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Description

The goal of this intership is to get familiar with structural graph theory
through the study of a particular class of graphs. Here graphs are non
oriented and simple. A cycle in a graph is a cluc if it has length at least 5
and a unique chord (cluc stands for “Cycle, Long, with a Unique Chord”).
We call C the class of graphs that contains no cluc as an induced subgraph.
We call B the class of graphs such that no cycle has a unique chord. Note
that B is a subclass of C. Note that if a graph is in C and not in B, then it
must contain a cycle of length 4 with a unique chord. We denote by χ(G)
the chromatic number of G and by ω(G) the maximum number of pairwise
adjacent vertices in G.

The following two questions are open.

• Is there a polynomial time algorithm that decides whether an input
graph is in G?

• Is there a polynomial f such that every graph G in C satisfies χ(G) ≤
f(ω(G))?

The class under consideration is a generalisation of two known classes:
the class B defined above, and the class of chordal graphs (these received
a lot of attention, a wikipedia page is devoted to them). The papers cited
below all give hints toward the solutions of these two questions. First both
questions are solved for B in [5], and for chordal graphs (classical result). A
function f such that χ(G) ≤ f(ω(G)) for all graphs in C is known [4], but
it is not a polynomial. The class B and the class of chordal graphs share
common structural properties [3, 1], and the so-called class of HHD-free
graphs introduced in [2] might be important to undestand the structure of
the graphs that are in C \ B.

Skills

Knowledge of graph theory is the main required skill. Basic knowledge of
complexity theory and programming is appreciated.
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