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1 Categories

Definition 1 (Category)
A category C is given by a class of objects obj(C) and, for each pair of objects A and B in obj(C),
a class of morphisms (or arrows) C(A,B) from A to B together with:

• identities: idA ∈ C(A,A) for each object A

A
idA // A
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• composition: C(A,B)× C(B,C)→ C(A,C), denoted by (f, g) 7→ f ; g:

A
f //

f ;g ��@@@@@@@ B

g

��
C

such that the following diagrams commute:

A
idA //

f ��@@@@@@@ A

f

��
B

A
f //

f ��@@@@@@@ B

idB
��
B

A
f //

f ;g

��

B

g;h

��
C

h
// D

We can “summarize” these four diagrams into:

A
f //

idA
��

f

��@@@@@@@ B

idB
��

A
f
// B

A
f //

f ;g
��

B

g;h
��

g
~~~~~~~~~

C
h
// D

Example 1 (Category Set)
The category of sets Set is given by:

• objects are sets

• morphisms are functions

• identities are identity functions

• composition is composition of functions

Definition 2 (Sub-Category)
A category D is a sub-category of the category C if its objects are objects of C (obj(D) ⊆ obj(C)),
its morphisms are morphisms of C (D(A,B) ⊆ C(A,B)), its identities are the identities of C
(idDA = idCA) and its composition is the composition of C (f ;D g = f ;C g).
D is a full sub-category of C if, whenever A and B are objects of D, D(A,B) = C(A,B).
D is a wide sub-category of C if obj(D) = obj(C).

A full sub-category is characterized by its class of objects.

Example 2 (Full Wide Sub-Category)
The unique full wide sub-category of a category is itself.
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1.1 Constructions

Definition 3 (Dual Category)
The dual (or opposite) Cop of a category C is the category with:

• objects of Cop are objects of C

• morphisms of Cop from A to B are morphisms of C from B to A

• identities of Cop are identities of C

• composition of f and g in Cop is g ; f in C

Definition 4 (Unit Category)
The unit category T is given by:

• a unique object ?

• a unique morphism u from ? to ?

• id? = u

• u ; u = u

Definition 5 (Product Category)
The product C× D of two categories C and D is the category with:

• objects are pairs of objects of C and objects of D

• morphisms from (A,A′) to (B,B′) are pairs of morphisms of C from A to B and morphisms
of D from A′ to B′

• identity on (A,A′) is the pair (idA, idA′)

• composition of (f, f ′) and (g, g′) is (f ; f ′, g ; g′)

1.2 Morphisms

Definition 6 (Monomorphism)
A monomorphism f from the object A to the object B (denoted f : A ↪→ B) is a morphism from
A to B such that for any two morphisms g and h from some object C to A, we have:

g ; f = h ; f =⇒ g = h

Definition 7 (Epimorphism)
An epimorphism f from the object A to the object B (denoted f : A� B) is a morphism from A
to B such that for any two morphisms g and h from B to some object C, we have:

f ; g = f ; h =⇒ g = h

It is thus a monomorphism in Cop.
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Definition 8 (Idempotent)
A morphism f from the object A to itself is an idempotent if f ; f = f .
This can be written:

A
f //

f

;;A
f // A

Definition 9 (Retract)
An object A is a retract of an object B (denoted A / B) if there exist two morphisms s ∈ C(A,B)
and r ∈ C(B,A) such that s ; r = idA.
This can be written:

AidA 88

s

&&
B

r

ff

s is then called a section of r, and r is called a retraction of s. (s, r) is called a section-retraction
pair.

If (s, r) is a section-retraction pair, s is a monomorphism and r is an epimorphism. Such monomor-
phisms and epimorphisms coming from a section-retraction pair are called split monomorphisms
and split epimorphisms. r ; s is an idempotent. Such idempotents coming from a section-retraction
pair are called split idempotents.

Proof page 32

Definition 10 (Isomorphism)
An isomorphism f from the object A to the object B is a morphism from A to B such that
there exists a morphism g from B to A (called the inverse of f) such that the following diagrams
commute:

A
f //

idA ��@@@@@@@ B

g

��
A

B
g //

idB   @@@@@@@ A

f

��
B

We can “summarize” these two diagrams into:

AidA 88

f

&&
B idB
ww

g

ff

Property 1 (Retracts and Isomorphisms)
We have:

• If there exists an isomorphism between A and B (denoted A ' B) then both A/B and B /A.

• If f ∈ C(A,B) is both a section and a retraction then it is an isomorphism.

Proof page 32
In particular an isomorphism is both a monomorphism and an epimorphism (the converse does not
hold in general).

Proof page 32
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Definition 11 (Essentially Wide Sub-Category)
D is an essentially wide sub-category of C if it is a sub-category such that, for each object A of C,
there is an object A′ of D such that A′ ' A.

1.3 Functors

Definition 12 (Functor)
A functor F between two categories C and D is:

• a function from the objects of C to the objects D

• for each A and B, a function from C(A,B) to D(FA,FB)

such that the following diagrams in D commute:

FA

F idA
((

idFA

66 FA

FA
Ff //

F (f ;g) ""FFFFFFFF FB

Fg

��
FC

A functor from a category to itself is called an endofunctor.

Example 3 (Constant Functor)
If C and D are two categories and D is an object of D, the constant functor CD from C to D is
defined by:

• for any A ∈ obj(C), CDA = D

• for any f ∈ C(A,B), CDf = idD

The constant functor C? is the unique functor from any category C to T.

Proof page 32

Example 4 (Inclusion Functor)
If D is a sub-category of C, the inclusion functor I from D to C is defined by:

• for each A ∈ obj(D), IA = A

• if A and B are in obj(D) and f ∈ D(A,B), If = f

We denote by IdC the identity endofunctor of C which is the inclusion functor of C into itself.

Proof page 32

Example 5 (Category Cat)
The category of categories Cat is given by:

• objects are (small) categories

• morphisms are functors

• identities are identity functors
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• composition is composition of functors: if F is a functor from C to D and G is a functor from
D to E, their composition F ;G (or GF ) is the functor from C to E which maps the object A
to G(FA) and the morphism f to G(Ff).

If F is an endofunctor of a category C, we use the notations F 2 for F ;F = FF , F 3 for F ;F ;F =
FFF , . . .

Proof page 32

Property 2 (Preservation of Retracts)
Functors preserve retracts and isomorphisms: if F is a functor,

• A / B =⇒ FA / FB

• A ' B =⇒ FA ' FB

Definition 13 (Bi-Functor)
A bi-functor from two categories C and D to a category E is a functor from C× D to E.
More concretely, if it is given by:

• a function from obj(C)× obj(D) to obj(E)

• for each A and B in obj(C) and A′ and B′ in obj(D), a function from C(A,B)×D(A′, B′) to
E(FAA′, FBB′)

such that the following diagrams in E commute:

FAA′

F idAidA′
))

idFAA′

55 FAA
′

FAA′
Fff ′ //

F (f ;g)(f ′;g′) $$JJJJJJJJJ FBB′

Fgg′

��
FCC ′

One often uses the notations FAf for F idAf and FfA for Ff idA, if A is an object.

Example 6 (Homset Functor)
The homset functor C( , ) of a category C is the bi-functor from Cop and C to Set given by:

• C( , )(A,B) = C(A,B)

• C( , )(f, g)h = f ; h ; g (for f ∈ C(A′, A), g ∈ C(B,B′) and h ∈ C(A,B))

Example 7 (Fixed Component Bi-Functor)
If F is a bi-functor from C and D to E and if A is an object of C, we can define a functor FA from
D to E by:

• for any object B of D, FAB = FAB

• for any morphism g ∈ D(B,B′), FAg = F idCAg

Definition 14 (Full and Faithful Functors)
A functor F between two categories C and D is full if, for any pair (A,B) of objects of C, F is
surjective from C(A,B) to D(FA,FB).
A functor F between two categories C and D is faithful if, for any pair (A,B) of objects of C, F is
injective from C(A,B) to D(FA,FB).
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Definition 15 (Essentially Surjective Functor)
A functor F between two categories C and D is essentially surjective if, for each object A′ of D,
there exists an object A of C such that A′ is isomorphic to FA.

Example 8 (Inclusion Functor (bis))
If D is a sub-category of C, the inclusion functor is faithful. It is full if and only if D is a full
sub-category of C. It is essentially surjective if and only if D is an essentially wide sub-category of
C.

Example 9 (Projection Functor)
Let C and D be two categories, the projection functor P from C× D to C is defined by:

• for each (A,B) ∈ obj(C× D), P (A,B) = A ∈ obj(C)

• if A and A′ are objects in C, B and B′ are objects in D, and (f, g) ∈ C× D((A,B), (A′, B′)),
P (f, g) = f ∈ C(A,A′)

It is a full functor if D has at least one morphism between any two objects.

Proof page 33

Definition 16 (Algebra)
An algebra for the endofunctor F is a pair (A, hA) where:

• A is an object

• hA is a morphism from FA to A

Definition 17 (Algebra Morphism)
An algebra morphism f from (A, hA) to (B, hB) is a morphism from A to B such that the following
diagram commutes:

FA

hA
��

Ff // FB

hB
��

A
f
// B

If F is a functor, its category of algebras Alg(F ) has objects the algebras of F and morphisms the
algebra morphisms between them.

Definition 18 (Natural Transformation)
A transformation α between two functions F and G from the objects of a category C to the
objects of a category D (in particular between two functors from C to D) is a family (αA)A∈obj(C)
of morphisms from FA to GA.
A transformation α between two functors F and G is natural if the following diagram in D commutes
for all f ∈ C(A,B):

FA
Ff //

αA

��

FB

αB

��
GA

Gf
// GB
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It is represented:

C

F

&&

G

88
�� ��
�� α D

A natural isomorphism is a natural transformation where each element is an isomorphism.

Example 10 (Identity Natural Transformation)
If F is a functor between the categories C and D, (idFA)A∈obj(C) is a natural isomorphism from F
to itself.

Proof page 33

Definition 19 (Vertical Composition)
Let F , G and H be three functors between the same two categories C and D, if α is a natural
transformation for F to G and β is a natural transformation from G to H, the vertical composition
α ;1 β is the natural transformation from F to H defined by (α ;1 β)A = αA ; βA.

C

F

��
�� ��
�� α

??

H

�� ��
�� β

G
// D 7→ C

F

��

H

??
�� ��
�� α;1β D

Proof page 33

Definition 20 (Horizontal Composition)
Let C, D and E be three categories, F and F ′ be two functors from C to D and G and G′ be two
functors from D to E, if α is a natural transformation for F to F ′ and β is a natural transformation
from G to G′, the horizontal composition α ;0 β is the natural transformation from F ;G to F ′ ;G′

defined by (α ;0 β)A = GαA ; βF ′A = βFA ;G′αA.

C

F

&&

F ′

88
�� ��
�� α D

G

%%

G′

99
�� ��
�� β E 7→ C

F ;G

%%

F ′;G′

99
�� ��
�� α;0β E

Proof page 33

Example 11 (Category of Functors)
Let C and D be two categories, the category of functors Func(C,D) is given by:

• objects are functors between C and D

• morphisms are natural transformations

• identities are the identity natural transformations

• composition is the vertical composition of natural transformations
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1.4 Objects

Definition 21 (Terminal Object)
A terminal object in a category C is an object > such that, for any object A of C, there exists a
unique morphism tA from A to >.

If C is a category with a terminal object >, a point of an object A of C is a morphism from > to
A.

Definition 22 (Initial Object)
An initial object in a category C is an object ⊥ such that, for any object A of C, there exists a
unique morphism iA from ⊥ to A.
It is thus a terminal object in Cop.

A zero object is an object 0 which is both initial and terminal. If 0 is a zero object in the category
C and A and B are two objects of C, the zero morphism zA,B is:

A
tA // 0

iA // B

Definition 23 (Product)
A product of two objects A and B in a category C is a triple (A×B, πA, πB) where:

• A×B is an object of C

• πA is a morphism from A×B to A

• πB is a morphism from A×B to B

such that, for any triple (C, f, g), where C is an object of C, f is a morphism from C to A and
g is a morphism from C to B, there exists a unique morphism 〈f, g〉 from C to A × B such that
〈f, g〉 ; πA = f and 〈f, g〉 ; πB = g.
This can be written:

C

f

������������������

g

��????????????????

〈f,g〉

��
A A×BπA
oo

πB
// B

If (A×A, πlA, πrA) is a product of A and A in C, the diagonal morphism ∆A is 〈idA, idA〉 from A to
A×A. It a section of both projections πlA and πrA.
A category equipped with a product for each pair of objects and which has a terminal object is
called a cartesian category. In such a category, one can form all products of finite families of
objects. If C is a cartesian category, × defines a bi-functor from C and C to C, and ∆ is a natural
transformation from IdC to × .

Proof page 33

Definition 24 (Co-Product)
A co-product of two objects A and B in a category C is a triple (A+B, ιA, ιB) where:
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• A+B is an object of C

• ιA is a morphism from A to A+B

• ιB is a morphism from B to A+B

such that, for any triple (C, f, g), where C is an object of C, f is a morphism from A to C and
g is a morphism from B to C, there exists a unique morphism [f, g] from A + B to C such that
ιA ; [f, g] = f and ιB ; [f, g] = g.

A
ιA //

f

��???????????????? A+B

[f,g]

��

B
ιBoo

g

������������������

C

It is thus a product in Cop.

If (A+A, ιlA, ι
r
A) is a co-product of A and A in C, the co-diagonal morphism ∇A is [idA, idA] from

A+A to A.

Example 12 (Products and Co-Products in Set)
If A and B are two sets, the cartesian product A × B (with the projection functions) defines a
product of A and B in Set. The singleton set {?} is terminal in Set. With this structure, Set is a
cartesian category.
The disjoint union A ]B (with the injection functions) is a co-product in Set. The empty set ∅ is
an initial object in Set.

Proof page 33

Example 13 (Products in Cat)
If C and D are two categories, the product category C×D (with the projection functors) defines a
product of C and D in Cat. The unit category T is terminal in Cat. With this structure, Cat is a
cartesian category.

Proof page 34

Example 14 (Co-Products in Cat)
If C and D are two categories, the category C + D is given by:

• objects are in the disjoint union obj(C) ] obj(D)

• morphisms from (0, A) to (0, B) are C(A,B), morphisms from (1, A′) to (1, B′) are D(A′, B′)
(and there is no morphism from (i, A) to (j, B′) if i 6= j)

• composition and identities come from those of C and D

Up to the identification of obj(C) and obj(D) with their disjoint copies in obj(C) ] obj(D), one can
consider the inclusion functors as functors from C to C + D and from D to C + D. The category
C + D with these two functors defines a co-product of C and D in Cat.
The empty category ‚ with no object and no morphism is initial in Cat.
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Proof page 34

Definition 25 (Bi-Product)
Let C be a category with a zero object 0 and A and B two objects of C, a bi-product of A and B
is a 5-tuple (A⊕B, ιA, ιB, πA, πB) where:

• (A⊕B, πA, πB) is a product of A and B in C

• (A⊕B, ιA, ιB) is a co-product of A and B in C

and such that:

ιA ; πA = idA

ιB ; πB = idB

ιA ; πB = zA,B

ιB ; πA = zB,A

Definition 26 (Equalizer)
An equalizer of two morphisms f and g between the same two objects A and B in a category C is
a pair (E, e) where E is an object of C and e is a morphism from E to A such that e ; f = e ; h
and, for any pair (E′, e′), where E′ is an object of C and e′ is a morphism from E′ to A such that
e′ ; f = e′ ; g, there exists a unique morphism h from E′ to E such that e′ = h ; e.
This can be written:

E

e′

������������������

e′

��7777777777777777

h
��
E

e

yyttttttttttt
e

%%JJJJJJJJJJJ

A
f

// B Ag
oo

If (E, e) is an equalizer, e is a monomorphism. Such monomorphisms coming from an equalizer are
called regular monomorphisms.

Proof page 34

2 Monoidal Categories

Definition 27 (Monoidal Category)
A monoidal category is a 6-tuple (C,⊗, 1, a, ul, ur) where:

• ⊗ is a bi-functor from C and C to C

• 1 is an object of C

• a is a natural isomorphism from ( ⊗ ′)⊗ ′′ to ⊗ ( ′ ⊗ ′′)

• ul is a natural isomorphism from IdC to ⊗ 1

• ur is a natural isomorphism from IdC to 1⊗

11



such that the following diagrams commute:

(A⊗B)⊗ (C ⊗D)

aA,B,C⊗D

**UUUUUUUUUUUUUUUUUUUUUUUUU

((A⊗B)⊗ C)⊗D

aA⊗B,C,D

44iiiiiiiiiiiiiiiiiiiiiiiii

aA,B,C⊗D
%%JJJJJJJJJJJJJJ

A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D aA,B⊗C,D

// A⊗ ((B ⊗ C)⊗D)

A⊗aB,C,D

99tttttttttttttt

A⊗B
ulA⊗B

xxppppppppppp
A⊗urB

&&NNNNNNNNNNN

(A⊗ 1)⊗B aA,1,B

// A⊗ (1⊗B)

A monoidal category is strict if the natural isomorphisms a, ul and ur are the identity natural
isomorphism.
A symmetric monoidal category is a 7-tuple (C,⊗, 1, a, ul, ur, s) where:

• (C,⊗, 1, a, ul, ur) is a monoidal category

• s is a natural isomorphism from ⊗ ′ to ′ ⊗

such that the following diagrams commute:

A⊗B

idA⊗B %%KKKKKKKKK
sA,B // B ⊗A

sB,A

��
A⊗B

(A⊗B)⊗ C

sA,B⊗C
��

aA,B,C// A⊗ (B ⊗ C)
sA,B⊗C// (B ⊗ C)⊗A

aB,C,A

��
(B ⊗A)⊗ C aB,A,C

// B ⊗ (A⊗ C)
B⊗sA,C

// B ⊗ (C ⊗A)

From this definition, it is possible to deduce that, in any monoidal category, ur1 = ul1.
Proof page 35

From this definition, it is possible to deduce that, in any symmetric monoidal category:

A
ulA

||xxxxxxxx
urA

""FFFFFFFF

A⊗ 1 sA,1

// 1⊗A
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Proof page 35
If (C,⊗, 1, a, ul, ur) is a monoidal category (resp. a symmetric monoidal category) then (Cop,⊗, 1, a−1, ul−1, ur−1)
as well.

Example 15 (Cartesian Category)
A cartesian category C is a symmetric monoidal category (C,×,>) with the natural isomorphisms:

• aA,B,C = 〈πA×B ; πA, 〈πA×B ; πB, πC〉〉

• ulA = 〈idA, tA〉

• urA = 〈tA, idA〉

• sA,B = 〈πB, πA〉

Proof page 36

Definition 28 (Monoidal Functor)
A monoidal functor between two monoidal categories (C,⊗, 1) and (D,�, I) is a triple (F,m, n)
where:

• F is a functor from C to D

• m is a natural transformation from F � F ′ to F ( ⊗ ′)

• n is a morphism from I to F1

such that the following diagrams in D commute:

(FA� FB)� FC

mA,B�FC
��

aFA,FB,FC // FA� (FB � FC)

FA�mB,C

��
F (A⊗B)� FC

mA⊗B,C

��

FA� F (B ⊗ C)

mA,B⊗C

��
F ((A⊗B)⊗ C)

FaA,B,C

// F (A⊗ (B ⊗ C))

FA

FulA

��8888888888888888
ulFA // FA� I

FA�n
��

FA� F1

mA,1

��
F (A⊗ 1)

FA

FurA

��8888888888888888
urFA // I� FA

n�FA
��

F1� FA

m1,A

��
F (1⊗A)
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If C and D are symmetric monoidal, a symmetric monoidal functor is a monoidal functor such that
the following diagram in D commutes:

FA� FB

mA,B

��

sFA,FB // FB � FA

mB,A

��
F (A⊗B)

F sA,B

// F (B ⊗A)

Let (F,m, n) be a monoidal functor, F is strong if mA,B and n are isomorphisms and F is strict if
they are equalities.

Definition 29 (Co-Monoidal Functor)
A co-monoidal functor between two monoidal categories (C,⊗, 1) and (D,�, I) is a triple (F,m, n)
which is a monoidal functor between (Cop,⊗, 1) and (Dop,�, I), thus: m natural transformation
from F ( ⊗ ′) to F � F ′ and n morphism from F1 to I.
We thus have the following commutative diagrams:

F ((A⊗B)⊗ C)
FaA,B,C //

mA⊗B,C

��

F (A⊗ (B ⊗ C))

mA,B⊗C

��
F (A⊗B)� FC

mA,B�FC
��

FA� F (B ⊗ C)

FA�mB,C

��
(FA� FB)� FC aFA,FB,FC

// FA� (FB � FC)

FA
FulA //

ulFA

��88888888888888888 F (A⊗ 1)

mA,1

��
FA� F1

FA�n
��

FA� I

FA
FurA //

urFA

��88888888888888888 F (1⊗A)

m1,A

��
F1� FA

n�FA
��

I� FA

Definition 30 (Monoidal Natural Transformation)
A monoidal natural transformation α between two monoidal functors F and G between the same
two monoidal categories (C,⊗, 1) and (D,�, I) is a natural transformation such that the following
diagrams in D commute:

FA� FB

αA�αB

��

mF
A,B // F (A⊗B)

αA⊗B

��
GA�GB

mG
A,B

// G(A⊗B)

I

nG   AAAAAAAA
nF
// F1

α1

��
G1
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2.1 Monoids

Definition 31 (Monoid)
A monoid in a monoidal category (C,⊗, 1) is a triple (A, cA, wA) where:

• A is an object

• cA is a morphism from A⊗A to A

• wA is a morphism from 1 to A

that is:

A⊗A
cA // A 1

wAoo

such that the following diagrams commute:

(A⊗A)⊗A

aA,A,A

��

cA⊗A // A⊗A
cA

&&LLLLLLLLLLLL

A

A⊗ (A⊗A)
A⊗cA

// A⊗A
cA

88rrrrrrrrrrrr

A⊗ 1
A⊗wA // A⊗A

cA

��

1⊗A
wA⊗Aoo

A

ulA

ccHHHHHHHHHHHHHHH
urA

;;wwwwwwwwwwwwwwww

If C is symmetric monoidal, a monoid is symmetric if the following diagram commutes:

A⊗A

cA
##FFFFFFFFF
sA,A // A⊗A

cA
{{xxxxxxxxx

A

Definition 32 (Monoidal Morphism)
A monoidal morphism f between two monoids (A, cA, wA) and (B, cB, wB) in a monoidal category
is a morphism from A to B such that the following diagrams commute:

A⊗A
cA
��

f⊗f // B ⊗B
cB
��

A
f

// B

1
wA

���������
wB

��????????

A
f

// B

Monoids of a monoidal category (C,⊗, 1) and monoidal morphisms between them define a category
Mon(C) called the category of monoids of C.

Definition 33 (Co-Monoid)
A co-monoid in C is a monoid in Cop. It is thus a triple (A, dA, eA) with dA morphism from A to

15



A⊗A and eA morphism from A to 1 such that:

A⊗A
dA⊗A // (A⊗A)⊗A

aA,A,A

��

A

dA
88rrrrrrrrrrrr

dA &&LLLLLLLLLLLL

A⊗A
A⊗dA

// A⊗ (A⊗A)

A

ulA

{{wwwwwwwwwwwwwwww

urA

##HHHHHHHHHHHHHHH

dA

��
A⊗ 1 A⊗A

A⊗eA
oo

eA⊗A
// 1⊗A

Definition 34 (Co-Monoidal Morphism)
A co-monoidal morphism f between two co-monoids (A, dA, eA) and (B, dB, eB) in a monoidal
category is a morphism from A to B such that the following diagrams commute:

A

dA
��

f // B

dB
��

A⊗A
f⊗f
// B ⊗B

A
f //

eA ��??????? B

eB����������

1

Co-monoids of a monoidal category (C,⊗, 1) and co-monoidal morphisms between them define a
category coMon(C) called the category of co-monoids of C.

Example 16 (Co-Monoids and Cartesian Categories)
In a cartesian category C, each object A comes with a canonical structure of symmetric co-monoid
(A,∆A, tA). Since any morphism of C is co-monoidal for these co-monoid structures, one can see
C as a full sub-category of coMon(C).
Conversely, let C be a monoidal category and M be a sub-category of coMon(C) such that:

• the forgetful functor U from M to C which maps triples (A, dA, eA) to A is full and injective
on objects

• if A and B are in the image of U then A⊗B as well

• 1 is in the image of U

• the following diagram commutes:

A⊗B
dA⊗B //

ulA⊗u
r
B

%%LLLLLLLLLLLLLLLLLLLLLLL (A⊗B)⊗ (A⊗B)

(A⊗eB)⊗(eA⊗B)

��
(A⊗ 1)⊗ (1⊗B)

• e1 = id1

then UM is a cartesian category with ⊗ as product and 1 as terminal object.

16



Property 3 (Preservation of Monoids)
If (F,m, n) is a monoidal functor from (C,⊗, 1) to (D,�, I) and (A, cA, wA) is a monoid in (C,⊗, 1),
then (FA,mA,A ; FcA, n ; FwA) is a monoid in (D,�, I). We say that monoidal functors preserve
monoids.

FA� FA
mA,A // F (A⊗A)

FcA // FA F1
FwAoo I

noo

Similarly, symmetric monoidal functors preserve symmetric monoids, and co-monoidal functors
preserve co-monoids.

Proof page 39

3 Monads

Definition 35 (Monad)
A monad on a category C is a triple (T, η, µ) where:

• T is an endofunctor of C

• η is a natural transformation from IdC to T

• µ is a natural transformation from T 2 to T

T 2
µ // T IdC

ηoo

such that the following diagrams commute:

T 3A

µTA

��

TµA // T 2A

µA

��
T 2A µA

// TA

T 2A

µA ""FFFFFFFF TA
ηTAoo

idTA

��

TηA // T 2A

µA||xxxxxxxx

TA

A co-monad on C is a monad on Cop, that is a triple (T, ε, δ) (T endofunctor of C, ε natural
transformation from T to IdC and δ natural transformation from T to T 2) such that:

TA

δA
��

δA // T 2A

TδA
��

T 2A δTA

// T 3A

TA
δA

||xxxxxxxx
δA

""FFFFFFFF

idTA��
T 2A εTA

// TA T 2ATεA
oo

Definition 36 (Kleisli Triple)
A Kleisli triple on a category C is a triple (T, η, ( )†) where:

• T is a function from obj(C) to obj(C)

• η is a transformation from IdC to T

• ( )† is a function from C(A, TB) to C(TA, TB)

17



such that the following diagrams commute:

A
ηA //

f !!CCCCCCCC TA

f†

��
TB

TA

η†A
((

idTA

66 TA

TA
f† //

(f ;g†)† ""EEEEEEEE TB

g†

��
TC

The notions of monad and Kleisli triple are equivalent through:

(T, η, µ) 7→ (T, η, T ; µ)

(T, η, ( )†) 7→ (T, η, id†T )

Definition 37 (Strong Monad)
A strong monad on a monoidal category C is a monad equipped with τ where:

• τ is a natural transformation from ⊗ T ′ to T ( ⊗ ′)

such that the following diagrams commute:

1⊗ TA

urTA &&MMMMMMMMMMM
τ1,A // T (1⊗A)

TurA
��

TA

(A⊗B)⊗ TC
aA,B,TC

��

τA⊗B,C // T ((A⊗B)⊗ C)

TaA,B,C

��
A⊗ (B ⊗ TC)

A⊗τB,C

// A⊗ T (B ⊗ C) τA,B⊗C

// T (A⊗ (B ⊗ C))

A⊗B

ηA⊗B &&MMMMMMMMMM
A⊗ηB // A⊗ TB

τA,B

��
T (A⊗B)

A⊗ T 2B

A⊗µB
��

τA,TB// T (A⊗ TB)
TτA,B // T 2(A⊗B)

µA⊗B

��
A⊗ TB τA,B

// T (A⊗B)

Definition 38 (Commutative Monad)
A commutative monad on a symmetric monoidal category C is a strong monad such that, if:

τ ′A,B = TA⊗B
sTA,B−−−−→ B ⊗ TA

τB,A−−−→ T (B ⊗A)
T sB,A−−−−→ T (A⊗B)

then the following diagram commutes:

TA⊗ TB
τ ′A,TB

wwooooooooooo
τTA,B

''OOOOOOOOOOO

T (A⊗ TB)

TτA,B

��

T (TA⊗B)

Tτ ′A,B

��
T 2(A⊗B)

µA⊗B ''OOOOOOOOOOO
T 2(A⊗B)

µA⊗Bwwooooooooooo

T (A⊗B)

18



Definition 39 (Monoidal Monad)
A monad (T, η, µ) on a monoidal category C is monoidal if T is a monoidal functor, and η and µ
are monoidal natural transformations.
If C is symmetric monoidal, the monad is symmetric monoidal if, moreover, T is a symmetric
monoidal functor.

Property 4 (Monoidal and Commutative Monads)
Let C be a symmetric monoidal category and T be a strong monad on C:

• T equipped with either:

TA⊗ TB
τTA,B−−−−→ T (TA⊗B)

Tτ ′A,B−−−−→ T 2(A⊗B)
µA⊗B−−−−→ T (A⊗B)

or

TA⊗ TB
τ ′A,TB−−−−→ T (A⊗ TB)

TτA,B−−−−→ T 2(A⊗B)
µA⊗B−−−−→ T (A⊗B)

and η1 : 1→ T1 is a monoidal functor

• in both cases, η and µ are monoidal natural transformations

• T is a symmetric monoidal functor ⇐⇒ T is a commutative monad

Definition 40 (Algebra)
An algebra for the monad T is a pair (A, hA) which is an algebra for the functor T such that the
following diagrams commute:

A

idA !!CCCCCCCC
ηA // TA

hA
��
A

T 2A

ThA
��

µA // TA

hA
��

TA
hA

// A

Example 17 (Free Algebra)
For any object A, (TA, µA) is an algebra called the free algebra generated by A.

Definition 41 (Eilenberg-Moore Category)
If T is a monad on the category C, its category of algebras is the full sub-category of the category
of algebras of the functor T whose objects are the algebras of the monad T . It is also called the
Eilenberg-Moore category of T and denoted CT .

Definition 42 (Kleisli Category)
If T is a monad on the category C, the Kleisli category CT has objects the objects of C and for
morphisms: CT(A,B) = C(A, TB). The identities are ηA ∈ C(A, TA), and the composition of
f ∈ C(A, TB) and g ∈ C(B, TC) is f ; Tg ; µC ∈ C(A, TC).

A

f ;CT g

66
f // TB

Tg // TTC
µC // TC

19



Definition 43 (Distributive Law)
If (T, ηT , µT ) and (S, ηS , µS) are two monads on the category C, a distributive law of T over S is a
natural transformation l from ST to TS such that the following diagrams commute:

STA

lA

''NNNNNNNNNNNNNNNN

STTA

SµTA

77ooooooooooooooooo

lTA

��@@@@@@@@@@@ TSA

TSTA
T lA

// TTSA

µTSA

@@�����������

STA

lA

&&NNNNNNNNNNNNNNNN

SSTA

µSTA

77ooooooooooooooooo

SlA
��??????????? TSA

STSA
lSA

// TSSA

TµSA

@@�����������

SA
SηTA

{{wwwwwwww ηTSA

##GGGGGGGG

STA
lA

// TSA

TA
ηSTA

{{wwwwwwww TηSA

##GGGGGGGG

STA
lA

// TSA

Example 18 (Composition of Monads)
Let (T, ηT , µT ) and (S, ηS , µS) be two monads on the category C, and l be a distributive law of T
over S, TS equipped with

A
ηSA // SA

ηTSA // TSA and TSTSA
T lSA // TTSSA

µTSSA // TSSA
TµSA // TSA

is a monad on C.

4 Adjunctions

Definition 44 (Adjunction)
An adjunction F a G between two categories C and D is a triple (F,G, ϕ) where:

• F is a functor from C to D

• G is a functor from D to C
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• ϕ is a natural isomorphism from the functor D(F , ′) to the functor C( , G ′) (both from
Cop × D to Set).

C

F

''
⊥ D
G

gg
FA −→ B′ ϕ
A −→ GB′

Equivalently, an adjunction F a G between two categories C and D is a quadruple (F,G, η, ε)
where:

• F is a functor from C to D

• G is a functor from D to C

• η is a natural transformation from IdC to GF

• ε is a natural transformation from FG to IdD

such that the following diagrams commute:

GA′

idGA′ $$JJJJJJJJJ
ηGA′// GFGA′

GεA′
��

GA′

FA

idFA $$IIIIIIIII
FηA// FGFA

εFA

��
FA

If F a G is an adjunction, F is called a left adjoint and G is called a right adjoint.

The diagram underlying the naturality of ϕ is, in C:

B

f
$$JJJJJJJJJJJ

ϕB,C′ (Ff ;h
′;g′)

// GC ′

A
ϕA,B′ (h

′)
// GB′

Gg′

88qqqqqqqqqq

The equivalence between the two definitions is given by:

ϕA,A′(f) = A
ηA−→ GFA

Gf−−→ GA′

ηA = A
ϕA,FA(idFA)
−−−−−−−−→ GFA

εA′ = FGA′
ϕ−1
GA′,A′ (idGA′ )
−−−−−−−−−→ A′

Example 19 (Category of Adjunctions)
The category of adjunctions Adj is given by:

• objects are (small) categories

• morphisms in Adj(C,D) are adjunctions between C and D

• identities are identity adjunctions (Id, Id, id)
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• composition is composition of adjunctions: if (F,G, ϕ) is an adjunction between C and D
and (F ′, G′, ϕ′) is an adjunction between D and E then (F ; F ′, G′ ; G,ϕ′F , ′ ; ϕ ,G′ ′) is an
adjunction between C and E.

C

F

''
⊥ D
G

gg

F ′

''
⊥ E
G′

gg

Definition 45 (Monoidal Adjunction)
An adjunction (F,G, η, ε) between two monoidal categories C and D is monoidal if F and G are
monoidal functors and η and ε are monoidal natural transformations.
If C and D are symmetric monoidal, the adjunction is symmetric monoidal if, moreover, F and G
are symmetric monoidal functors.

In a monoidal adjunction, F is strong.

Property 5 (Monad of an Adjunction)
If (F,G, η, ε) is an adjunction, (GF, η,GεF ) is a monad called the monad of the adjunction.
Similarly, (FG, ε, FηG ) is a co-monad.
If the adjunction is monoidal, the monad is monoidal. If the adjunction is symmetric monoidal,
the monad is symmetric monoidal.

Example 20 (Eilenberg-Moore Adjunction)
Let T be a monad on C, let F be the free-algebra functor from C to CT associating (TA, µA) with
A, and associating Tf ∈ CT((TA, µA), (TB, µB)) with f ∈ C(A,B).
Let U be the forgetful functor from CT to C associating A with the algebra (A, hA) and such that
Uf = f .

C

F
((

⊥ CT

U

gg

F is a left adjoint to U and the monad associated with this adjunction is T .

Example 21 (Kleisli Adjunction)
Let T be a monad on C, let E be the embedding functor from C to CT associating A with A
(EA = A), and associating ηA ; Tf ∈ CT(A,B) with f ∈ C(A,B).
Let T ′ be the functor from CT to C defined by T ′A = TA and T ′f = Tf ; µB for f ∈ CT(A,B).

C

E
((

⊥ CT
T ′

gg

E is a left adjoint to T ′ and the monad associated with this adjunction is T .

Example 22 (Category of Adjunctions of a Monad)
Let T be a monad on a category C, the category T -Adj of adjunctions of the monad T is given by:

• objects are tuples (D, F,G, η, ε) where (F,G, η, ε) is an adjunction between C and D which
induces the monad T on C (Property 5)
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• morphisms between (D, F,G, η, ε) and (D′, F ′, G′, η′, ε′) are functors L from D to D′ such that
the following diagram commutes:

D

L

��

G

))SSSSSSSSSSSSS

C

F
55kkkkkkkkkkkkk

F ′ ))SSSSSSSSSSSSS C

D′
G′

55lllllllllllll

and Lε = ε′L.

The Kleisli adjunction is the initial object of T -Adj.
The Eilenberg-Moore adjunction is the terminal object of T -Adj.

Definition 46 (Equivalence of Categories)
A functor F between two categories C and D is an equivalence of categories if one of the two
following equivalent properties is true:

• There exists an adjunction (G,F, η, ε) between D and C such that η and ε are natural iso-
morphisms.

• F is full, faithful and essentially surjective.

Property 6 (Strict Monoidal Categories)
Every monoidal category is equivalent to a strict monoidal category.

Property 7 (Kleisli Category and Free Algebras)
If T is a monad on the category C, the category CT is equivalent to the full-subcategory of CT
consisting of free algebras.

5 Closed Categories

Definition 47 (Symmetric Monoidal Closed Category)
A symmetric monoidal category (C,⊗, 1, a, ul, ur, s) is closed if, for any object A of C, the functor
⊗A has a right adjoint (noted A( ).

C ⊗A −→ B curry
C −→ A( B

In a symmetric monoidal closed category, if f is a morphism from C ⊗ A to B, we denote by
curry(f) the induced morphism from C to A( B. We define evA,B as curry−1(idA(B) ∈ C((A(
B)⊗A,B).

Definition 48 (Exponential Object)
If A and B are two objects of a symmetric monoidal category C, an exponential object of A and B is a
pair (BA, evA,B) where BA is an object of C and evA,B ∈ C(BA⊗A,B) such that, for any morphism
f ∈ C(C ⊗A,B), there exists a unique morphism λf ∈ C(C,BA) such that f = (λf ⊗ idA) ; evA,B.
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This can be written:

C ⊗A

f

$$IIIIIIIIIIIIIIII

λf

��

idA

��

⊗

BA ⊗A evA,B

// B

The notions of symmetric monoidal closed category and exponential object are related by the fact
that a symmetric monoidal category is closed if and only if each pair of objects has an associated
exponential object.

Definition 49 (Dual Object)
In a A symmetric monoidal category (C,⊗, 1, a, ul, ur, s), a dual of an object A is an object A⊥ with
two morphisms η ∈ C(1, A⊗A⊥) and ε ∈ C(A⊥⊗A, 1) such that the following diagrams commute:

A

1⊗A

urA

66llllllllllllllllllllll

η⊗A
""FFFFFFFFFFFF A⊗ 1

ulA

hhRRRRRRRRRRRRRRRRRRRRRR

(A⊗A⊥)⊗A a
A,A⊥,A

// A⊗ (A⊥ ⊗A)

A⊗ε

<<xxxxxxxxxxxx

A⊥

A⊥ ⊗ 1

ul
A⊥

55kkkkkkkkkkkkkkkkkkkkkkkk

A⊥⊗η
##HHHHHHHHHHHHH 1⊗A⊥

ur
A⊥

iiSSSSSSSSSSSSSSSSSSSSSSSS

A⊥ ⊗ (A⊗A⊥)
a−1

A⊥,A,A⊥

// (A⊥ ⊗A)⊗A⊥
ε⊗A⊥

;;vvvvvvvvvvvvv

Definition 50 (Compact Closed Category)
A symmetric monoidal category is compact closed if each object has a dual object.

Example 23 (Closure of Compact Closed Categories)
A compact closed category is a symmetric monoidal closed category with A( = A⊥ ⊗ .

Remember (Example 15) that a cartesian category has a canonical symmetric monoidal structure.

Definition 51
Cartesian Closed Category A cartesian category is cartesian closed if, as a symmetric monoidal
category, it is closed.
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Definition 52 (∗-Autonomous Category)
A symmetric monoidal closed category C is ∗-autonomous if it contains a dualizing object, that is
an object ⊥ such that, for each object A of C, the following morphism is an isomorphism between
A and (A( ⊥)( ⊥:

curry

(
A⊗ (A( ⊥)

sA,A(⊥// (A( ⊥)⊗A
evA,⊥ // ⊥

)
Example 24 (Compact Closed and ∗-Autonomous Categories)
Any compact closed category is ∗-autonomous with 1⊥ as dualizing object.
Any ∗-autonomous category such that (A ⊗ B) ( ⊥ ' (B ( ⊥) ⊗ (A ( ⊥) is compact closed
with A( ⊥ as dual of A.

6 2-Categories

Definition 53 (2-Category)
A 2-category C is given by:

• a class of objects obj(C)

• for any two objects A and B, a class of 1-morphisms C(A,B)

• for any two object A and B and any two morphisms f and g in C(A,B), a class of 2-morphisms
(or 2-cells) C2(f, g)

• for any object A, a 1-identity morphism idA in C(A,A)

• for any 1-morphism f , a 2-identity morphism id1f in C2(f, f)

• for any two morphisms f ∈ C(A,B) and g ∈ C(B,C), a composition f ; g ∈ C(A,C)

• for any two 2-morphisms α ∈ C2(f, g) and β ∈ C2(g, h), a vertical composition α;1β ∈ C2(f, h)

• for any two 2-morphisms α ∈ C2(f, g) and β ∈ C2(f ′, g′) with f and g in C(A,B) and f ′ and
g′ in C(B,C), an horizontal composition α ;0 β ∈ C2(f ; f ′, g ; g′)

such that:

• obj(C) with 1-morphisms, 1-identities, and composition is a category

• for any two objects A and B, C(A,B) with C2(A,B) for morphisms, 2-identities between
morphisms of C(A,B) for identities, and vertical composition for composition is a category

• obj(C) with 2-morphisms for morphisms, 2-identities between 1-identities as identities, and
horizontal composition for composition is a category
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and given any four 2-morphisms of the following shape:

A

f

��
�� ��
�� α

g //
@@

h

�� ��
�� β

B

f ′

��
�� ��
�� α′

g′ //
@@

h′

�� ��
�� β
′

C

we have:

A

f

��

h

DD
�� ��
�� α;1β B

f ′

��

h′

DD
�� ��
��α′;1β′ C = A

f ;f ′

""

�� ��
�� α;1α′

g;g′ //
<<

h;h′

�� ��
�� β;1β′

C

and we also have:

A

f

$$

f

::
�� ��
�� id

1
f B

g

$$

g

::
�� ��
�� id

1
g C = A

f ;g

))

f ;g

55
�� ��
�� id

1
f ;g C

Example 25 (2-Category Cat)
(Small) Categories with functors for 1-morphisms, natural transformations for 2-morphisms, iden-
tity functors for 1-identities, identity natural transformations for 2-identities, composition of func-
tors for composition, vertical composition of natural transformations for vertical composition, and
horizontal composition of natural transformations for horizontal composition is a 2-category.

Example 26 (Monoidal Categories)
A 2-category with one object is the same thing as a strict monoidal category.

Property 8 (Monoidal Structures in 2-Categories)
Each object A of a 2-category C defines a strict monoidal category:

• objects are 1-morphisms in C(A,A)

• morphisms are 2-morphisms between them

• identities are id1

• composition is vertical composition
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• tensor product on objects is composition of 1-morphisms

• tensor product on morphisms is horizontal composition of 2-morphisms

• unit of the tensor is idA

Example 27 (Monads as Monoids)
Let C be a category, since it is an object in the 2-category Cat, Func(C,C) has a strict monoidal
category structure given by Property 8. A monad is exactly a monoid in this monoidal category.
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horizontal composition, 8, 25, 26

Id, 5
id, 1
idempotent, 4
identity, 1
identity endofunctor, 5
identity functor, 26
inclusion functor, 5, 7
initial object, 9
inverse, 4
isomorphism, 4, 6, 7

Kleisli category, 19, 22
Kleisli triple, 17

left adjoint, 20

Mon, 15
monad, 16, 21
monad of an adjunction, 21
monoid, 14
monoidal adjunction, 21
monoidal category, 11, 22
monoidal functor, 13, 16
monoidal monad, 18, 21
monoidal morphism, 15
monoidal natural transformation, 14
monomorphism, 3
morphism, 1

natural isomorphism, 8
natural transformation, 7, 26

obj, 1
object, 1
opposite, 3

point, 9
product, 9
product category, 3, 10
projection functor, 7, 10

regular monomorphism, 11
retract, 4, 6
retraction, 4
right adjoint, 20

section, 4
section-retraction pair, 4
Set, 2, 10
split epimorphism, 4
split idempotent, 4
split monomorphism, 4
strict monoidal category, 12, 26
strict monoidal functor, 14
strong monad, 17
strong monoidal functor, 14
sub-category, 2, 5, 7
symmetric monoid, 15
symmetric monoidal adjunction, 21
symmetric monoidal category, 12, 23, 24
symmetric monoidal closed category, 23
symmetric monoidal functor, 14
symmetric monoidal monad, 18

terminal object, 9
transformation, 7

unit category, 3, 10

vertical composition, 8, 8, 25, 26

wide sub-category, 2

zero morphism, 9
zero object, 9, 11
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Additional Properties

Cartesian Product

We consider a category C, two objects A and B of C and a product (A×B, πA, πB) of A and B in
C.

Fact 1 (Pair of Projections)
〈πA, πB〉 = idA×B.

Proof: 〈πA, πB〉 ;πA = πA = idA×B ;πA and 〈πA, πB〉 ;πB = πB = idA×B ;πB thus, by uniqueness
of the pair, we have 〈πA, πB〉 = idA×B. 2

Fact 2 (Composition with Pair)
Let C and D be two objects of C, if f ∈ C(C,A), g ∈ C(C,B) and h ∈ C(D,C) then h ; 〈f, g〉 =
〈h ; f, h ; g〉.

Proof: We have h ; 〈f, g〉 ;πA = h ;f = 〈h ; f, h ; g〉 ;πA and h ; 〈f, g〉 ;πB = h ;g = 〈h ; f, h ; g〉 ;πB,
thus h ; 〈f, g〉 = 〈h ; f, h ; g〉 by uniqueness of the pair. 2

Monoidal Categories

We consider a monoidal category (C,⊗, 1, a, ul, ur).

Fact 3 (Equality up to ⊗ 1 and 1⊗ )
Let A and B be two objects of C and f and g be two morphisms of C from A to B, f ⊗ 1 =
g ⊗ 1 ⇐⇒ f = g ⇐⇒ 1⊗ f = 1⊗ g.

Proof: We have f = g implies both f ⊗ 1 = g ⊗ 1 and 1⊗ f = 1⊗ g.

Now assume f ⊗ 1 = g ⊗ 1, the following diagram commutes:

A

f

  

g

>>
ulA // A⊗ 1

f⊗1
))

g⊗1
55B ⊗ 1 B

ulBoo

since the two squares commute by naturality of ul. We conclude f = g because ulB is an
isomorphism.

Similarly, we obtain the implication 1⊗ f = 1⊗ g =⇒ f = g by naturality of ur. 2

Fact 4 (Unit of Unit)
Let A be an object of C, ur1⊗A = 1⊗ urA : 1⊗A→ 1⊗ (1⊗A).
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Proof: By naturality of ur, we have:

A
urA //

urA
��

1⊗A
ur1⊗A

��
1⊗A

1⊗urA
// 1⊗ (1⊗A)

thus, since urA is an isomorphism, ur1⊗A = 1⊗ urA. 2

Fact 5 (Associativity of Unit)
Let A and B be two objects of C, the following diagram commutes:

A⊗B
urA⊗B

xxppppppppppp urA⊗B

&&NNNNNNNNNNN

(1⊗A)⊗B a1,A,B

// 1⊗ (A⊗B)

Proof: Thanks to Fact 3, it is sufficient to prove the commutation of the following diagram (since
a is an isomorphism):

(a)

1⊗ (A⊗B)

ul1⊗(A⊗B)

��<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

1⊗(urA⊗B)





1⊗urA⊗B

��

(b)

(1⊗A)⊗B

a1,A,B

OO

(ul1⊗A)⊗B

��

(1⊗urA)⊗B

xxqqqqqqqqqqqqqqqqqqqqqqqq

(1⊗ (1⊗A))⊗B

a1,1⊗A,B

xxqqqqqqqqqqqqqqqqqqqqqqqq

(c)

((1⊗ 1)⊗A)⊗B
a1,1,A⊗B
oo

a1⊗1,A,B

//

(d)

(e)

(1⊗ 1)⊗ (A⊗B)

a1,1,A⊗B

&&MMMMMMMMMMMMMMMMMMMMMMMM

1⊗ ((1⊗A)⊗B)
1⊗a1,A,B

// 1⊗ (1⊗ (A⊗B))

which commutes by:

(a) naturality of a

(b) triangle of monoidal categories

(c) triangle of monoidal categories

(d) naturality of a

(e) pentagon of monoidal categories 2
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Proofs

Definition 9

• If g ; s = h ; s then g = g ; idA = g ; s ; r = h ; s ; r = h ; idA = h.

• If r ; g = r ; h then g = idA ; g = s ; r ; g = s ; r ; h = idA ; h = h.

• r ; s ; r ; s = r ; idA ; s = r ; s

Property 1

• Let f from A to B be an isomorphism and f−1 be its inverse, we have f ; f−1 = idA and
f−1 ; f = idB.

• There exist g ∈ C(B,A) such that f ; g = idA and h ∈ C(B,A) such that h ; f = idB thus
h = h ; idA = h ; f ; g = idB ; g = g and we conclude that g = h is an inverse of f .

Comment Page 4

We give a direct proof: let f be an isomorphism from A to B, f−1 be its inverse, if g and g′ are
morphisms from A′ to A then g ;f = g′ ;f implies g = g ; idA = g ;f ;f−1 = g′ ;f ;f−1 = g′ ; idA = g′.
If h and h′ are morphisms from B to B′ then f ; h = f ; h′ implies h = f−1 ; f ; h = f−1 ; f ; h′ = h′.
In the following category:

AidA 88
f // B idBgg

with idA ; f = f and f ; idB = idB, f is both a monomorphism and an epimorphism but it is not
an isomorphism since there is no morphism from B to A.

Example 3

Let A be an object of C, CDidA = idD = idCDA, and if f ∈ C(A,B) and g ∈ C(B,C) then
CD(f ; g) = idD = idD ; idD = CDf ; CDg.
A functor F from C to T must satisfy FA = ? for any object A of C since ? is the unique object
of T. We must then have Ff ∈ T(?, ?) = {id?}, so F = C?.

Example 4

We have IidA = idA = idIA and I(f ; g) = f ; g = If ; Ig.

Example 5

If C and D are two (small) categories and F is a functor from C to D, let A be an object of C,
we have (IdC ; F )A = F IdCA = FA = IdDFA = (F ; IdD)A and if f ∈ C(A,B) then (IdC ; F )f =
F IdCf = Ff = IdDFf = (F ; IdD)f .
If C, D and E are three (small) categories, F is a functor from C to D and G is a functor from D to E,
let A be an object of C, we have ((F ;G);H)A = H(F ;G)A = HGFA = (G ;H)FA = (F ;(G ;H))A
and if f ∈ C(A,B) then ((F ;G) ;H)f = H(F ;G)f = HGFf = (G ;H)Ff = (F ; (G ;H))f .

32



Example 9

If (A,B) ∈ obj(C× D), P id(A,B) = P (idA, idB) = idA = idP (A,B).
If (f, g) ∈ C× D((A,B), (A′, B′)) and (f ′, g′) ∈ C× D((A′, B′), (A′′, B′′)), P ((f, g) ; (f ′, g′)) =
P (f ; f ′, g ; g′) = f ; f ′ = (P (f, g)) ; (P (f ′, g′)).
If D has at least one morphism between any two objects, let B and B′ be two objects of D and
g ∈ D(B,B′), for any f ∈ C(A,A′) = C(P (A,B), P (A′, B′)), we have P (f, g) = f .

Example 10

If A is an object of C, idFA ∈ D(FA,FA) is an isomorphism (it is its own inverse).
If f ∈ C(A,B), Ff ; idFA = Ff = idFA ; Ff .

Definition 19

If f ∈ C(A,B), Ff ; (α ;1 β)B = Ff ; αB ; βB = αA ;Gf ; βB = αA ; βA ;Hf = (α ;1 β)A ;Hf .

Definition 20

Since β is a natural transformation from G to G′, we have GαA ; βF ′A = βFA ;G′αA.
If f ∈ C(A,B), (F ;G)f ; (α ;0 β)B = GFf ;GαB ; βF ′B = G(Ff ;αB) ; βF ′B = G(αA ;F ′f) ; βF ′B =
GαA ;GF ′f ; βF ′B = GαA ; βF ′A ;G′F ′f = (α ;0 β)A ; (F ′ ;G′)f .

Comment Page 9

For any two objects A and B, we have a product A × B. If f ∈ C(A,B) and f ′ ∈ C(A′, B′), we
define f × f ′ = 〈πA ; f, πA′ ; f

′〉 ∈ C(A×A′, B ×B′).
We have idA × idA′ = 〈πA ; idA, πA′ ; idA′〉 = 〈πA, πA′〉 = idA×A′ (using Fact 1).
If f ∈ C(A,B), g ∈ C(B,C), f ′ ∈ C(A′, B′) and g′ ∈ C(B′, C ′), we have, using Fact 2, (f × f ′) ;
(g × g′) = 〈πA ; f, πA′ ; f

′〉 ; 〈πB ; g, πB′ ; g
′〉 = 〈〈πA ; f, πA′ ; f

′〉 ; πB ; g, 〈πA ; f, πA′ ; f
′〉 ; πB′ ; g

′〉 =
〈πA ; f ; g, πA′ ; f

′ ; g′〉 = (f ; g)× (f ′ ; g′)
If f ∈ C(A,B), using Fact 2, f ;∆B = f ; 〈idB, idB〉 = 〈f ; idB, f ; idB〉 = 〈f, f〉 = 〈idA ; f, idA ; f〉 =
〈〈idA, idA〉 ; πlA ; f, 〈idA, idA〉 ; πrA ; f〉 = 〈idA, idA〉 ; 〈πlA ; f, πrA ; f〉 = ∆A ; (f × f).

Example 12

If f : C → A and g : C → B, we define:

〈f, g〉 : C → A×B
x 7→ (f(x), g(x))

For all x ∈ C, we have π1 ◦ 〈f, g〉(x) = f(x) and π2 ◦ 〈f, g〉(x) = g(x). Let h : C → A×B be such
that any x ∈ C, π1 ◦ h(x) = f(x) and π2 ◦ h(x) = g(x) then h(x) = (f(x), g(x)) = 〈f, g〉(x) that is
h = 〈f, g〉.
For any set C, there is a unique function from C to {?} defined by:

tC : C → {?}
x 7→ ?
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If f : A→ C and g : B → C, we define:

[f, g] : A ]B → C
(0, a) 7→ f(a) if a ∈ A
(1, b) 7→ g(b) if b ∈ B

For any a ∈ A, [f, g] ◦ ι1(a) = f(a) and for any b ∈ B, [f, g] ◦ ι2(b) = g(b). Let h : A ] B → C
be such that for any a ∈ A, h ◦ ι1(a) = f(a) and for any b ∈ B, h ◦ ι2(b) = g(b), we have for any
z ∈ A ]B, h(z) = [f, g](z) that is h = [f, g].
For any set C, there is a unique function from ∅ to C which is the empty function.

Example 13

If F : E→ C and G : E→ D are two functors, we define:

〈F,G〉 : E→ C× D
E 7→ (FE,GE) for objects of E
f 7→ (Ff,Gf) for morphisms of E

For any object E of E, we have PC〈F,G〉E = FE and PD〈F,G〉E = GE. For any morphism f of
E, we have PC〈F,G〉f = Ff and PD〈F,G〉f = Gf . Let H be a functor from E to C× D such that
PCHE = FE, PDHE = GE, PCHf = Ff and PDHf = Gf for any object E and any morphism f
of E, then HE = (FE,GE) = 〈F,G〉E and Hf = (Ff,Gf) = 〈F,G〉f that is H = 〈F,G〉.
Let E be a category, the unique functor TE from E to T is defined by TEE = ? for any object E of
E and TEf = id? for any morphism f of E.

Example 14

If F : C→ E and G : D→ E are two functors, we define:

[F,G] : C + D→ E
(0, C) 7→ FC if C ∈ obj(C)
(1, D) 7→ GD if D ∈ obj(D)

f 7→ Ff if f morphism for C
g 7→ Gg if g morphism for D

For any C ∈ obj(C), [F,G]ICC = FC and for any B ∈ obj(D), [F,G]IDD = GD. For any f
morphism in C, [F,G]ICf = Ff and for any g morphism in D, [F,G]IDg = Gg. Let H : C+D→ E
be a functor such that for any C ∈ obj(C), HICC = FC, for any B ∈ obj(D), HIDD = GD, for any
f morphism in C, HICf = Ff and for any g morphism in D, HIDg = Gg, we have for any object
A and for any morphism h of C + D, HA = [F,G]A and Hh = [F,G]h, that is H = [F,G].
Let E be a category, the empty functor is the unique functor from ‚ to E.

Definition 26

Let (E, e) be an equalizer of f ∈ C(A,B) and g ∈ C(A,B), if f ′ and g′ are in C(D,E) such that
f ′ ; e = g′ ; e then f ′ ; e ; f = g′ ; e ; f = g′ ; e ; g thus there exists a unique h ∈ C(D,E) such that
f ′ ; e = g′ ; e = h ; e so that f ′ = h = g′.
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Comment Page 12

The following diagram commutes:

(a)

1⊗ 1
ul1⊗1

uujjjjjjjjjjjjjjjj
ur1⊗1

))TTTTTTTTTTTTTTTT

1⊗ur1

��

ur1⊗1

��

(b) (c)(1⊗ 1)⊗ 1

a1,1,1 ))SSSSSSSSSSSSSS
(1⊗ 1)⊗ 1

a1,1,1uukkkkkkkkkkkkkk

1⊗ (1⊗ 1)

by:

(a) triangle of monoidal categories

(b) Fact 4

(c) Fact 5

We thus have ul1 ⊗ 1 = ur1 ⊗ 1 since a1,1,1 is an isomorphism, and finally ul1 = ur1 by Fact 3.

Comment Page 13

Thanks to Fact 3, it is sufficient to prove the commutation of the following diagram (since s and a
are isomorphisms):

(a)

(b)

A⊗ 1

sA,1

��

A⊗ur1





ulA⊗1





urA⊗1

��

urA⊗1

��

(c)

(d)

1⊗A

ur1⊗A

||yyyyyyyyyyyyyyyyyyy

ur1⊗A

""EEEEEEEEEEEEEEEEEEE

(e)

(1⊗ 1)⊗A a1,1,A
//

(f)

1⊗ (1⊗A)

A⊗ (1⊗ 1)

sA,1⊗1

::vvvvvvvvvvvvvvvvvvvv
1⊗ (A⊗ 1)

1⊗sA,1

ddHHHHHHHHHHHHHHHHHHHH

(A⊗ 1)⊗ 1

aA,1,1

::vvvvvvvvvvvvvvvvvvvv

sA,1⊗1
// (1⊗A)⊗ 1

a1,A,1

ddHHHHHHHHHHHHHHHHHHHH

which commutes by:

(a) triangle of monoidal categories

(b) naturality of s

(c) naturality of ur
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(d) Fact 5

(e) Fact 5

(f) hexagon of symmetric monoidal categories

Example 15

× is a bi-functor from C and C to C (see page 9).
We consider three morphisms f ∈ C(A,A′), g ∈ C(B,B′) and h ∈ C(C,C ′). We have:

• using Fact 2 and the definition of the bi-functor ×:

(f × g)× h ; 〈πA′×B′ ; πA′ , 〈πA′×B′ ; πB′ , πC′〉〉
= 〈(f × g)× h ; πA′×B′ ; πA′ , (f × g)× h ; 〈πA′×B′ ; πB′ , πC′〉〉
= 〈πA×B ; πA ; f, (f × g)× h ; 〈πA′×B′ ; πB′ , πC′〉〉
= 〈πA×B ; πA ; f, 〈(f × g)× h ; πA′×B′ ; πB′ , (f × g)× h ; πC′〉〉
= 〈πA×B ; πA ; f, 〈πA×B ; πB ; g, πC ; h〉〉

and

〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 ; f × (g × h)

= 〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 ; 〈πA ; f, πB×C ; g × h〉
= 〈〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 ; πA ; f, 〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 ; πB×C ; g × h〉
= 〈πA×B ; πA ; f, 〈πA×B ; πB, πC〉 ; g × h〉
= 〈πA×B ; πA ; f, 〈πA×B ; πB, πC〉 ; 〈πB ; g, πC ; h〉〉
= 〈πA×B ; πA ; f, 〈〈πA×B ; πB, πC〉 ; πB ; g, 〈πA×B ; πB, πC〉 ; πC ; h〉〉
= 〈πA×B ; πA ; f, 〈πA×B ; πB ; g, πC ; h〉〉

Moreover, with Fact 1 and Fact 2:

〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 ; 〈〈πA, πB×C ; πB〉, πB×C ; πC〉
= 〈〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 ; 〈πA, πB×C ; πB〉, 〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 ; πB×C ; πC〉
= 〈〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 ; 〈πA, πB×C ; πB〉, πC〉
= 〈〈〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 ; πA, 〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 ; πB×C ; πB〉, πC〉
= 〈〈πA×B ; πA, πA×B ; πB〉, πC〉
= 〈πA×B ; 〈πA, πB〉, πC〉
= 〈πA×B, πC〉
= id(A×B)×C
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and

〈〈πA, πB×C ; πB〉, πB×C ; πC〉 ; 〈πA×B ; πA, 〈πA×B ; πB, πC〉〉
= 〈〈〈πA, πB×C ; πB〉, πB×C ; πC〉 ; πA×B ; πA, 〈〈πA, πB×C ; πB〉, πB×C ; πC〉 ; 〈πA×B ; πB, πC〉〉
= 〈πA, 〈〈πA, πB×C ; πB〉, πB×C ; πC〉 ; 〈πA×B ; πB, πC〉〉
= 〈πA, 〈〈〈πA, πB×C ; πB〉, πB×C ; πC〉 ; πA×B ; πB, 〈〈πA, πB×C ; πB〉, πB×C ; πC〉 ; πC〉〉
= 〈πA, 〈πB×C ; πB, πB×C ; πC〉〉
= 〈πA, πB×C ; 〈πB, πC〉〉
= 〈πA, πB×C〉
= idA×(B×C)

• We first prove that πA ∈ C(A × >, A) is the inverse of 〈idA, tA〉 ∈ C(A,A × >) using Fact 1
and Fact 2:

〈idA, tA〉 ; πA = idA

and

πA ; 〈idA, tA〉 = 〈πA ; idA, πA ; tA〉
= 〈πA, π>〉
= idA×>

We also have:

〈idA, tA〉 ; f × id> = 〈idA, tA〉 ; 〈πA ; f, π> ; id>〉
= 〈〈idA, tA〉 ; πA ; f, 〈idA, tA〉 ; π> ; id>〉
= 〈f, tA〉
= 〈f ; idA′ , f ; tA′〉
= f ; 〈idA′ , tA′〉

• The results for 〈tA, idA〉 are very similar.

• Using Fact 2:

f × g ; 〈πB′ , πA′〉 = 〈f × g ; πB′ , f × g ; πA′〉
= 〈πB ; g, πA ; f〉

and

〈πB, πA〉 ; g × f = 〈πB, πA〉 ; 〈πB ; g, πA ; f〉
= 〈〈πB, πA〉 ; πB ; g, 〈πB, πA〉 ; πA ; f〉
= 〈πB ; g, πA ; f〉

Moreover, with Fact 1 and Fact 2:

〈πB, πA〉 ; 〈πA, πB〉 = 〈〈πB, πA〉 ; πA, 〈πB, πA〉 ; πB〉
= 〈πA, πB〉
= idA×B
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We now have to prove to the three additional commutative diagrams of symmetric monoidal cate-
gories.

• Pentagon of monoidal categories:

〈π(A×B)×C ; πA×B, 〈π(A×B)×C ; πC , πD〉〉 ; 〈πA×B ; πA, 〈πA×B ; πB, πC×D〉〉
= 〈〈π(A×B)×C ; πA×B, 〈π(A×B)×C ; πC , πD〉〉 ; πA×B ; πA, 〈π(A×B)×C ; πA×B, 〈π(A×B)×C ; πC , πD〉〉 ; 〈πA×B ; πB, πC×D〉〉
= 〈π(A×B)×C ; πA×B ; πA, 〈〈π(A×B)×C ; πA×B, 〈π(A×B)×C ; πC , πD〉〉 ; πA×B ; πB, 〈π(A×B)×C ; πA×B, 〈π(A×B)×C ; πC , πD〉〉 ; πC×D〉〉
= 〈π(A×B)×C ; πA×B ; πA, 〈π(A×B)×C ; πA×B ; πB, 〈π(A×B)×C ; πC , πD〉〉〉

and

〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 × idD ; 〈πA×(B×C) ; πA, 〈πA×(B×C) ; πB×C , πD〉〉 ; idA × 〈πB×C ; πB, 〈πB×C ; πC , πD〉〉
= 〈〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 × idD ; πA×(B×C) ; πA, 〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 × idD ; 〈πA×(B×C) ; πB×C , πD〉〉 ; idA × 〈πB×C ; πB, 〈πB×C ; πC , πD〉〉
= 〈π(A×B)×C ; πA×B ; πA, 〈〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 × idD ; πA×(B×C) ; πB×C , 〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 × idD ; πD〉〉 ; idA × 〈πB×C ; πB, 〈πB×C ; πC , πD〉〉
= 〈π(A×B)×C ; πA×B ; πA, 〈π(A×B)×C ; 〈πA×B ; πB, πC〉, πD〉〉 ; 〈πA, π(B×C)×D ; 〈πB×C ; πB, 〈πB×C ; πC , πD〉〉〉
= 〈〈π(A×B)×C ; πA×B ; πA, 〈π(A×B)×C ; 〈πA×B ; πB, πC〉, πD〉〉 ; πA, 〈π(A×B)×C ; πA×B ; πA, 〈π(A×B)×C ; 〈πA×B ; πB, πC〉, πD〉〉 ; π(B×C)×D ; 〈πB×C ; πB, 〈πB×C ; πC , πD〉〉〉
= 〈π(A×B)×C ; πA×B ; πA, 〈π(A×B)×C ; 〈πA×B ; πB, πC〉, πD〉 ; 〈πB×C ; πB, 〈πB×C ; πC , πD〉〉〉
= 〈π(A×B)×C ; πA×B ; πA, 〈〈π(A×B)×C ; 〈πA×B ; πB, πC〉, πD〉 ; πB×C ; πB, 〈π(A×B)×C ; 〈πA×B ; πB, πC〉, πD〉 ; 〈πB×C ; πC , πD〉〉〉
= 〈π(A×B)×C ; πA×B ; πA, 〈π(A×B)×C ; πA×B ; πB, 〈〈π(A×B)×C ; 〈πA×B ; πB, πC〉, πD〉 ; πB×C ; πC , 〈π(A×B)×C ; 〈πA×B ; πB, πC〉, πD〉 ; πD〉〉〉
= 〈π(A×B)×C ; πA×B ; πA, 〈π(A×B)×C ; πA×B ; πB, 〈π(A×B)×C ; πC , πD〉〉〉

• Triangle of monoidal categories:

〈idA, tA〉 × idB ; 〈πA×> ; πA, 〈πA×> ; π>, πB〉〉
= 〈〈idA, tA〉 × idB ; πA×> ; πA, 〈idA, tA〉 × idB ; 〈πA×> ; π>, πB〉〉
= 〈πA, 〈〈idA, tA〉 × idB ; πA×> ; π>, 〈idA, tA〉 × idB ; πB〉〉
= 〈πA, 〈πA ; tA, πB〉〉
= 〈πA, 〈tA×B, πB〉〉
= 〈πA, 〈πB ; tB, πB〉〉
= 〈πA, πB ; 〈tB, idB〉〉
= idA × 〈tB, idB〉

• Hexagon of symmetric monoidal categories:

〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 ; 〈πB×C , πA〉 ; 〈πB×C ; πB, 〈πB×C ; πC , πA〉〉
= 〈〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 ; πB×C , 〈πA×B ; πA, 〈πA×B ; πB, πC〉〉 ; πA〉 ; 〈πB×C ; πB, 〈πB×C ; πC , πA〉〉
= 〈〈πA×B ; πB, πC〉, πA×B ; πA〉 ; 〈πB×C ; πB, 〈πB×C ; πC , πA〉〉
= 〈πA×B ; πB, 〈〈〈πA×B ; πB, πC〉, πA×B ; πA〉 ; πB×C ; πC , 〈〈πA×B ; πB, πC〉, πA×B ; πA〉 ; πA〉〉
= 〈πA×B ; πB, 〈πC , πA×B ; πA〉〉
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and

〈πB, πA〉 × idC ; 〈πB×A ; πB, 〈πB×A ; πA, πC〉〉 ; idB × 〈πC , πA〉
= 〈〈πB, πA〉 × idC ; πB×A ; πB, 〈πB, πA〉 × idC ; 〈πB×A ; πA, πC〉〉 ; idB × 〈πC , πA〉
= 〈πA×B ; πB, 〈〈πB, πA〉 × idC ; πB×A ; πA, 〈πB, πA〉 × idC ; πC〉〉 ; idB × 〈πC , πA〉
= 〈πA×B ; πB, 〈πA×B ; πA, πC〉〉 ; 〈πB, πA×C ; 〈πC , πA〉〉
= 〈〈πA×B ; πB, 〈πA×B ; πA, πC〉〉 ; πB, 〈πA×B ; πB, 〈πA×B ; πA, πC〉〉 ; πA×C ; 〈πC , πA〉〉
= 〈πA×B ; πB, 〈πA×B ; πA, πC〉 ; 〈πC , πA〉〉
= 〈πA×B ; πB, 〈〈πA×B ; πA, πC〉 ; πC , 〈πA×B ; πA, πC〉 ; πA〉〉
= 〈πA×B ; πB, 〈πC , πA×B ; πA〉〉

Property 3

The diagram:

(a)

(FA� FA)� FA

(mA,A;FcA)�FA

��

mA,A�FA
��

aFA,FA,FA //

(b)

FA� (FA� FA)

FA�mA,A

��
FA�(mA,A;FcA)

��

(c)
F (A⊗A)� FA

FcA�FA

vvmmmmmmmmmmmmmm
mA⊗A,A

��

FA� F (A⊗A)

mA,A⊗A

��

FA�FcA

((QQQQQQQQQQQQQQ

FA� FA

mA,A ((QQQQQQQQQQQQQQ (d) F ((A⊗A)⊗A)
FaA,A,A //

F (cA⊗A)
��

(e)

F (A⊗ (A⊗A))

F (A⊗cA)
��

FA� FA

mA,Avvmmmmmmmmmmmmmm
(f)

F (A⊗A)

FcA ''PPPPPPPPPPPP
F (A⊗A)

FcAwwnnnnnnnnnnnn

FA

commutes by:

(a) functoriality of �

(b) hexagon of monoidal functors

(c) functoriality of �

(d) naturality of m

(e) pentagon of monoids

(f) naturality of m
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The diagram:

FA� I
FA�n //

(a)

FA� F1

mA,1

��

FA�FwA //

(b)

FA� FA

mA,A

��
F (A⊗ 1)

F (A⊗wA) // F (A⊗A)

FcA

��

(c)

FA

FulA

eeKKKKKKKKKKKKKKKKKulFA

TT

commutes by:

(a) square of monoidal functors

(b) naturality of m

(c) triangle of monoids

The diagram:

I� FA
n�FA //

(a)

F1� FA

m1,A

��

FwA�FA //

(b)

FA� FA

mA,A

��
F (1⊗A)

F (wA⊗A) // F (A⊗A)

FcA

��

(c)

FA

FurA

eeKKKKKKKKKKKKKKKKKurFA

TT

commutes by:

(a) square of monoidal functors

(b) naturality of m

(c) triangle of monoids

In the case of a symmetric monoidal functor and a symmetric monoid, the diagram:

FA� FA

mA,A

��

sFA,FA //

(a)

FA� FA

mA,A

��
F (A⊗A)

F sA,A //

FcA ''NNNNNNNNNNN

(b)

F (A⊗A)

FcAwwppppppppppp

FA

commutes by:
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(a) square of symmetric monoidal functors

(b) triangle of symmetric monoids
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