
the shift induced by the copy mechanism in the forward snake is therefore compensated
exactly;

when the backward snake arrives at the return mark and during ¢ steps, the backward
snake disappears progressively like in first phase of U-turn (see Figure 10 for the details,
and the red part in Figure 13 for an overview) ; during this i steps the zigzags cross
the base line but do nothing in the region of the zigzag transducer (algorithms are

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

frozen and the simulated tape content is just copied from one zigzag to the next) ; this
progressive disappearance of the snake ensures that the next snake that will come in that
region encounters a smooth path of obstacles that it can climb with its shift mechanism
(Figure 9);

the control is transferred back to the main zigzag transducer and Algorithms 1 and 2 are
unfrozen.

Proof of Theorem 4.2. We consider the machine described above started from a blank tape
configuration with the head in the suitable initial state at position (0,0). First, the marking
algorithm (Algorithm 2) and the writing process on the tape ensures that the base line Nd_)T
contains a succession of test segments S,, = {tmd.)T, (t + 1)d.)T7 coy (b +2m — Q)d.)T} with
t,, odd and tmd.)T marked with stop (written a the end of a zag), (¢, + 2m — 2)d.)T marked
with start and all other positions of S, marked with @. Segment .S,,, is such that it will
produce a successful equality test for snakes of width m (see Figure 12). All positions outside
test segments are also marked with @, so a snake of width m can only have a successful
equality test at the level of segment S,,,. Moreover the distance between two consecutive
test segments S, and S,,,; is strictly more than 2(m + 1) (the lower bound comes from
Algorithm 2, but the distance can be larger when there is an interruption by a zigzag snake
subroutine) and the distance between a test segment S,,, and any return point of a zigzag
snake subroutine is also at least 2(m + 1) (because the subroutine freezes Algorithm 2 end
the end of a loop and the next loop begins by a waiting instruction after the subroutine
terminates).

Besides, Algorithm 1 guaranties that if machine ¢ halts during the simulation and
launches a zigzag snake subroutine when the head is at position td_;,: on the baseline then
t > t; (instruction 3.b.i of Algortihm 1), which means that the head is beyond the test
segment whose size corresponds to snakes of width <.

At any given step of the execution when the machine is not in the zigzag snake subroutine,
let T' be maximal such that the Turing head has reached position Td_;; and define the snake
pile profile as positions p(t) for 0 < ¢ < T such that p(t) = td_)T - sd_)s where s is maximal
such that the tape at this position p(t) is not b.

Now, one can check that the following invariants are maintained between to launches of
the zigzag snake subroutines:

the snake pile profile is smooth for a snake that run on top of it in direction —d_T) (thus
allowing a future snake to follow this profile); precisely: p(¢ — 1) is closer to the baseline
than p(t), or p(t = 1) = p(t) - dr — dg;

at the level of each test segment S, already marked, the snake pile profile is flat
(p(t+1) —p(t) = d_T)), this is because the only part of the zigzag snake subroutine that
produces a non-flat profile is the creation of the snake, the U-turn and the progressive
disappearance; they are all granted to be far away from test segments (the subroutine
waits until leaving a test segment before creating a snake, and as said above a test segment
S, is separated by at least 2m + 1 from S,,,_; which is enough room for a snake of width
m to make a U-turn);

the positions p(t) for ¢ such that td_)T € S,, have the same marks as td_)T (thus allowing
the equality test to run properly for future snakes);

at the level of each test segment S,, the snake pile profile thickness is bounded: if
td.']: € S,, then p(t) = td.)T - sd.s> with s < 2m”. This is because no snake of width strictly
larger than m can reach the level of S,, (it has to make a U-turn at the level of another

XX:27

XX:28

866
867
868

869

870

871
872
873
874
875

876

877

878

—
test segment placed further along direction dr and is launched even further).

From the above discussion, we deduce the key property of the execution of the constructed

turedo: for each machine ¢ that halts, there is a snake of width ¢ making a U-turn inside the

region

Ry ={(t—k)dy —sdg:0<k<2iand 0<s<2i%}.

R; is clearly computable from 4 and testing the presence of a U-turn in that region can be
done by testing whether there exists a position p € R; such that the tape is blank at p but
not at p — d.; (indeed, U-turns are the only part of the construction where the snake pile
contains blank holes, as shown in Figure 13).

We deduce that the halting problem can be decided when given as oracle the limit
configuration reached by the execution. The theorem follows. |

Note that the choice of the halting problem in the above construction can easily be
replaced by any recursively enumerable set.

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

H Appendix: Construction of Theorem 5.3

General idea. We first describe an ideal target configuration to achieve the desired density.

Let us fix the pair of vectors vy, v, and remove the dependence on these vectors in pseudo-ball
notation: B(r) = B, ,,(r). Consider the target density d = limsup,, 2=. We discard density
0 and 1 which are easily treated as special cases. We can thereforg suppose that £z is
eventually bounded away from 0 and 1. We can also suppose that 1 < p,, < g, — 1 for all n
(the inequality must hold infinitely often because 0 < d < 1 and we can replace the computable
sequence (py, qn) by the computable sequence whose nth term is (p,,, ¢n) where m = n is
the first index such that the inequality holds). The basic ingredient of our construction is a
well chosen sequence of annuli:

define the annulus between two pseudo-balls of respective radii r < R by

C(r,R) = B(R)\ B(r). Note that the size of pseudo-balls and annulus verify:

b(r) = #B(r) € ar® + 0(7'2) and c¢(r,R) = #C(r,R) € a(R2 - r2) + 0(R2).

choose 1,41 = quRi and let R,,.; be the smallest radius greater than r,,.; such that
c(rns1, Rnsr) > Pn
b(Rps1)

This choice ensures the two following properties:

1. a good enough approximation of density: <Cztlfnet) g [Pa p" + ¢(n)] with e(n) € o(1),

b(Ry11) dn
A(Tns1,Rne1—1) DPn C(Tn+11R)
because A < and the derivative of R s O();

1
2. a thick enough annulus (useful condition for the turedo construction): R, —r, € Q(Rx).

b(R)

Indeed the condition ¢(r,, R,) = 22==22 implies R,, — r,, € Q(Z—" (because p, = 1) so

R, -1, € Q(T’E). Moreover, we have Rn € O(q,r,) because

Ty Gntn) _ qn =1
> +o(1
b(Qnrn) an +1 0()

and we know that 22 is eventually bounded away from 1 because we supposed that the

n

1
target density d is strictly less than 1. Therefore we conclude R, — 7, € Q(Rn).

Our ideal target configuration is non-blank exactly on |, C(r,, R,,). For a classical (non
self-avoiding) computation process, the next step would be to construct such a configuration
and conclude from here. However it is impossible to produce such a configuration with a
turedo from a finite initial configuration (because in particular it contains infinitely many
Npg-connected components). The following lemma proves that it is sufficient to produce a
good enough approximation of this sequence of annuli to achieve the correct density.

» Lemma H.1. If a configuration «y is such that there is a set X with:
1. #X n B(r) € o(r?),

2. for any z € C(r,, R,) \ X we have v(2) # L,

3. for any z € C(R,,7ns1) \ X we have v(z) = L,

then Evm(y) =d

Proof. Denote by d, the non-blank density inside pseudo-ball B(r) for configuration ~:

#{z € B(r):v(z) + J_}
b(r)

First, we can reduce to the case where X = @: if v4 is a configuration verifying the hypothesis

dr(f)/) -

of the lemma with X empty, and ~ is any configuration equal to v, everywhere except on a

XX:29

XX:30

918

9

=

9

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

set X verifying the hypothesis, then:

#X N B(r)

o) o(1)

() = di(70) <

so the two sequences have same limsup.

Now suppose that X = @, denote d, = d,.(y), and estimate dp as follows:

o Ra) + B(n)
fin = b(R,)

where 0 < f(n) € b(R,,—1). The choice or r, and R, above then gives dp, = Zﬁ +o(1).
Therefore limsup,, dg, = d. To conclude that vag (¢) = limsup,,(d,) = d it is sufficient to
verify that the lim sup is actually realized on the subsequence (R,,),. Indeed for large enough
n, density d, is increasing on interval [r,,, R,,] and decreasing on interval [R,,,r,.1] because,
since d,. is eventually bounded away from both 0 and 1, we have:

d,.-b(r)+c(r,r+1 c(r,r+1)(1-d,.
dryy = dy z LDt _ g = Lt UCod) 5 0 when 1 € [y, Ry],

d,.-b(r —d-c(r,r+1
dyi1 —d, < b(r—+(1)) -d, = ﬁ <0 whenr €[R,,Tns1]

Description of the turedo. We now describe a turedo able to produce limit configur-
ations that satisfy the hypothesis of Lemma H.1. We want a single turedo for all choices
of d and vectors vy, v, so the machine computing the sequence (p,,, ¢,), and v; and vy
are not fixed, cannot be stored in the internal states of the turedo, and will be part of the
initial configuration. However, in a given run of the turedo, v; and v, are constant compared
to the growing radius of the annuli. Any suitable pre-computation can be done on the
representation of v; and vy and associated vectors to simplify the work of the turedo.

The turedo has two components: a main Turing computation to compute parameters of
successive annuli, and a annulus filling routine that visits approximately all cells of a given
annulus and gives back control to the Turing component once finished. See Figure 14 for an
overview of the turedo’s behavior.

The turedo runs the main Turing computation using a zigzag transducer technique in
time direction d.)T = v; and space direction d.)s (geometrical details below). While doing
the computation, the turedo keeps track of a step counter 7 that contains the exact v
coordinate of the head (this is done by incrementing said counter at each zigzag). All Turing
computations will be done in space O(log(7)). To ensure this, we first suppose that the
Turing space required to compute (p,, g,) is logarithmic in the Turing time required (space
complexity is always at most time complexity and it is always possible to slow it down
exponentially if necessary). The main Turing computation is as follows:

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

Algorithm 3 — Computing annuli

n«0

re0

R<0

loop forever

1. nen+1

2. compute (p,,qn)

3. compute r « g, R

4. compute the smallest z = r such that ng—f)) = fzi

5, Rz

6. compute w € Q(log(R)) large enough to hold the binary representation
of R and r

7. do zigzags until the internal step counter 7 is exactly r

8. call the filling routine of inner radius r, outer radius R, and step increment
w

Step 1 to 6 inside the loop can be done in polynomial time in the size of the Turing tape
content (all integers are represented in binary), which guaranties that the value of 7 when
starting step 7 is less than r. For the computation in step 3, we already saw a O(g,,7) bound
on the value of z so we can do a dichotomy search (the numbers ¢(r,z) and b(z) can be
efficiently computed using Pick’s theorem). We deduce the key property of the algorithm:
when the annulus filling routine is called at the nth iteration of the loop, the turedo’s head
is exactly at position 7,,v; and the Turing tape contains the values r,, and R,, and w.

The annulus filling routine aims at visiting approximately all cells of C'(r, R) and does it by
filling successive layers which are annuli C(r + kw,r + (k + 1)w) for 0 < k < O(R/ log(R))
with w € Q(log(R)). The reason to subdivide into layers is that the filling process will
make errors at each extremity of the pseudo-hexagonal shape (around positions (r + kw)vy,
(r + kw)vy, ete) in order to deal with change of direction between two consecutive sides
of the pseudo-hexagon. This error will be O(w2) for each layer of width w so, by choice
of w € log(R) the accumulation of errors is small enough in any pseudo ball B(r + i) for
O < i< R—r to apply Lemma H.1 (recall that » and R are polynomially related as shown
above). The filling routine is thus an alternation between forward phases where the turedo’s
head is making zigzags of constant width O(log(R)) in some direction during R — O(log(n))

steps, then a phase of direction change using only space O(log(R)?) inside the current layer.

Note that the width of each layer is enough to hold all the information about the shape of
the annulus layer to fill, in particular the length of its sides. Note also that after completing
an entire layer, the turedo’s head is back to the computation zone where it can compute and
move to the next reference position (r + kw)v; to start the next layer. The outer layer has a
possibly different, up to two times larger, width to complete exactly the annulus C(r, R).
Geometrical details. The turedo’s algorithm involves a finite number of directions:
v1 (for the main Turing computation), —vy, —v1, V9 — vy, Uy, v; and v; — vy for the sides
of the annuli. Each vector v from this finite set is represented by a finite word of moves

in m, € {a,b}" where a and b are two consecutive vectors in Ny (ordered by their angle).

To v we associate v* = a — b which is used as a normal vector. If v is colinear to a base
vector (i.e. v = a" for a € Ny), we choose v* € Ny so that v +v™ € Ny. If T, is the set of
positions reached by the moves m,,, then T, tiles the plane by translations Zv + Zv™ (see
Figure 15). In the same way as already explained for snakes following irregular path in the
construction of Theorem 4.2, we can have zigzag transducer doing arbitrary computations
while following the periodic path m: for its temporal direction and using v* (or —v*) for its
spatial direction. The situation here is actually simpler because the turedo’s head knows the

XX:31

XX:32

985
986
987
988
989
990
991
992
993
994
995
996
997
998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009

1010

1011
1012
1013
1014
1015
1016
1017
1018
1019

1020

next move (encoded in the tape) when arriving at either extremety of zigzags. In particular
it is possible to make constant width zigzags (contrary to Figure 9 where obstacles cannot
be anticipated and induce small changes in the width of zigzags). This is the behavior of
the turedo in the forward phases to fill with density 1 the sides of a annulus layer. The
Turing computation is implemented by a straightforward adaptation of the case where the
time/space directions are vectors of N.

To complete the technical description of the turedo, it is sufficient to describe how to
change the pair of directions (v,v") of a zigzag to another one, either at the beginning
of the annulus filling routine when leaving the Turing direction v; and starting to fill a
side of the annulus, or between two forward phases to fill two successive sides. Let say the
direction change is from (u,u”) to (v,v™). The situation is easy when u* = v* since the
zigzag movement can go on without interruption and it is only the sequence of shifts that
changes from m,, to m,. When v # v*, we can suppose u = a""*b"™* and v = ¢""*d"* where
(a,b,c,d) € Ny are ordered counter-clockwise and a # d. The direction change started with

head position z with tape extending in direction u* is done in three phases (see Figure 15):

go on with zigzag tape in direction v* and use the sequence of moves a"'; while doing
this copy the relevant content of the tape in the starting situation onto the segment from
z to 2z + wa;

from z + wa move back following the border in —a direction until reaching z + v* and
copy along the way the data to expose it again; then start a zigzag triangle to copy the
data on the segment of the same length starting at z but rotated by m/3; repeat this
rotation if needed until the data is copied on segment from z to z + wv™;

from there, start a zigzag progressing with a periodic sequence of moves m, and using
space direction v, and progressively increase its width until it reaches the correct one
(one extremity of the zigzags is on the inner side of the annulus layer, the other is on the
outer side).

This procedure misses at most O(log(w)?) positions in the layer as required. When
finishing a layer, the turedo’s head is back to the Turing computation zone. It needs to
change a last time its zigzag direction, but this last direction change is simple because no data
as to be conserved since all the relevant information is already present on the Turing tape,
ready to resume the computation. Before starting the next layer, Turing zigzags are executed
to move the head at the correct position to start again the layer filling process: precisely,
if z was the head position at the beginning of the layer filling process, it needs to reach
position z + wv; and, noting m,,, = akbl, the sequence of moves a" as already been done

at the beginning of the layer filling process, it remains to move according to the sequence
(k—1)wqlw
a b

XX:33

I Figure 14 Overview of a run of the turedo to produce an approximate sequence of annuli in the
sense of Lemma H.1. In red the Turing computation zone. In yellow the direction change error zone
of each layer of the annulus filling routine (each yellow polygon is of area O(log(R,+1)°)). The part
in gray is filled with density 1.

XX:34

Figure 15 Geometrical details of the turedo’s construction: on the left, the tiling by T, with
m, = N NNE and v~ = NW; on the right, an example of change of direction from u with m, = N NE
to v with m,, = SWNW; in light blue the zone where the space direction of zizags is u*, in light green
the one where space direction is v*; numbered cells indicates how the initial tape content is copied
through the direction change process.

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

I Achieving density 1: a delay-3 oritatami filling the plane

Surprisingly enough, simple ideas like “one single bead type attracting itself” do not fill the
plane because they either lead to non-determinism or prefer to fold upon itselves rather than
expanding towards new areas. It follows that we had to implement “some intelligence” to
obtain an oritatami that fills every position of the plane, namely to implement a counter-
clockwise search. We could not use our turedo simulation since the macrocell cannot be
fully filled (the pockets cannot be fully filled). So we designed a dedicated oritatami as
shown in Fig. 16 and 17. It consists of two parts that always have the same external contour,
but not the same orientation: the “crib” (in blue) which orient the next part towards the
next counter-clockwise cell, and the “baby” (in red) which always fold the same way to exit
where the “crib” points to. The principle for the crib is to adopt two different configurations
depending on whether the next free counter-clockwise cell is to the NW or to the SW: by
defaults C4 and C5 are attracted to CO and fold backwards building the crib in the “upright”
position, pointing to exit to the first CCW cell; however, if the first CCW is occupied, then
C4 and C5 are attracted by it (to B10, B12, B15, B23, B25, or B32) and the crib is built in
its “lying down” position, pointing towards the second CCW cell (see Fig.16). The baby just
folds the same way in both cases and exits to the next cell pointed by the crib.

. l l
,‘
it ¥ B Y bt :
e 0.0 0:6. 02 ®3 ‘ D
§ 33 3"‘7
=R KK = TEOL O = Se e, "
= ¥ W Rt -1 By Sl 3‘J
=R R RIRR ==om@ Q=2 QP9 KITN Vel i
v 5.5 :aid oo) O-Kpy KPP WPy S
€2 -85 (G2~ B3] (copmm(- , D, 623 €3 G s
D, (629 D, “3@‘” 62 ©
S o @ 6 S
ot it | &Y 2
& 3-89 €
Gy s 24346
2 Yom il | o o ;)
M o 2 &% 2 TR A
-4 % E348-25- Ol o-@eei B W D
MMM I D W o] %2 3
2 R (KR K] =
6 Gty 542 SOk RS
Vet 6fT 0 (e
V2 o s Vi
€22 '- D
€2) @)

Figure 16 A delay-3 oritatami filling the plane: the crib and the baby are highlighted in blue
and red respectively. The two cribs configuration “lying down” (first) and “upright” (second) are
highlighted in blue on the top.

XX:35

XX:36

" Figure 17 An execution of the delay-3 oritatami filling the plane from a seed consisting of two
cells at the center (not filled for clarity).

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

Full description of the oritatami.
Co,...,C9,B10,...,B36. The cells are hexagons of radius 3.

B10
B11
B12
B13
B14
B15
B16
B17
B18
B19
B20
B21
B22
B23

[vo]
[
=

fd 4 ELLLeeeeLeLeLeeeees

B25
B26
B27
B28
B29
B30
B31
B32
B33
B34
B35
B36
Cco

C1

Cc2

C3

W
@
@
@
@
@
@
@
@
@

B12,B34,B35,C2,C4,C5,C8
B13,B17,B18,B31,C9
B10,B14,C2,C5
B11,B15,B16
B12,C3
B13,C2,C4,C5
B13,B22,B23
B11,B21
B11,B20

B28

B18,B27
B17,B26
B16,B24,B25
B16,C2,C5
B22,C3
B22,C2,C4,C5
B21,B32
B20,B31
B19,B30
B35,B36
B28,B34,B35
B11,B27,B33
B26,C2,C5
B31,C3
B10,B30
B10,B29,B30
B29

@ C4,C5,C9

@ C3,09

4 B10,B12,B15,B23,B25,B32,C7,C8
% B14,B24,B33,C1

C4 % B10,B15,B25,C0,C6

C5
c6
c7
Cc8
Cc9

% B10,B12,B15,B23,B25,B32,C0,C7
¥ C4,C9

@ C2,C5,C9

% B10,C2

% B11,C0,C1,C6,C7

The transcript consists is periodic of period

XX:37

XX:38

w7 J The oritatami modules

ws In this section, we present the exact design of each module involved in the Turedo simulation

wre by delay 3 oritatami systems.

1080

1081

1082

1083

1084

1085

J.1 Notations

for two integers x 2 0 and y = 1
x.nextMultiple(of: y) = y[z/y] is the least multiple of y larger or equal to x
x.complement(to: y) = y[x/y]— = so that x + z.complement(to: y) = z.nextMultiple(of: y)

In the figures, the numbers in the same color as a given layer refer to the lengths of the
corresponding segments of the layer. Black numbers refer to distances.

XX:39

XX:40

1086

1087

1091
1092
1093
1094
1095
1096
1097

1098

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111

1112

J.2 Folding meter and Pocket

A n-folding meter is a 4n-periodic transcript with period ® of the form:

¢ = t03t17t27 P33 Pn-1, bna bn+17 bn+27qn+37 - Qop-1,

2140 L2n+15 t2nt2, P2n+3s - - -, Pan—1, D3n, D3ni1, B3nso, A3nass - - o Qan—1

where the letters t and b stand for top and bottom. Indeed, the internal interactions:

o@D, ;PP ., O, #P,;, and P, ;#P, ;; foralli

Going down Going up

ensures that it will either (see Fig. 18):

follow a border if every bead sticks to the beads on the border;

or fold upon itself in the manner of the “folding meter” tool, when entering into a pocket
such as the pink area in Fig. 18, where the bead P; at the bottom, does not attract the
b-beads and as a consequence kicks the b-beads up and initiates the switchback folding
between the b-beads, at the bottom, and the t-beads at the top. The switchback folding
ends when the folding meter reaches the end of the pocket. It then resumes following the
border.

As the bonds inside the switchbacks of a n-folding meter are strong, this switchback can
flatten sophisticated interactions inside p-beads or q-beads of the n-folding meter as long as
they do not involve more than 3 bonds. This allows us to hide or expose on-demand specific
behaviors depending of the context: a specific behavior will happen only if the n-folding
meter does not stick to the border or is not in switchback form into a pocket. This is how
we manage to hide the transition table into pockets and to make it happen only at specific
places.

In this article n = 26. Note that the folding meter is essentially 2n-periodic as the
2n-period is repeated twice only to prevent unwanted interactions when in switchback form.
This is why everywhere in the paper the true unit of length is an half-period of the folding
meter and not a full period. Furthermore every bead type Ri in a folding meter R behaves
the same as the beadtype R(¢ + 2n) = R(i + 52). For this reason, we will adopt the following
notation: given a folding meter R, R[[¢] will refer to either bead types Ri or Ri + 2n; for
instance R[12] refers to both R12 and R64.

XX:41

9, AN TA: R0
G- -1 b3 St St S
SR R S 5 3 &
t- B2
¢ b) 1o -
SEWTEN
T - |- =
= Jz £ Jz =
- B B
0 - -‘C ! To |
€9 y /
€
9
v v v v v v @
KRR RA O

Sa¥a VAo VLY, s
-3 D
®Q
©
D
2 @
2 2
& 2

(e e e (e (e e e e)

Figure 18 Example of a folding meter and pocket with n = 11, and of the tool which inspired its
name. When along the light green border, it is flat; when in the pink pocket, it folds upon itself in a
very compact form; when along the darker green border, it reveals a secret specific shape (two ears).

XX:42

uws J.3 Multi-layer interactions

me n-Folding meters have another welcome feature: they can be layered on top of each other
ms in opposite directions. As long as they stick with two bonds to the lower layer, they will
me behave just as expected.

117 Our macrocell consists in 3 layers: read, write and exit, folding one after the other on top
s of the previous one. When the scaffold of the macrocell makes turns, the three layers shift
mo with respect to each other. Fig. 19 illustrates the only possible offsets between the layers in
0 all of our designs:

Scaffold 4
Read
Write

Exit

YAY

Exit
Write
Read

F A Y 4

o
g

g
g
=

Figure 19 Layer offsets for every considered path orientation.

121 Ift € {-2,...,+3} denotes the counter-clockwise orientation of the scaffold border we
u2 get that the binding must be:
s == for Write—»Read: (0,—3 —t) and (0,—4 —t)

12 == for Exit—Write: bond offsets are (0,—4 +t) and (0, -3 +).

1125 Now, the observed offsets between layers in the different modules (see the next sections)

126 are:

1127

1128

1129

1130

1131

1132

Offsets Read/Write Write/Exit Concerned layers
Delay -1...+1 -1...+1
Write pocket -1...+3 0 R1/W2, W2/X1,
R1/W12, W12/X1,
R2/W12, W12/X2,
R2/W1 W1/X2
Write module O;n—1...n+1 (specific)y -1...+1 R2/W1 W1/X2
Read Pocket + intermediate delay Oin—1...n+1 -1...+41 R1/W2, W2/X1,
R2/W12, W12/X1,
R1/W12 W12/X2
Exit interchange -2...+1 -2...+1 R2/W12, W12/X12
R1/W12
Exit pocket -2...+2 -2...+2 R1/W2 W2/X1
Uturn pocket 0...1 R1/W2
As a consequence: Offsets Offsets
R1/W2 —-2...+3 W2/X1 -2...+2
R1/W12 -2...+3 W12/X1 -1...+1
R2/W12 -2...+3 W12/X2 -1...+1
R2/W1 —-1...+3 W1/X2 -1...+1
W12/X12 -2...+1

This defines the binding attractions between every pair of layers. Note that all of them
are local, bounded to beads within a range of at most —2.. + 3 indices, there are no long-range
interaction between different layers.

XX:43

XX:44

1133

1134

1135

1136

1137
1138
1139
1140
1141

1142

1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153

1154

1155
1156
1157
1158
1159
1160

1161

1162

1163

1164

J.4 Transcript

The transcript of this system is periodic, and one period folds into one macrocell. Its period
can be divided semantically as:

SCAFFOLD - READ - WRITE - SPEEDBUMP - EXIT

SCAFFOLD hardcodes a skeleton of the macrocell and folds into it clockwise. READ goes
around the skeleton counterclockwise while reading inputs from adjacent macrocells and
being shifted by an offset accordingly. WRITE goes around the read layer cw. and write
outputs according to the offset. SPEEDBUMP absorbs the offset. Finally, EXIT goes around
the write layer ccw. up until the macrocell’s side on which an “exit signal” is coded. For ease
in implementation, these five factors share no bead type.

READ is a repetition of n-folding meters, and so are WRITE and EXIT at least macro-
scopically. Each of them is fundamentally bi-colored” such that the left half of macrocell’s
sides is painted in one color and the right half is in the other. Interchange modules, located
at every corner and in the middle of every side (see Sect. J.16 and J.17), enable the even
coloring no matter how large an offset gets as inputs are being read and the read and write
layers slide accordingly. In the absence of rules to let beads in different colors bind, the
resulting colored macrocells never interact as long as they are center-aligned face-to-face. A
specific bead on the read layer certainly needs to be capable of probing bit-encoding beads,
but these facing beads vary in color. Rules for this bit-reading are the only exception to the
principle of non-intervention across colors. In order for macrocells not to interfere otherwise,
the system keeps them far enough away from each other anywhere but the bit-reading sites
by utilizing step-up and step-down modules (Sect. J.14).

READ, WRITE, and EXIT consist of n-folding meters so that they can be layered one after
another as explained in Sect. J.3. Furthermore, a specific geometry hardcoded in SCAFFOLD
and some extra rules enable them to interlock with each other for some functional purposes.
These functional modules shall be explained in the rest of this section along with their
geometry and extra rules. Note that some of the modules need variants of n-folding meters
for WRITE and EX1T which play a functional role at a designated site in the module but
behave exactly as their original anywhere else.

J.4.1 Bead types

These four layers and speedbump involve the following bead types, respectively:

5 An auxiliary third color is employed so as for n-folding meters of different colors not to be next to each
other along the transcript. Functional roles of this color will be explained in Sect. J.16 and J.17.

SCAFFOLD

READ1
READ12

READ2
WRITEL
WRITE12
1165
WRITE2
SPEEDBUMP (scaffold)
SPEEDBUMP (layer)
ExiTl

ExiT12

ExiT2

S0..7, S10..17, S20..22, e00..3, ea0..3, 000..3, 0a0..3, Ci0..3, Ci10..13,
Co0..1, Co010..11, FO..5, Ex0..3, J0..23, J36..43, B0, TO;

rt0..2, rp3..25, rb26..28, rq29..51, rt52..54, rp55..77, rb78..80, rq81..103;
#t0..2, #p3..25, #b26..28, #q29..51, #t52..564, #p55..77, #b78..80,
#q81..103;

Rt0..2, Rp3..25, Rb26..28, Rqg29..51, Rt52..54, Rpb5..77, Rb78..80,
Rq81..103;

wt0..2, wp3..25, wb26..28, wq29..51, wt52..54, wpb5..77, wb78..80,
wq81..103, 1p3..18, 1p55..70, +Lp3..18, »Lp55..70, 0p3..18, Op55..70;
©t0..2, ©p3..25, ©b26..28, ©q29..51, ©t52..54, ©p55..77, ©b78..80,
©q81..103;

W1t0..2, Wp3..25, Wb26..28, Wq29..51, Wt52..54, Wp55..77, Wb78..80,
Wq81..103, Op24, Op76;

10..2, 30..17, 60..3, Y0

A0..2, A0, x0..2, $0..5

xt0..2, xp3..25, xb26..28, xq29..51, xt52..54, xpb5..77, xb78..80, xq81..103,
Gp4..16, Gpb56..68, Ob26..27, Ob78..79

#1t0..2, #p3..25, #b26..28, #q29..51, #1t52..54, #p55..77, #b78..80,
#q81..103,

Xt0..2, Xp3..25, Xb26..28, Xq29..51, Xt52..54, Xpb5..77, Xb78..80,
Xq81..103, Gp4..16, Gp56..68, ¥%q29..35, W q36..37, Y% q38..46,
Y% q81..87, Y q88..89, ¥ q90..98;

XX:45

XX:46

1166

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183

1184

1185

1186
1187
1188
1189
1190
1191
1192
1193
1194

1195

1196

1197

1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

1210

J.5 Scaffold

This section presents the beadtypes used to build the scaffold. The scaffold is hardcoded at the
beginning of periods of the transcript as an instance of a delay 3 oritatami system developed
for this turedo simulation. This system, which we call scaffold maker, provides an oritatami
system with a scaffold of intricate geometry, on which computation is to take place. It mainly
consists of two modules that fold into line segments and turns, respectively. Arbitrary beads
of the resulting scaffold can be specialized for the sake of computation above at the cost of
extra bead types, and the turedo simulation involves such bead type modifications. Being
irrelevant to the implementation of the scaffold maker, these modifications are explained not
here but rather when the modules of the Turedo simulation are described. Note that, in
the figures in the rest of this section, scaffold beads thus modified are highlighted in green
(not the color of bead itself). Other two colors are also used to specify how scaffold beads
attract: beads highlighted in blue are inert (no attraction) while those highlighted in orange
are sticky, that is, attracting anyone in the succeeding layers. See Fig. 22, where read pocket
is illustrated. Beads at the entrance of the pocket are modified in order to implement the
function of reading a bit, thus they are highlighted in green. The rightside wall of the pocket
is highlighted in orange, along which Read layer goes once it steps into this pocket (reading
0), while the lower half of the leftside wall is highlighted in blue, letting Read layer fold back
upon itself into switchback.

J.56.1 Line-segment module (16 bead types: S0-15)

This module folds a transcript of period 8, say S0-S1-..-S7, in a zigzag manner into a straight
line segment of width 2 according to the 8 rules which let Si bind with S(z + 2 mod 8) for
all 0 < 4 < 8; see figures. One side of the resulting line segment is hence provided with
beads of types SO, S2, S4, and S6, while the opposite side with S1, S3, S5, and S7; hence
we call them the even and odd sides, respectively. Being implemented as a zigzag, the
line segment is self-standing but is not stable enough not to be interrupted by another line
segment in the proximity upon its folding. Therefore, this system duplicates this module
using pairwise-distinct bead types S8, S9, ..., S15; needless to say, it involves no rule to let
these two variants interact. The third variant seems unnecessary for it is highly unlikely for
three line segments to meet in the proximity.

J.5.2 Turn module (18 bead types: ea0-3, oa0-3, eo0-3, 000-3, cb0,
cbl), cushions (20 bead types: Ci0-7, Co0-3, F0-3, Ex0-3)

The system involves 4 types of turn module corresponding to the four possible turn types:
towards the even/odd side of the preceding line segment acutely/obtusely. Their transcripts
are ea0-1-2-3, 0a0-1-2-3, eo0-1-2-3, and 000-1-2-3, respectively, and their unique conformation
is hardcoded in the rule set; all of them can be observed in Fig. 26.

A turn module is connected to a line-segment module not directly but via two beads as a
cushion. There are eight bead types Ci0, Cil, ..., Ci7 (cushion-in) to concatenate a turn module
of any kind to a line-segment module: Ci0-3 are for the line-segments of S0-7 while Ci4-7
are for those of S8-15. The cushion Ci(k—1 mod 4)-Cik is used if the preceding line-segment
consists of S0-7 and ends with Sk or S(k+4). Thus, a line segment can end arbitrarily. As
for cushion-out, just the two fragments Co0-1 and Co2-3 are enough to concatenate a line
segment of two possible kinds to a turn, on the assumption that line segments begin with SO
or S8. These cushions prevent turns from interacting with line segments. The rule set is so
designed as not to let cushion-ins interact with cushion-outs, and hence, any line segment of

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

length 3 or shorter cannot be implemented by simply combining line segments, cushions, and
turns in the straightforward manner; we shall explain how to implement them by utilizing a
u-turn when joints are explained.

It is quite useful to introduce two fragments FO-1 and F2-3 as respective variants of Co0-1
and Co2-3 in order to flip the succeeding line segment. Oritatami computations require few
intricate encodings on the scaffold. It is hence almost always enough for a bead on the scaffold
to attract all or nothing, and this “all-or-nothing” property can be even relaxed further for
the line segment as a unit. Since each kind of turn module geometrically determines which
side of the succeeding line segment to be faced towards the “reaction surface” (here, we
suppose that only one side of a line segment is used), the system replaces Co0-1 by FO0-1
(resp. Co2-3 by F2-3) to let the succeeding line segment begin rather with S1 (resp. S9).

The four bead types Ex0-3 are variants of cushion-out used to make sure that every
module ends with S3 or S7.

Obtuse turns may need to “bump” for the sake of succeeding layers. Two bead types
cb0, cbl and local rerouting of the cushion-in and turn as Cil3-cb1-000-Cil0-001-3 from
Ci13-Cil0-000-3 yield a bump. They serve exclusively for even-side turns and for odd-side
turns.

J.5.3 Joints

Joints help the system to implement a succession of turns at short intervals. For example, a
u-turn is implemented as illustrated in Fig. 21; note that this implementation requires only
one special bead type J7. The succeeding line segments proceed along the preceding one,
and hence, they are implemented by pairwise-distinct bead types. An important application
of this u-turn is the implementation of a line segment of length 3 or shorter (in fact, of an
arbitrary length) as a “difference” between two long-enough line segments. Note that no
extra special bead type is needed here.

XX:47

XX:48

1236

1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

1250

J.6 Layer ordering and pocket sizes

Figure 20 illustrates how the different layers Scalfold (S), then Readl/Readl2/Read2
(R1/R12/R2), then Writel/Writel2/Write2 (W1/W12/W2), then Speedbumpl/Speedbump?2
(SB1/SB2) and finally Exitl/Exit12/Exit2 (X1,X12,X2) succeed to each other around the
macrocell. The layers R12, W12, X12 serve as a cushion to cancel any need of interactions
between the layers R1/R2, W1/W2 and X1/X2.

Figure 20 also displays the capacities of the various pockets in terms of half-period of
folding meters (2n beads). Note that the capacities of the write pockets are all egual to W,
the maximum shift, because they are all filled once every bit on every side is read; whereas
the capacities of the read pocket are either equal to the weight w;; of the bit read (when
reading — highlighted in blue), or to the current sum of the weights of the bits already read
(for the interchanges in the middle and in the corners — highlighted in grey). Regarding the
exit layer, as it folds after the speedbump, the shift is now zero, and the only thing that
dictates the size of the exit traps is the height of the exit pocket, that is 2k, + 1. Note
that the exit layer never goes beyond the last exit pocket on the NE side.

R1

T
-'W2 —»w12 SR1
Capacity: Wi2—Wi
W 4 cushion for R12 \:
52 5 1 50
Bl \w1—~w12
SB2 w;j + cushion for R12 Rl-'R12—'R2
/ ;;} ’ \w12—»w2
Absorbin,
all shift <
WIZIW2P W
R1-R12-R2 /
R W r—C\Rr1
L Wxi-sx12-%2 w, —O)
wi-wi2 / ud
Wl/\ 2k +1 -1 WQ/OV/@ \\ W2-w12
Vo e Zw‘]f + cushion for R12 \R2=RI2+R1
w2 \X2-X12- - X2-X12-X1 \
g—1
W12-+W1
R2-RI12-R1Y, 575" wij + cushion for R12 2k +1 § J w12
,\ @/W i<3 j=0
e O(S'IO -X12-X2 7 b Jwi-wi2
R1 -
s $; O r1-r12-R2
ZZw,J + cushion for R12 /
SHI=0 WI12-+W2
g—1
@ ZZMJ- + cushion for R12
W12-W2K —X12-X2 i<z =0 n
1—»R12—»R2\, 2’“““ 2k, 1 w,, O,
x2\w, ot O/ R1
w1—»w12'\ —»x1z N —ex\ 2O
X2 WA J w2-wi12
Wl\ 20 21w
\ bbé, ¥/R2-R12-R1
WI12-W1 o
R2 & Rl — RI ——
-R12 W2 WI12 Lpip W1 W1 Wi2
SR1 —W12 SW2 SR2 SW12 SW1

Figure 20 The order in which the layers succeed each other and the capacities of the various read,
write and exit pockets. The ordering starts at the end of the scaffold layer (S) in the NW corner.

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

J.7 Read pocket

Read pocket operation. The primary purpose of the read pocket is namely to read a bit
(0/1) and to create a shift in the the read layer by the amount equivalent to its size if the
readlayer reads a 1. The read layer folds from right to left. When the read layer reaches the
entrance (see Fig. 21), its “reading head”, the beads r[36], senses whether there is a 1 written
on the adjacent cell at this location. If there is a 1, encoded by the presence of the pair
of beads (»L[10], u[12]) or (S [36], # [37]), then the reading head is attracted upwards,
allowing the read layer to folding into a glider shape that will immediately escape the read
pocket (Fig. 21). Otherwise, if there is a 0, encoded by the absence of these bead types at
the expected location, the reading head is attracted by the pocket border downwards and
the read layer ends up filling up the pocket entirely before leaving it (Fig. 22). This results
in a shift forward of the read layer by an amount corresponding to the pocket capacity if
and only if the bit written on the adjacent macro cell is 1.

Remark that this novel bit reading method, using a reading head, does not obstruct the
way between adjacent cells unlike the method used in [21]; this allows the write and exit
layers to pass and reach the exit at an arbitrary side. Note that this is the reason why our
simulation uses delay 3.

Ease of design. Note finally that the interactions between the scaffold and the read layer
are extremely simple: the only places where these interactions are carefully designed are at
the entrance and at the end of the pocket (the three areas highlighted in green in Fig. 21),
all the other interactions are either “attract-them-all” (the areas highlighted in yellow) or
“attract-none-of-them” (the areas highlighted in blue). This demonstrates the simplicity of
the folding meter/pocket concept.

Cushion. The 0/1-parameter addCushion is 1 when a read pocket is used inside the inter-
change blocks, where the color of Read layer changes between Readl (r-type) and Read2
(R-type), and the extra capacity 2n(2k + 1) allows to accommodate the cushion sequence
Read12 (#-type) of this length to prevent beads of different colors to have to interact with
each other inside the pocket (see sections J.6, J.16 and J.17). This is illustrated in Fig. 23.

Geometry. The pocket involves the other two parameters x and y; they are adjusted for
the sake of n-folding meters as follows:
The length of the read layer path from the last B before entering a read pocket to the first
T after getting out of it should be equal to n modulo 2n. Let w' = w + addCushion. The
length, when reading a 1, is n+2nw' (2k+1)+pn+5+2+2+3+pn+3+2w' +1+2+5+1+17 =
n+2n(w'(2k + 1) + p) + 2(w' + x + 19); thus, z should be set as:

z = (w + 19).complement(to: n).

A read pocket is accompanied with two “pitfalls” to create the offset n between the read
and write layers before reading and back after. In order to prevent the left pitfall from
colliding with the pocket, y should be set as

_ (w' + | /2] + n).nextMultiple(of: n)

Capacity. The capacity of a read pocket is defined to be the difference in length between
the paths taken by the transcript upon reading 1 and upon reading 0, and it is determined

XX:49

XX:50

1281
1282

1283

1284

1285
1286

1287

1288
1289

1290

1291
1292
1293
1294
1295
1296
1297
1298

1299

1300
1301
1302
1303
1304
1305
1306
1307

1308

by the parameters k, w, p with p < 2k + 1, and addCushion € {0, 1} as

+ 19).nextMultiple(of:
capacity = 2n<w(2k+1)+p_1+ (w).nextMultiple(o n))

n

Building a read pocket of a given capacity. Conversely, for the read pocket that is supposed
to yield a shift of A 2n-periods, thus we want its capacity to be A. Its parameters k, w, p
can be computed as:

ko= [VI+(8A+10)/n—151/n% - n/4—-1/4]
A-19/n+1
wo o= |
2k+1+1/n
p = A—(w(2k+ 1)+ (w + addCushion +19).nextMultiple(of: n)/n — 1)

Since p must be smaller than 2k + 1, if p obtained as above does not satisfy this inequality,
then x is modified as

x = (w + addCushion +19).complement(to: n) + p — 2k

and p can be set to 2k and y must be updated. The cases when A < 2 are exceptional when
these parameters should be set simply as k = p = 0 and w = A +1 when this pocket is used
in the interchange block or w = A otherwise. It follows:

» Proposition J.1. On input A, the algorithm above outputs parameters (k,w, p,) such
that the pocket swallows exactly A 2n-periods of the read folding meter layer when reading a
1 with respect to reading a 0, and such that parameters k,w are O(\/Z)

Jumping over the entrance. For the read pocket to work, its entrance must have a minimum
width. However, the defaults interactions between the read and write layers are too strong
to allow the write to jump over it. For this purpose, we place on both side of the read
pockets two pitfalls (Fig. 24) whose role is to desynchronize the read and write layers by a
quarter of a period (zoom in Fig. 2). Normally (when Read and Write are in sync), p parts
of Write layer is in front of q parts of Read layer, while q parts of Write layer is in front of p
parts of Read layer. However, due to the sandwiching pitfalls, inside the reading block, p
parts of these layers are face-to-face, and so are their q parts, and their interaction can be
programmed especially so as for Write layer to jump over the read pockets.

Read interchange. The read pocket is also used to prevent read layers of adjacent macrocells
from interfering with each other (see sections J.6, J.16 and J.17). The read layers are “bi-
colored” and the rule set is designed so as for beads of different colors not to bind. Except
those for actually reading bits, the macrocell is provided with read pockets in the halfway
along every side and at every corner, in which read layer changes its color (type), no matter
how large an offset has been accumulated so far. In the absence of any rule to let beads in
read layers of the different types interact with each other, the two read layers of adjacent
macrocells never interfere. The write pocket (Sect. J.8) and exit trap (Sect. J.9) serve the
analogous purposes for write layer and exit layer, respectively.

n — 20

n(2y+1)

n(2k+1-p)-2

Figure 21 Read pocket reading 1. Recall that w' = w + addCushion. Given w, parameters z and
y must be adjusted so as to match the period of the folding meter.

XX:51

XX:52

17 3 n — 20

n(2y+1)

Figure 22 Read pocket reading 0. Recall that w' = w + addCushion. Given w, parameters z and
y must be adjusted so as to match the period of the folding meter.

XX:53

Writel2 .

Figure 23 Read pocket in an interchange block whose width has been extended by 2 to accomodate
the “cushion” layer Read12 insulating the layers Readl and Read2 from each other. Note that the
length of the insulating layer is precisely twice the height of the pocket, which is strictly enough to
insulate the two layers inside the pocket whatever the shift is.

XX:54

n-—1

e Y v vavevav s

(a) The left pitfall dephases the Read and Write layers so that their p and q parts on both sides face each
other (highlighted in pink). The resulting reduced attractions is allows for the Write layer to jump over the
opening of the upcoming read pockets.

A O-e—0 @@ 0-R-B 0@

(b) The right pitfall resynchronizes the Read and Write layers.

Figure 24 Read pocket surrounding pitfalls.

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

J.8 Write module

Every side of a macrocell is provided with ¢ write modules, each of which is responsible for
one of the ¢ bits to be output along the side. This module places two beads of special type
(circled in red in figures) at a designated readable site (Figs. 25a and 25b), corresponding
to writing 1, or deliberately out of the site so that they cannot attract the reading head no
matter what types they are (Figs. 25¢ and 25d), which has the same effect as writing 0.
Depending on which side to exit at a given input read, the exit layer may cover each
write module or not; it does along all and only the sides ccw. prior to the side to exit. Each
write module is equipped with a transition table that is encoded on the repetitions of W/2
n-folding meters (2 entries per period of folding meter). Each table entry (of length 2n)
“knows” from the exit-direction-transition table whether this write module is to be covered
by the exit layer or not, and encodes the bit 0/1 using different variants of n-folding meter
so as to achieve the following behaviors of this module:
In case the write layer is to be covered, two spikes are placed to the left (Fig. 25b) or
right (Fig. 25d) of the hill; the exit layer folds from right to left, and it hits the brake
before the hill if spikes are tp the right, sliding the special beads out of the readable site,
equivalent to writing 0.
Otherwise, the bit 0/1 is encoded simply as of whether two big spikes are formed at the
designated site (Fig. 25a) or not (Fig. 25¢).

The write module is equipped with two pitfalls swallowing each an quarter of period of
the read folding meter. When the write layer, folding rightward, reaches the left pitfall, it is
desynchronised with the read layer by n: the p-parts of the read and write folding meters
are facing each other, allowing the hardcoded pattern (with two ears) inside the p-part of
the write to fold instead of been glued to the read layer: this allows to write the entry of the
transition table at this precise location. The two layers are then immediately resynchronised
by the second pitfall, preventing the other entries of the transition table to be written at
improper locations.

Along a side of a macrocell, ¢ write modules and ¢ + 1 write pockets (see Sect. J.9) of
capacity O(W) are placed alternately, and each of the ¢ transition tables is stored compactly
in the two write pockets that sandwiches the write module for the corresponding bit and
slides between them.

XX:55

XX:56

Reading head
is attracted

(a) Write module — Top variant: the write layer (b) Write module — Left variant: the write layer

writes a 1 by forming two ears on the top of the writes a 1 by forming two ears to the right of the

module, with two active beads aligned with the module so that the active beads of the exit layer

reading head of the adjacent macrocell. are aligned with the reading head of the adjacent
macrocell.

Reading head Reading head
is not attracted i not attracted

(c) Write module — Right variant 1: on a side before (d) Write module — Right variant 2: the write layer
the exit that will be taken later, the write layer writes writes a 0 by forming two ears to the left of the
a 0 by forming two ears to the right of the module, module so that the active beads of the exit layer
and as the exit layer will exit before reaching this are misaligned with the reading head of the adjacent
position, the reading positions will stay empty, which macrocell.

will be interpreted as a 0 by the reading head of the

adjacent macrocell.

Figure 25 The four variants of the Write module: (a, b) writing 1 and (c, d) writing 0.

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

J.9 Write pocket

Write pocket operation. Its primary purpose is to hide the unused entries of the transition
tables. These pockets are placed in between the write modules so that only the entries to be
written are exposed on the border, at the locations of the write modules, all the other are
hidden in the write pockets. The write pocket is simply “coated” by the read layer. But, the
write layer will enter it and fold into its compact switchback form, hiding away the WV unused
entries of each transition table (each encoded in half a period of the write folding meter).
The exit layer will then pass over it, folding a hardcoded bridge to get across its entrance.

As announced earlier in Sect. J.7, the write pocket is also used to let rather the write
layer flip its “color” to prevent interference between macrocells.

Write pocket design. This pocket differs from the read pocket in two ways: 1) as opposed
to the read pocket, both layers read and write will enter the pocket unconditionally; 2) the
read and write layers will entre the pocket from opposite directions; 2) we must design the
pocket so that only the write layer fills the pocket: the read layer must leave the pocket
intact for the write to fill. The write pocket is basically the read pocket without reading,
that is, read and write layers always enter.
The first condition implies that both sides of the read-layer-coated entrance will attract
the write layer and for this reason we need to make it wider to cancel these unwanted
attractions. This means that the exit layer will not be able to jump over the entrance.
Fortunately, as the exit layer is never shifted, we can hardcode a glider bridge G[4..16] in
this layer at this precise location to solve this issue (see top of Fig. 26). Note that, as
the exit layer must stay in sync with the underlying layers on both side of the pocket,
the length of this bridge, that is the width of the entrance of the pocket, conditions the
positions of the beginnings and ends of the folding meter periods in the pocket.
The second condition implies that the shape of pocket must be somehow “reversible”
this implies that the phase difference between the read and write layers even in sync
might increase significantly. Fortunately the folding meter design is flexible enough and
increasing n allows to widen the number of bearable phase difference between layers.
The third condition is much more problematic as we cannot program the read layer as
easily as the scaffold as 1) it is a folding meter with delicate structures hidden (such as
the the read head glider) and 2) it will enter the write pocket with an uncontrollable
shift, making it impossible to hardcode. We solve this problem by a) designing carefully
the geometry of the pocket, and b) desynchronising the read and write layer at carefully
chosen moments. Essentially, we will keep the read and write layers in sync where the
scaffold was attracting in the read pocket (the parts highlighted in yellow parts in Fig. 21),
and desynchronise them at the places where the scaffold did not attract the read layer at
all in the read pocket (the parts highlighted in blue in Fig. 21). We still need to deal with
the end of the switchback form which required special interactions with the scaffold in the
read pocket (the parts highlighted in green in Fig. 21): as we will be using desynchronised
phases that do not occur anywhere else, we will use these phases to program specific
interactions between the read and write layers that will emulate the same behaviour.
Again, thanks to the flexibility of the folding meter design, increasing n allows to create
enough separated spaces in the layer sequences to implement all these specific behaviours.

We solve these issues using the design in Fig. 26. The main difference with the read
pocket is that the scaffold is attracting the read layer everywhere, but in two pitfalls. These
pitfalls desynchronize the read and write layers and are placed so as to sandwich the part

XX:57

XX:58

1386
1387
1388
1389
1390
1391
1392

1393

1394
1395
1396
1397

1398
1399

1400
1401

1402
1403

1404

1405

1406

of the pocket that should not attract the write layer. The proper folding of the end of the
switchback form of the write layer is accomplished by programming carefully the interactions
between the read beads rp[[24..25], rb[[26..29], rq[29] with the write beads @b/Wb[78..79],
©q/Wq[81..83] which meet nowhere else. Note that also the lower bubble has to get away
(rightwards and downwards) from the switchbacks of the write layer to avoid unwanted
interactions, as opposed to the shape of the read pocket.

All these constraints contribute to the choice of n = 26 for the period of our folding
meters.

Geometry. The pocket involves the other two parameters x,y, which are adjusted for the
sake of n-folding meters as follows:
The length of the write layer path from T/B to T inside the upper bubble should be
equal to 0 modulo 2n if p is even or equal to n modulo 2n if p is odd. The length is
2(z + w + 17) + pn; thus, x should be set as:

x = (w + 17).complement(to: n). (1)

The length of the read layer path from T/B to B inside the lower bubble should be
equal to 0 modulo 2n if p is odd, or equal to » modulo 2n if p is even. The length is
2(w +y + 12) + (2k + 1 — p)n; thus, y should be set as:

y = (w + 12).complement(to: n). (2)

Lastly, in order for the top part of the pocket to end to the right of both the upper and lower
bubbles, ¢ should be set as:

(2w + max(z + 8,y — 3)).nextMultiple(of: 2n)
(= 5 3)

Capacity. The capacity of a write pocket is defined to be the length of the path taken by
the write layer from the rightmost T to the leftmost T, and it is determined by the three
independent parameters k,w, p with p < 2k + 1, and one dependent parameter £ as:

capacity = 2n((2k + 1)w + p) + 2(w + 17).nextMultiple(of: n) + 2nt.

Building a write pocket with a given capacity. Computing conversely these parameters
from an expected capacity 2nL should take the length of the underlying read layer into
account. Let us solve capacity = 2nL so as to minimize the Read layer length, that is
asymptotically as k and w go to 0o: 4nk + 6w. The ideal ratio is thus: w ~ 2nk/3. The
parameter ¢ should be at least (w + 2)/n in order for a write pocket not to collide with
anything to its right. Plugging in these lower bounds into the formula above for capacity
with = p = 0, we get that we are looking for a value of k verifying:

2nk/3- (2n(2k + 1) +2)+2n+4 2 2nL

Solving this equation gives:

k>k_\/12Ln+n2+4n—224 11
T in T 4

_{ nL —19 J
YRRk D)+ 2]

Now we set

XX:59

From this value of w, we can compute z, y, and ¢ according to the formulas (1), (2), and (3).
We finally set

p=2nL—(2n((2k + 1)w + 1) + 2(w + 17).nextMultiple(of: n) + 2n¢),

ur or set p := 0 if p < 0 above so that capacity = 2nL is ensured. Note that this process
ues guarantees that capacity < 2n(L + 2).

n(21+1)

Figure 26 Write pocket. Given w, parameters x, y and [must be adjusted so as to match the
period of the folding meter. The part of the read layer which is desynchronized with the write layer
is highlighted in purple.

e P Proposition J.2. Given some L = 0, the algorithm above outputs parameters (k,w, p,x,y,£)
wo such that the box swallows at least L 2n-periods of the write folding meter layer and such
wn that parameters k,w, ¢ are O(VL).

XX:60

1412

1413
1414
1415
1416
1417
1418
1419
1420

1421
1422
1423

1424

J.10 U-turn module

n(2k+1)

n(2k+1-p)-2

Figure 27 U-turn pocket. Given w, parameter x must be adjusted so as to match the period of
the folding meter.

Inside this module, the transcript transitions from the read layer to the write layer.
Between these layers is inserted a cushion fragment of length 2n(2k + 1), which is long enough
to guarantee that these two layers never interact inside this module as long as the switchback
region is large enough so for the read layer to terminate inside this region even at the largest
possible offset read.

The capacity of a U-turn pocket is defined to be the length of a path taken by the read
and write layers from the rightmost T on the read layer to the rightmost T on the write
layer. It is determined by the three independent parameters k, w, p with p < 2k + 1, and one
dependent parameter x as:

capacity = 2n(w(2k + 1) + p+ 1) + 2(w + 4 + x).
For the sake of n-folding meters, x should be set as:

x = (w + 4).complement(to: n)

1425

1426

1427

1428

1429

1430

1431

so that the capacity becomes a multiple of 2n.

For maxshift = W = Z” w;;, let us solve capacity = 2n maxShift so as to shorten the
scaffold as much as possible; the ideal ratio is w ~ nk. Plugging in this value into the formula
of capacity together with the lower bounds w + 4 + x = n and p = 0, we get that we are
looking for a value of k verifying

nk - (2k + 1+ 1/n) + 1 2 maxShift.

Solving this inequality implies that it suffices for k to be at least :

V2n(4 - maxShift =3) +n> +1—-1-n
k = max 40, In .

Now the remaining parameters can be computed one after another as:
1+ 0 maxShift —1

S 2k+1+1/n])’
max{0, maxShift —(1+ (2k + 1)(w—-1) + (w+ 4+ z)/n)}.

w

p

» Proposition J.3. The algorithm above outputs parameters (k,w, p,x) such that the box
swallows at least W + (2k + 1) 2n-periods of the folding meter layer and such that k,w are

O(WW).

XX:61

XX:62

w2 J.11 Corner module

=G Q@R DR @R @R BB R
& : : ;

@y}

Figure 28 Corner module.

1433 At a corner, outer layers need to go farther. The corner module prevents the resulting
e dissynchronization by a dent on its scaffold, which counteracts the difference in distance.

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

J.12 Exit pocket

All the sides but the north one, at which the transcript enters from the previous macrocell
or from the seed are provided with an exit pocket, at which the transcript can finalize the
current macrocell and go to the next macrocell. The exit layer is as long as the four sides
of the macrocell so that it can reach even the northeast side starting after the speedbump,
which is at the northwest side. Thus, in order to leave earlier, the remaining portion of the
exit layer must be consumed. The exit layer lets the portion be folded into switchbacks,
but then the earlier the system terminates, its output point shifts leftward. In order to
counteract this for the sake of upcoming macrocell, every exit pocket is sandwiched by two
shift modules (this shall be explained in details soon in Sect. J.15). The exit layer decides
whether to exit now or later at the designated kick (see Fig. 29). The transition table for
this decision shifts around and the table entry corresponding to an input read comes exactly
at this point to either attract the exit layer downward, which means that this pocket is not
chosen, or not, when the exit layer folds back upward and exits here.

The capacity of an exit pocket is defined to be the distance from the first B after the
branch of the two possible paths of the exit layer to the end of the transcript, and it is
determined by its parameters k,w,r as:

capacity = (2nw — 1)(2k + 1) + 2n(2r + 1).

The exit pocket involves other two parameters W and x. The parameter W is namely the
width of the pocket and is set as:

W =n-10+ 2nn

for some 7 large enough to guarantee w < W. The other parameter z is dependent on 7;
once 7 is fixed, x < (2k + 1)n is set so as for the length of the read, write, and exit layers
each between the leftmost T and the rightmost B to be equal to n modulo 2n, that is,

n+2n(2k +1) + 2(x + W + 10) = n mod 2n.

The one at the northwest corner requires the largest capacity to afford the remaining
portion of the current period of transcript, which amounts to the four macrocell’s sides. In
order to compute the parameters k and w, however, we need to know the size of the resulting
macrocell size, that is, a fixed point equation must be solved. We shall settle this issue in
Sect. J.18. By appending some extra n-folding meters at the end of the transcript, r can be
set to k. At the other macrocell’s sides, the system also employs the exit pocket of this size.

XX:63

XX:64

2W 40413
114 2(W - w) AA 2wtnt2
1 52(W - w) 2w+ 4 n-2
e VAYA s A - B (zw+/+11,—g) «
\;v;:: ’ A w2 B oW inii12,1) \
2 >

Scaffold

2W+ 4

Figure 29 Exit pocket. Given k and w, parameter must be adjusted so as to match the period
of the folding meter.

XX:65

Figure 30 Exit pocket: the exit layer does not exit if its xb-beads are attracted by the trigger
bead at the bottom corner of the pocket, namely Wp-4 here.

XX:66

a%s N o o 4%4%474" 4747474 o JJ"{;_I""’ S
S e s TITILLLL. s etsteteteterg
i i¢
1
74
g
/ 7
e i
r o
5 ¥
g4
o d
3 ¥
S if
7
7
#
#
i
i
i
o8 ok
¥
7
iy f
i i
£7 {9y
e
7 4
3 174
o g
o824
{5 F
F
g7
3 4
£ e
e
f { { AR
N 5

Figure 31 Exit pocket: the exit layer does exit if its xb-beads are not attracted by the trigger
bead at the bottom corner of the pocket, namely Wpr¢ here.

1466

1467

1468

1469

1470

1471

J.13 Exit interchange trap

This trap lets the system color its exit layers into non-interacting regions, as read and write
pockets do for the corresponding layers. The only place where the two exit colors are in
contact are inside the exit pocket. Since the exit layer does not shift, this trap only needs
to be as high as the exit pocket. Its design is thus super simple as shown in Fig. 32. The
parameter p will be set to 2k where k is the parameter of the exit pocket.

n—2 n

Figure 32 Exit interchange trap.

XX:67

XX:68

1472

1473
1474
1475
1476
1477

1478

1479
1480
1481

1482

1483
1484
1485
1486
1487
1488

1489

1490

1491

J.14 Step and shift modules

Step up and step down modules. The designs in Fig.33a and 33a fold as indicated for any
h such that 0 < (h mod n) < n —9. The total length of each layer inside this modules is
n+ h— (h mod n).

For steps of height h with n —9 < (h mod n) < n, we concatenate two such modules,
one with ' = n — 9 and one with A" = h — (n = 9). The total length of each layer is then
2n + h — (h mod n).

— (h mod n)

(hmod n) = 0

v ‘;

Exit ¢ c——
Write P © _2)6\
Read 4—q/

Scaffold P =0-C=

(0,0)

n—3 — (hmod n)
(a) Step up of height h.

h + n— (h mod n)

8 — (hmod n) =2 1

n
Exit ¢ —— =)
Write P> # \

h
Read 4—q/
Scaffold P © (ﬁ*‘:
’ n (h mod n)

(b) Step down of height h.

mi\“

Figure 33 The step up and down modules.

Shift module. Shift module will be useful to shift the exit pocket left or right so that the
exit glider exits always at the same position, regardless of the number of switchbacks of the
exit layer packed inside. It consists in concatenating a line module, one step down module
with and one step up module of the same height (see Fig. 34a and 34b).

» Lemma J.4. Given a positive integer L and Ln +9 < h < 2nL written as h = gn + r where

0 < r < n, then the distance between the leftmost T and rightmost T of the concatenation of:

= a horizontal line of length 2(L — q — 1)n, a step down and a step up, both of height h if
r<n-—9;

= a horizontal line of length 2(L — q — 2)n, two step down and two step up, both pairs of
heights n —9 and h —n + 9 respectively, if r >n —9;

is precisely 2Ln — h and the total length of each layer is 2Ln.

Proof. In both cases, the total length of each layer is 2Ln. In the first case, the distance
between the two extremities is 2(L —qg—1)n+2(h+n—r)—h = 2Ln— h. In the second case,

u2 note that since h = Ln + 9, then ¢ < L — 2, thus the line initial segment has positive length.
13 Furthermore, the distance between the extremities is 2(L —q¢—2)n+2n+2(h+n—-r)—h =
ue 2Ln — h. |

2(h + n— (hmod n)) ~ h

h + n— (h mod n) n — (hmod n)

77/ /5
_/ /

3 n -2~ (hmod n)

B/T
Exit 4—&
Write P
Read
Scaffold

B/T_

—

n~ 3~ (hmod n)

(a) Single-level shift module of height A for (h mod n) <n — 9.

2n + 2(h - (hmod n) — h

B/T

Exit 4 —
Write
Read
Scaffold

B/T
B)

b N\ \—

(b) Two-levels shift module of height h for (h mod n) >n — 9.

Figure 34 The two variants of the shift module.

XX:69

XX:70

1495

1496
1497
1498
1499
1500
1501
1502

1503

J.15 Exit module

Consider an exit pocket with parameters W and w where w = wq + iw for some i € {0,...,4}
with W 2 wq + 4w. Consider L = (8w + 9).nextMultiple(of: n) such that 8w < Ln — 9. The
exit module for ¢ consists in sandwiching this exit pocket between two shift modules of length
2nL and height 2iw and 2Ln — 2iw. Then, the distances from the leftmost T to the glider
exit location and to the rightmost T are both independent of i, as illustrated on Fig. 35.
Indeed, the shift of the glider by 2iw is balanced by the left shift module whose extension is
in turn balanced by the right shift module. Note that all layers have the same length which
is also independent of .

Figure 35 Exit module for the five values of w = wy + iw for 7 € {0,...,4} (here, wy = 1 and
w =38).

71

XX

1-(1+3g)u

‘o[npow 41xa SuIpi[s 9y} jo sedeys [enjoy g¢ a4nSi4

XX:72

1504

1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

1520

J.16 Corner interchange block

This block provides enough space to accommodate the junctions between different colors
along all the layers so as to free the other more fundamental modules from the unnecessary
load to handle transcript of multiple colors. A corner interchange block is provided with one
read pocket, two write pockets, and one exit trap (Fig. 37); among these modules, only the
read pocket varies in capacity as it is of capacity Q" — 1 at the i-th corner. Since the offset
yielded so far does not exceed 2nQ’, this is large enough to guarantee that the color shift on
the read layer from Read2 to Readl occurs inside the pocket via the auxiliary third color
Read12. The junction between Readl and Read?2 is colored in Read12, and if the colored
factor is twice as long as the depth of this read pocket, then the transcript in color Readl
never directly interacts with the transcript in color Read2 while being packed compactly
inside the pocket. The write layer changes the color also via the auxiliary third color Writel2,
but not in one pocket locally but rather throughout the whole block. Folding cw., this layer
changes the color from Write2 to Writel2 in the first write pocket, and then from Writel2 to
Writel in the second one. Since the write layer can shift at most by 2nQ6, these pockets
must be of capacity QG — 1. The exit layer changes the color from Exit2 to Exitl via the
auxiliary color Exit12 inside the exit trap.

\ «— Exit trap
changing CCW from layers A
to to

Write pocket
of capacity Q- 1
changing CW from
layers to Writel

<—— Write pocket of capacity Q°— 1
changing CW from layers Write2 to

Figure 37 Corner interchange block for ¢ = 2 (Q = 4 states).

Zoom in for details

1521

1522

1523

J.17 Middle interchange block

This block offers enough space to reverse the color change done at the corner interchange
blocks. It works exactly in the same manner as the corner interchange block does.

7 7, <
Read pocket of capacity Q'— 1 i /
changing CCW from layers //
/

Readl to Read12 to Read2

//

Exit trap

changing CCW from layers
to to
C Write pocket of capacity Q°— 1
changing CW from $layers Writel to Write pocket of capacity Q°- 1

changing CW from layers to Write2

Figure 38 Middle interchange block for ¢ = 2 (Q = 4 states).
Zoom in for details

XX:73

XX:74

1524

1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566

1567
1568
1569
1570

1571

J.18 Determining the macro-cell size: solving the fix point

In order to conclude the construction of the read/write part of the macro-cell, we need to
compute the length of its side. But, as the size of the exit module depends on the length of
the side of the macro-cell (recall that the whole length of the side must fit in it), we need to
solve a fixed point equation.

Combining all the blocks described so far (i.e., Writing, Middle interchange, Exit, Reading,
and Corner interchange) yields a macro-cell as depicted in Fig. 2, where ¢ = 3 (bits) and
hence, the macro-cell is provided with one writing block with 3 write modules and one
Reading block with 3 read pockets per side.

Two adjacent write modules in the Writing block must be equally distanced as two
adjacent read pockets in the Reading block. The distance is hence set to the maximum of
Lurite — 1 and all the y’s of all reading pockets involved; thus these modules never collide.
Concatenating g + 1 write pockets and ¢ write modules alternately yields the Writing block
with this proper spacing. Concatenating g read modules does not suffice for the Reading
block because these vary in size (doubling their sizes for reading in binary), and hence, their
y’s may differ. Padding between them a straight line of length multiple of 2n places these
modules spaced equally and properly. Interchange blocks each involves two write pockets
and one read pocket. The y parameter of the read pocket of Middle interchange block is set
to 1 + the largest possible y and the largest possible k& computed for all the read pockets
involved (see Section J.7). Thus, the left write pocket, this read pocket, and the exit trap,
which is concatenated directly to the right of the read pocket at all sides but the northeast
one never collide; at the northeast side, the exit trap is replaced by a proper combination of
line and step up/down modules so as not to change the length of macro-cell side). The same
y is used for the read pocket of Corner interchange block. Finally, the Exit block consists of
a line of 2n (ke + 1) and the Exit module, which consists of an exit pocket parameterized
by W = Wy and k = r = ke and sandwiching two shift modules of maximum shift 2wey;;.

These five types of blocks are concatenated into a side (though the resulting “side” bends
due to the Corner interchange block, it is more convenient for our sake to consider it as a
side). In order for the read and write pockets to be stuck up towards the macro-cell surface,
each of them is sandwiched by step-up and -down modules, each of length 2n. The exit layer
path of each of these blocks is of the following length:

Read block: 2n(q + 2) plus 2ng times the distance between the adjacent write modules;

Corner interchange block: 2n(20yte + ¥ + 7 + 5), where y is the one computed for the

interchange above;

Write block: 2n(q — 1) (Lurite + 1);

Middle interchange block: 2n(2fyite + y + 7 + 7), where y is the y computed for the

interchange before;

Exit block: 2n(4n + 2(2keq: + 1)) + 2n X 10n
Taking the step-up and -down modules for the read and write pocket into account, all of
these lengths sum up to the length of one side measured along the exit layer path. For the
sake of upcoming arguments, let us represent this total length as 2n(A + 10n).

Now it suffices to set the parameters ke, 7, and = of the exit module properly, and
the description of the macro-cell at least size-wise shall be completed. First, note that the

asymptotic length of the side is O(gvW). Thus, let us set kege to VgvW to ensure that
the exit pocket will have its height and width balanced. The exit pocket must be large
enough in order to accommodate four sides of the exit layer being folded into switchback;
formally speaking, 4(A + 10n) < (2kegt + 1)Wexit = (2kegie + 1)(n — 10 + 2nn). Solving this
inequality justifies n = [(44 — 16(2keyit + 1))/ (n(2keyie + 1) — 40)]. Now it suffices to fix x as

XX:75

w2 1 ((A+ 10n).complement(to: 2keq: + 1)) so that the length of layers along the exit pocket
1513 between its leftmost T and rightmost B becomes n modulo 2n.

XX:76

1574

1575
1576
1577
1578
1579
1580

1581

1582
1583
1584

1585

1586
1587
1588
1589
1590
1591
1592

1593

1594
1595
1596
1597
1598

1599

1600

1601
1602
1603
1604

1605

1606

1607

J.19 Tracker speed bump

This module is an adaptation of the speed bump from [21] to delay 3 and along an arbitrary
track path. As opposed to [21], where the speedbump is located along the side of the
macrocell, we need the speedbump to occupy a compact space. For this purpose, we want
this module to adopt a ”snake-like” shape to fit into an area of radius the square root of
its total length. Together with the delay 3 (as opposed to delay 2 in [21]), this imposed to
redesign completely this module, yielding, after a lot of struggling, to a surprinsingly simple
and modular conception allowing arbitrary complex path for the track.

A speedbump consists in an area of the macrocell in which the transcript can enter with
some shift upper bounded by a predefined maximum value, and will exit with a zero shift,
whatever the initial shift was, allowing to realign the transcript regardless of what happened
before.

The speedbump is a collaboration of a speedbump scaffold and speedbump layer. The
speedbump scaffold is provided with an alternation of flat area of period 4 (60..3) and bumper
area of period 4 (f0..3) except at the so-called fish tail, where more § types are employed. The
speedbump layer is mainly composed of the three modules; bumping sequence, flat sequence,
and rephaser. The flat sequence merely crawls along the scaffold. The bumping sequence is a
repetition of AOA1AOA2, which bumps in bumper areas, as long as it is synchronized properly
with the period-4 scaffold patterns just explained. The synchronization is guaranteed by the
preceding rephaser ¢0..5, which absorbs any small shift up to 3.

Correctness of the speedbump. The bead types involves in the fional macrocell are
confusing because they are the result of a product of the scaffold bead type (used to build
the shape of the scaffold) and the speedbump bead type (used to functionalise the scaffold).
In this proof we will just consider the speedbump bead types, disregarding the actual bead
in the macrocell to focus only on the speedbump behavior proof, using thus bead types that
do exist as is in the macrocell. Here the table of translation between those bead types:

Here Macrocell

Transcript:
D0..2 A0..2
C0 AO
E0..5 ¢0.5
Scaffold:

A0 00, 5, S7, 17, FO, 2, Cil, J4

Al 01, S5, 15, Co2

A2 02, S3, 13, eol, Ex1, Col

A3 03, 4, S1, 11, 003,

FO ¢0,3

F1 ¢1,2

As in the original solid speedbump in [21], any shift decays logarithmically. The transcript

consists in a sequence of bumping (D0D2D0D1) and stubbornly-flat (CO) sequences, whereas
the speedbump scaffold consists in an alternation of bumper (B0/1) and flattening sequences
(A0..3), all (both transcript and scaffold) exponentially decreasing in length. In addtion, we
need a rephaser module EOQ..5 in the transcript between the CO- and the DOD1D0D2-parts

The following figures show that in every situation the speedbump transcript behaves as
expected. Fig 39 shows it operating in a real macrocell.

1608

1609

The delay-3 speedbump rule.

A0 @ C0,D0,D2,E0,E1

Al @ C0,D0,D2,E0,E1,E3,E4

A2 @ C0,D0,D1,E0,E1,E4,E5

A3 @ C0,D0,D1,E0,E1,E5

B0 @ C0,D0,E0,E1

B1 @ C0,D1,D2,E0,E1

CO @ A0,A1,A2,A3,B0,B1,F0,F1
DO @ A0,A1,A2,A3,B0,D0,F0

D1 % A2,A3,B1,D2

D2 @ A0,A1,B1,D1,F0,F1

EO @ A0,A1,A2,A3,B0,B1,E2,F0,F1
El @ A0,A1,A2,A3,B0,B1,E3,E5,F0,F1
E2 @ E0,F0

E3 @ A1L,EL,F1

E4 @ A1,A2F1

E5 @ A2,A3,E1

FO @ C0,D0,D2,E0,E1,E2

F1 @ C0,D2,E0,E1,E3,E4

XX:77

XX:78

Figure 39 Speed bump module.

Offset: 00 Offset: 01 Offset: 02

 d & &

Offset: 03 Offset: 04 Offset: 05

K] o AR, o AR, A o

Offset: 06 Offset: 07 Offset: 08

A, o o A, 57 " ARRA, "
Offset: 09 Offset: 10 Offset: 11

ARARA. A o ARARA. Pt o ARARA. o
Offset: 12 Offset: 13 Offset: 14

ARARARARA, o ARARRARA, A o ARRARARA, o
Offset: 15 Offset: 16 Offset: 17

AARRARA. Kl ro o o
Offset: 18 Offset: 19-max 20-max-+1

% d Sk o Sk o
Offset: 28-sync Offset: 29-sync+1 30-sync+2

g

g

g

Offset: 31-sync+3

Offset: 32-sync+4

g

F

Figure 40 Self-rephasing speedbump on flat surface

XX:79

XX:80

\ Offset: 00
\ Offset: 03
9 %P
Offset: 06
2
X Offset: 09
L2 A8, A
X' Offset: 12
WM
x Offset: 15
X 2 G
Offset: 18

Offset: 29-sync

Offset: 32-sync+3

e

Offset:

01

\ Offset: 02
2

\m Offset: 05
A

Offset: 04

Offset: 07 K\M Offset: 08

%op
A Y

Offset: 10 Xﬂ Offset: 11
G P,

Offset: 13 Offset: 14

A 22
Offset: 16 Offset: 17

Offset: 19-max Offset: 20-max—+1
R e

Offset: 30-sync+1

\ Offset: 31-sync+2

Offset: 33-sync+4

Figure 41 Self-rephasing speedbump on inward surface

Offset: 00 Offset: 01 é Offset: 02
A 3 22
Offset: 03 Offset: 04 g Offset: 05
g7, 0 A
Offset: 06 Offset: 07 g”” Offset: 08
2 s
Y
Offset: 09 Offset: 10 ifji Offset: 11
A, F2, 1 gop
Offset: 12 7 Offset: 13 Offset: 14
3
im A
Offset: 15 éw Offset: 16 Offset: 17
:M
Offset: 18 z Offset: 19 Offset: 20
3
b AR &P
Offset: 21 éﬁﬂﬁ*’*’*""""’*’"’ Offset: 22 T “Offset: 23-max
> &,
:Mwﬂ»

* Offset: 37-sync

4 S S s et 39-sync+2

ffset: 40-sync+3

mset: 41-sync+4

€

Figure 42 Self-rephasing speedbump on inward2 surface

XX:81

XX:82

/ Offset: 00 / Offset: 01 / Offset: 02
oo oonARs AR, A

s P svaval Pl avavat
/ Offset: 03 / Offset: 04 / Offset: 05

o0 SUUUOUUSIUIOOY . UUUeN pov: S AR,
Offset: 06 / Offset: 07 f Offset: 08

A ABBR oo ooscooodooooooane AARA, Sy
st

Offset: 09 Offset: 10 f Offset: 11

|

T

W
Offset: 12 /f Offset: 13 f Offset: 14
o ARAR, o BBAR o
f Offset: 15 f Offset: 16 f Offset: 17
Offset: 18 Offset: 19-max Offset: 20-max-+1

Offset: 28-sync Offset: 29-sync+1 Offset: 30-sync+2

Ny S

Offset: 31-sync+3 Offset: 32-sync+4

SN S
NN

Figure 43 Self-rephasing speedbump on outward surface

A, o
il Offset: 01
-5
il Offset: 04
b=
TE * o
iy Offset: 07
b=
{% * o
%" Offset: 10
|-NERERTEY
A " o
%’ Offset: 13
2(Offset: 16 ﬁ{ Offset: 17
B {% = 23 7 AR op
3 Offset: 18 Offset: 19 Offset: 20
£ £ o4
BB, o P g
g{ Offset: 21 2(Offset: 22 ﬁ{ Offset: 23-max
AP
'gm et o " o et o

Offset: 34-sync

Pas 27

d

Offset: 37-sync+3

rorarinaTavaTiravatatavs

Figure 44 Self-rephasing speedbump on outward?2 surface

¢ Offset

uwary

: 38-sync+4

XX:83

XX:84

Offset:

01

Offset:

03

Offset:

06

Offset:

09

Offset:

12

Offset:

15

Offset:

18

Offset:

21

Offset:

24

Figure 45 Self-rephasing speedbump on inward red surface

Offset: 02

Offset:

04

Offset:

05

Offset:

07

Offset:

08

Offset:

11

Offset:

13

Offset:

14

Offset:

16

Offset:

17

Offset:

Offset:

20

Offset:

Offset:

23

XX:85

Figure 46 Self-rephasing speedbump on inward2 red surface

XX:86

Offset: 03

Offset: 18 Offset: 19 Offset: 20
 PrOm0m0=0m0=0m0=0=0=0=0=0=0=0=0=0m00m0mC - PrOmOm0=0=0m0m0=0m0=0=0=O=O=0=O=0=0=0=0m -0 PrOmOm0m0=0m0m0=0m0=O=O=0=0=0=0=0m0=0m0mC -
Offset: 21 Offset: 22 Offset: 23

Figure 47 Self-rephasing speedbump on outward red surface

XX:87

P, R,

PrRmOm00=00m0-0=0=0=0-0=0-0m0mb) HmOnt -p P marmviravarararceiravivivaraaviviTa 0 Prom0-0-0-0m0m000=0=0-0=0-f H0=0m0mOm 0

&g{ Offset: 03 << Offset: 04 { Offset: 05
=S ¥
£z Kwr2

 Prom9-9-0-0-0-0=0=0=0=0=0=df -gm0m0mmc P P varmvirarvararaceartar Naravivaravivin o PrOmO-0-0-0-0-000=0=0=0=0=0=0=0=0=0m0= -0
é<< Offset: 06 << Offset: 07 é< Offset: 08

Kb b Yhoooax

R, o Rnral

PrOm0-0-0-00m0=0=0=8 De0-0-0=0=0m0=0m0x¢ - P mirmvimavararamieburivimivirivzvivinion o Pro-0-0-0-00-0=b -0m0-0=0-0=0-0=0=0m0m -0
<< Offset: 09 << Offset: 10 {{ Offset: 11

e K bo-o-o-a- Keoa-ax

N S

P Om0m0m0m0=0=0m === OO OO -p P maraviviar.davivivivivimavavaveviviras o pro=0-0-0=e] db0-0=0=0-0-0-0-0-0=0m0m0m -0
<< Offset: 12 §< Offset: 13 é{ Offset: 14

X {boooeooose X

gop) A
peeeh - _pre-0-0-0-0-0-0-0 - ot o

<< Offset: 15 {(Offset: 16 << Offset: 17

P00 0O OO0t -p P mivivivavaravavivivizivimavavavaviviTar o OO0 OO OO0 OO0 -0

% Offset: 21 g{ Offset: 22 g{ Offset: 23
K 5-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0¢ R B-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 K 5-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0
Piririmivisisivar, o

<< Offset: 24
Y boooecooeoeoecececesce

Figure 48 Self-rephasing speedbump on outward2 red surface

XX:88

Offset: 00 Offset: 01 Offset: 02

Offset: 03 @ Offset: 04 Offset: 05

Figure 49 Self-rephasing speedbump on full red surface

Offset: 00 Offset: 01 Offset: 02

Offset: 03 Offset: 04 % : Offset: 05

Figure 50 Self-rephasing speedbump on full blue surface

1610

1611

1612

1613

1614

XX:89

K The turedo-to-oritatami compiler

The current implementation includes 1735 bead types. Examples of turedo compiled as
oritatami as well as a fully functional python compiler (soon available) can be downloaded
from [1]:

https://hub.darcs.net/turedo2oritatami/turedo2oritatami/

The resulting .os files are to be run on the oritatami simulator by [23].

Offset: 01 Offset: 02

Offset: 00

Offset: 03 2 Offset: 04 Offset: 05

Figure 51 Self-rephasing speedbump on full red surface

https://hub.darcs.net/turedo2oritatami/turedo2oritatami/

XX:90

Offset: 01

Figure 52 Self-rephasing speedbump on full blue surface

	1 Introduction
	2 Definitions and Models
	3 Delay-3 oritatami systems simulate radius-1 Turedos
	4 Uncomputable Limit Configurations and Freezing Time
	5 Characterization of Possible Densities of Limit Configurations
	Appendix
	 Appendix
	A Omitted figures of the macrocell
	B Appendix: Zigzag Toolkit for Turedos
	C Appendix: Formalizing Simulation
	D Appendix: Definition of dv1,v2 and Bv1,v2, and transfert of density through simulation
	E Appendix: Proof of Fact 4.1
	F Proof of Lemma 5.1
	G Appendix: Construction of Theorem 4.2
	H Appendix: Construction of Theorem 5.3
	I Achieving density 1: a delay-3 oritatami filling the plane
	J The oritatami modules
	J.1 Notations
	J.2 Folding meter and Pocket
	J.3 Multi-layer interactions
	J.4 Transcript
	J.4.1 Bead types

	J.5 Scaffold
	J.5.1 Line-segment module (16 bead types: S0-15)
	J.5.2 Turn module (18 bead types: ea0-3, oa0-3, eo0-3, oo0-3, cb0, cb1), cushions (20 bead types: Ci0-7, Co0-3, F0-3, Ex0-3)
	J.5.3 Joints

	J.6 Layer ordering and pocket sizes
	J.7 Read pocket
	J.8 Write module
	J.9 Write pocket
	J.10 U-turn module
	J.11 Corner module
	J.12 Exit pocket
	J.13 Exit interchange trap
	J.14 Step and shift modules
	J.15 Exit module
	J.16 Corner interchange block
	J.17 Middle interchange block
	J.18 Determining the macro-cell size: solving the fix point
	J.19 Tracker speed bump

	K The turedo-to-oritatami compiler

