A stochastic and geometrical model for DNA origami self-assembly

Octave Hazard
(PhD 2021-2024)
DNA structure

Double helix structure
DNA structure

Double helix structure
DNA structure

Double helix structure

Example of junction (here with 4 arms)
From DNA nanostructures to DNA computing

Simulation of a cellular automaton

80 nm ≈ 800 atoms
≈ \(\frac{1}{5} \) visible wavelength

execution / assembly / growth
DNA Origami

DNA Origami

Scaffold DNA

Annealing

Folding

Complementary domains

Scaffold

Staples

DNA origami nanostructure
DNA Origami

1) design

2) order staples strands
+ scaffold strand

3) annealing
90°C → 25°C in 12h

4) characterization

AFM

500 nm
Building larger DNA structures

DNA Origami reliable
Short strands assembly less reliable
My project and motivations

- Building larger DNA origami structures using several (identical) scaffold strands
- Better understanding and controlling the folding process
A first test design

DNA Origami 1

DNA Origami 2

(identical scaffold strand)
Building larger DNA structures
Assembling separately ring and square origamis
Building larger DNA structures

First results: not so great

40nM M13
20nM links
200nM staples
90→25°C, 60h
Building larger DNA structures

First results: not so great

40nM M13 (1x)
20nM black staples (0.5x)
200nM staples (5x)

90->25°C, 60h
Finding key staple strands for scaffold differentiation

Adding a partial folding step

Partial annealing step
Finding key staple strands for scaffold differentiation

Adding a partial folding step

Partial annealing step

Final annealing step
Finding key staple strands for scaffold differentiation

1. With **all staples** as seeds:

 ![Fully formed halves](image1)

 ![Link staples](image2)
Finding key staple strands for scaffold differentiation

2. With **50% staples** as seed, **checkerboard pattern**: half with 50% staples remaining staples strands

halves with 50% staples
Refining the choice of seed (energy model)

Goal: Minimize the number of seed staples.

Constraints: $|\Delta_r G_1|$ low for every pink staple

→ We can use linear programming (assuming $\Delta_r G_1$ is linear)
Finding key staple strands for scaffold differentiation

3. With 48% staples as seed, linear optimization problem:
Further investigating DNA origami formation

Thermodynamics fundations

\[
\begin{align*}
5' & \text{C-G-T-T-G-A} \quad 3' \\
3' & \text{G-C-A-A-C-T} \quad 5' \\
\Delta G^\circ_{37 \text{(pred.)}} &= \Delta G^\circ_{\text{CG/GC}} + \Delta G^\circ_{\text{GT/CA}} + \Delta G^\circ_{\text{TT/AA}} \\
&+ \Delta G^\circ_{\text{TG/AC}} + \Delta G^\circ_{\text{GA/CT}} + \Delta G^\circ_{\text{init.}}
\end{align*}
\]

SantaLucia 1998

Topological considerations

Dannenberg et al., 2015

Majikes et al., 2020

Domain level simulation

Majikes et al., 2020

Nucleotide level simulation

Menssen et al., 2021

Experimental data

Schneider et al., 2019
Understanding DNA Origami formation:

Thermodynamics

\[
\begin{align*}
5' & \quad \downarrow \downarrow \downarrow \downarrow \downarrow \ C - G - T - T - G - A \quad 3' \\
3' & \quad G - C - A - A - C - T \quad 5'
\end{align*}
\]

\[
\Delta G^\circ_{37}(\text{prediction}) = \Delta G^\circ(\text{CG/GC}) + \Delta G^\circ(\text{GT/CA}) + \Delta G^\circ(\text{TT/AA}) \\
+ \Delta G^\circ(\text{TG/AC}) + \Delta G^\circ(\text{GA/CT}) + \Delta G^\circ(\text{init.})
\]

\[
= -2.17 - 1.44 - 1.00 - 1.45 - 1.30 + 0.98 + 1.03
\]

\[
\Delta G^\circ_{37}(\text{prediction}) = -5.35 \text{ kcal/mol}
\]

\[
\Delta G^\circ_{37}(\text{observation}) = -5.20 \text{ kcal/mol}
\]

SantaLucia, « A Unified View of Polymer, Dumbbell, and Oligonucleotide DNA Nearest-Neighbor Thermodynamics » (1998)
Understanding DNA Origami formation:
kinetic Monte-Carlo model

Menssen, Kimmel, et Tokmakoff, « Investigation into the mechanism and dynamics of DNA association and dissociation utilizing kinetic Monte Carlo simulations » (2021).
Understanding DNA Origami formation: Domain level simulation

Dannenberg et al., « Modelling DNA origami self-assembly at the domain level » (2015)
Understanding DNA Origami formation: Geometrical/topological considerations

Majikes et al., « Revealing thermodynamics of DNA origami folding via affine transformations » (2020),
Understanding DNA Origami formation:
Measuring staple attachment delay

Schneider, Möritz, et Dietz, « The sequence of events during folding of a DNA origami » (2019),
My work: a stochastic model that incorporates all these approaches

- Origamis are “big” (~7000 nts) → domain approach
- Detecting unpredicted formations → nucleotide level events
- Complex shapes / scaffold routing → topological and geometrical considerations are important
Our model: Authorized state transitions

Simulation with 4 types of transitions:

- Attachment
- Detachment
- Elongation
- Shortening
Our model: Kinetic Monte-Carlo simulation

- **Initial state**: a bunch of unattached strands
- **Possible transitions**: Attachments, Detachments, Elongations and Shortenings when possible at the current state.
- **Transition rate**: proportionate to the probability of occurring as the next transition
Our model: Computing transition rates

Bimolecular reactions

Bimolecular domain Attachment / Detachment = simple chemical reaction

\[
\frac{k_1}{k_2} = e^{-\frac{\Delta G_{\text{attach}}}{RT}} \quad \text{where } \Delta G_{\text{attach}} \text{ is computed from the sequence and condition parameters (temperature and salt concentrations).}
\]
Our model: Computing transition rates

Elongation/Shortening

- Elongation / Shortening: similar dependance on sequence and condition parameters
Our model: Computing transition rates

Unimolecular Attachment/Detachment

- Unimolecular domain Attachment/Detachment:
 - depends on current geometry/topology
 - rate can change due to non-local state modifications
 - sometime impossible (ex: when starting and ending domains are already attached)
Simulation loop

Input: strand sequences (ex: [“ATCCGT”, “AATTAT”, “ATGGCGTGCAGT”, …])

Output: sequence of states

Initial state: all strands unattached
Example of execution (simplified Origami)
Example of execution (simplified Origami)
Example of step-by-step execution (simplified Origami)
The model should allow us to study:

- Nucleation phenomena,

- Chimeric or ill-formed origami,

- Influence of design choices:
 - scaffold routing,
 - stapling method.

- Influence of experimental parameters:
 - strand concentrations,
 - salt concentrations,
 - temperature,
 - temperature curve.
How to improve the model (help wanted)

● Finer use of **topology** and **geometry** of the system:
 ○ **topology**: implementation of distance-dependant rates
 ○ a mathematical model for **loop entropy cost**
 ○ **How much** I need to know about the 2D / 3D positioning of the origami components during simulation?

● **Model simplifications**:
 ○ which transitions are **impactless**? (e.g. short bimolecular attachments? self-attachment?)
 ○ **Shortcut** fast sequences of events (e.g. random walks)
My PhD

Expectation Reality

Thank you!