A stochastic and geometrical model for DNA origami self-assembly

Octave Hazard (PhD 2021-2024)

DNA structure

Double helix structure

DNA structure

Double helix structure

DNA structure

Double helix structure

Example of junction (here with 4 arms)

From DNA nanostructures to DNA computing

Nature 1991

Andersen et al, Nature 2009

Woods et al, Nature 2019

Simulation of a cellular automaton

Rothemund, P. "Folding DNA to create nanoscale shapes and patterns." *Nature* 440, 297–302 (2006).

DNA Origami

DNA Origami

Building larger DNA structures

My project and motivations

• Building larger DNA origami structures using several (identical) scaffold strands

• Better understanding and controlling the folding process

A first test design

(identical scaffold strand)

Building larger DNA structures Assembling separately ring and square origamis

Building larger DNA structures[®]] *First results : not so great*

Building larger DNA structures First results : not so great

40nM M13 (1x) 20nM black staples (0.5x) 200nM staples (5x)

90->25°C, 60h

⊖.0

0.2

0.4

[µm]

1.0

0.8

0.6

Adding a partial folding step

Partial annealing step

partially folded square origami

Adding a partial folding step

1. With **all staples** as seeds :

Fully formed halves

2. With **50% staples** as seed, **checkerboard pattern**:

halves with 50% staples

Refining the choice of seed (energy model)

 $|\Delta_{_{\rm f}}{\rm G}_1| < |\Delta_{_{\rm f}}{\rm G}_2|$

Goal: Minimize the number of **seed staples**.

Constraints: $|\Delta_r G_1|$ low for every **pink staple**

 \rightarrow We can use **linear programming** (assuming $\Delta_r G_1$ is linear)

3. With **48% staples** as seed, **linear optimization problem**:

Further investigating DNA origami formation

Understanding DNA Origami formation: *Thermodynamics*

5'
$$C \stackrel{\downarrow}{-} G \stackrel{\downarrow}{-} T \stackrel{\downarrow}{-} T \stackrel{\downarrow}{-} G \stackrel{\downarrow}{-} A 3'$$

3' $G - C - A - A - C - T 5'$

 $\Delta G^{\circ}_{37}(\text{prediction}) = \Delta G^{\circ}(CG/GC) + \Delta G^{\circ}(GT/CA) + \Delta G^{\circ}(TT/AA) + \Delta G^{\circ}(TG/AC) + \Delta G^{\circ}(GA/CT) + \Delta G^{\circ}(\text{init.})$

= -2.17 - 1.44 - 1.00 - 1.45 - 1.30 + 0.98 + 1.03

 ΔG°_{37} (prediction) = -5.35 kcal/mol

 ΔG°_{37} (observation) = -5.20 kcal/mol

SantaLucia, « A Unified View of Polymer, Dumbbell, and Oligonucleotide DNA Nearest-Neighbor Thermodynamics » (1998)

Understanding DNA Origami formation: *kinetic Monte-Carlo model*

Menssen, Kimmel, et Tokmakoff, « Investigation into the mechanism and dynamics of DNA association and dissociation utilizing kinetic Monte Carlo simulations » (2021).

Understanding DNA Origami formation: **Domain level simulation**

Dannenberg et al., « Modelling DNA origami self-assembly at the domain level » (2015)

Understanding DNA Origami formation: *Geometrical/topological considerations*

Majikes et al., « Revealing thermodynamics of DNA origami folding via affine transformations » (2020),

Understanding DNA Origami formation: *Measuring staple attachment delay*

Schneider, Möritz, et Dietz, « The sequence of events during folding of a DNA origami » (2019),

My work: a stochastic model that incorporates all these approaches

- Origamis are "big" (~7000 nts)
 → domain approach
- Detecting unpredicted formations
 → nucleotide level events
- Complex shapes / scaffold routing
 → topological and geometrical
 considerations are important

Bending Energy Cos

Our model: Authorized state transitions

Simulation with 4 types of transitions:

Our model: Kinetic Monte-Carlo simulation

- Initial state: a bunch of unattached strands
- **Possible transitions**: Attachments, Detachments, Elongations and Shortenings when possible at the current state.
- **Transition rate**: proportionate to the probability of occurring as the next transition

Our model: Computing transition rates **Bimolecular reactions**

Bimolecular domain Attachment / Detachment = simple chemical reaction

 $\frac{k_1}{k_2} = e^{-\frac{\Delta G_{\text{attach}}}{RT}}$ where ΔG_{attach} is computed from the sequence and condition parameters (temperature and salt concentrations).

Our model: Computing transition rates **Elongation/Shortening**

• Elongation / Shortening: similar dependance on sequence and condition parameters

Our model: Computing transition rates Unimolecular Attachment/Detachment

- Unimolecular domain Attachment/Detachment:
 - depends on current geometry/topology
 - rate can change due to non-local state modifications
 - sometime impossible (ex: when starting and ending domains are already attached)

Simulation loop

Input: strand sequences (ex: ["ATCCGT", "AATTAT", "ATGGCGTGCAGT", ...])

Output: sequence of states

Initial state: all strands unattached

Example of execution (simplified Origami)

Example of execution (simplified Origami)

Example of step-by-step execution (simplified Origami)

The model should allow us to study :

- Nucleation phenomenons,
- Chimeric or ill-formed origami,
- Influence of design choices :
 - scaffold routing,
 - stapling method.
- Influence of experimental parameters :
 - strand concentrations,
 - salt concentrations,
 - temperature,
 - temperature curve.

How to improve the model (help wanted)

- Finer use of **topology** and **geometry** of the system:
 - **topology:** implementation of distance-dependant rates
 - a mathematical model for **loop entropy cost**
 - **How much** I need to know about the **2D / 3D positioning** of the origami components during simulation ?

Model simplifications:

- which transitions are **impactless** ? (e.g. short bimolecular attachments ? self-attachment ?)
- Shortcut fast sequences of events (e.g. random walks)

My PhD Expectation Reality

49

Sugarbas :81 ofgaL Cintantingigg

Second Se

ATTACCONCINC