Internship, Master 2 Strucutre of classes of graphs defined by constraints on chords Proposed by Nicolas Trotignon, LIP, ENS de Lyon

Description

The goal of this intership is to get familiar with structural graph theory through the study of a particular class of graphs. Here graphs are non oriented and simple. A cycle in a graph is a *cluc* if it has length at least 5 and a unique chord (cluc stands for "Cycle, Long, with a Unique Chord"). We call C the class of graphs that contains no cluc as an induced subgraph. We call \mathcal{B} the class of graphs such that no cycle has a unique chord. Note that \mathcal{B} is a subclass of C. Note that if a graph is in C and not in \mathcal{B} , then it must contain a cycle of length 4 with a unique chord. We denote by $\chi(G)$ the chromatic number of G and by $\omega(G)$ the maximum number of pairwise adjacent vertices in G.

The following two questions are open.

- Is there a polynomial time algorithm that decides whether an input graph is in \mathcal{G} ?
- Is there a polynomial f such that every graph G in \mathcal{C} satisfies $\chi(G) \leq f(\omega(G))$?

The class under consideration is a generalisation of two known classes: the class \mathcal{B} defined above, and the class of chordal graphs (these received a lot of attention, a wikipedia page is devoted to them). The papers cited below all give hints toward the solutions of these two questions. First both questions are solved for \mathcal{B} in [5], and for chordal graphs (classical result). A function f such that $\chi(G) \leq f(\omega(G))$ for all graphs in \mathcal{C} is known [4], but it is not a polynomial. The class \mathcal{B} and the class of chordal graphs share common structural properties [3, 1], and the so-called class of HHD-free graphs introduced in [2] might be important to undestand the structure of the graphs that are in $\mathcal{C} \setminus \mathcal{B}$.

Skills

Knowledge of graph theory is the main required skill. Basic knowledge of complexity theory and programming is appreciated.

References

- [1] A. Brandstädt, F.F. Dragan, V.B. Le, and T. Szymczak. On stable cutsets in graphs. *Discrete Applied Mathematics*, 105(1-3):39–50, 2000.
- [2] C.T. Hoàng and N. Khouzam. On brittle graphs. Journal of Graph Theory, 12(3):391–404, 1988.
- [3] T. McKee. Independent separator graphs. Utilitas Mathematica, 73:217– 224, 2007.
- [4] I. Penev. Amalgams and χ -boundedness. Manuscript available at http://perso.ens-lyon.fr/irena.penev/, 2014.
- [5] N. Trotignon and K. Vušković. A structure theorem for graphs with no cycle with a unique chord and its consequences. *Journal of Graph Theory*, 63(1):31–67, 2010.