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1 Categories

Definition 1 (Category)

A category C is given by a class of objects 0bj(C) and, for each pair of objects A and B in 0bj(C),

a class of morphisms (or arrows) C(A, B) from A to B together with:

o identities: idy € C(A, A) for each object A



o composition: C(A, B) x C(B,C) — C(A, C), denoted by (f,g) — [ g:

!

A—B
g
19
C
such that the following diagrams commute:
id
Ay A—L-p A—L-p
X f \f\ \LidB f;gi ig;h
B B ¢——>D
We can “summarize” these four diagrams into:
A—L-p A—L-p
idAl N\ lidB f;gl % lg;h

Example 1 (Category Set)
The category of sets Set is given by:

e objects are sets

e morphisms are functions

e identities are identity functions

e composition is composition of functions

Definition 2 (Sub-Category)

A category D is a sub-category of the category C if its objects are objects of C (0bj(D) C 0bj(C)),
its morphisms are morphisms of C (D(A, B) C C(A, B)), its identities are the identities of C
(id% = id%) and its composition is the composition of C (f;? g = f;C g).

D is a full sub-category of C if, whenever A and B are objects of D, D(A, B) = C(A, B).

D is a wide sub-category of C if obj(D) = 0bj(C).

A full sub-category is characterized by its class of objects.

Example 2 (Full Wide Sub-Category)
The unique full wide sub-category of a category is itself.



1.1 Constructions

Definition 3 (Dual Category)
The dual (or opposite) CP of a category C is the category with:

e objects of C° are objects of C

e morphisms of C° from A to B are morphisms of C from B to A
e identities of C°P are identities of C

e composition of f and g in CPis g; f in C

Definition 4 (Unit Category)
The unit category T is given by:

e a unique object %

e a unique morphism u from x to %
o id, =u

e UsuU=1u

Definition 5 (Product Category)
The product C x D of two categories C and D is the category with:

e objects are pairs of objects of C and objects of D

e morphisms from (A, A") to (B, B") are pairs of morphisms of C from A to B and morphisms
of D from A’ to B’

e identity on (A, A’) is the pair (ida, idas)
e composition of (f, f) and (g,9") is (f; f,9;9")

1.2 Morphisms

Definition 6 (Monomorphism)
A monomorphism f from the object A to the object B (denoted f : A < B) is a morphism from
A to B such that for any two morphisms ¢g and A from some object C' to A, we have:

g;f=h;f=g=h
Definition 7 (Epimorphism)
An epimorphism f from the object A to the object B (denoted f: A — B) is a morphism from A
to B such that for any two morphisms g and h from B to some object C, we have:
fig=fih=g=h

It is thus a monomorphism in C°P.



Definition 8 (Idempotent)
A morphism f from the object A to itself is an idempotent if f; f = f.
This can be written:

AL aLa

~_ 7

f

Definition 9 (Retract)
An object A is a retract of an object B (denoted A < B) if there exist two morphisms s € C(A, B)
and r € C(B, A) such that s;r = ida.

This can be written:
S
ida C A B
v
'

s is then called a section of r, and r is called a retraction of s. (s,r) is called a section-retraction
pair.

If (s,r) is a section-retraction pair, s is a monomorphism and r is an epimorphism. Such monomor-
phisms and epimorphisms coming from a section-retraction pair are called split monomorphisms
and split epimorphisms. r; s is an idempotent. Such idempotents coming from a section-retraction
pair are called split idempotents.

PROOF PAGE 32

Definition 10 (Isomorphism)

An isomorphism f from the object A to the object B is a morphism from A to B such that
there exists a morphism ¢ from B to A (called the inverse of f) such that the following diagrams
commute:

A—1-p B—2-4
AN )

A

We can “summarize” these two diagrams into:
f
N
ids (A B )ids
\w-/ \\_/

g

Property 1 (Retracts and Isomorphisms)
We have:

e If there exists an isomorphism between A and B (denoted A ~ B) then both A<B and B<A.
o If f € C(A, B) is both a section and a retraction then it is an isomorphism.

PROOF PAGE 32
In particular an isomorphism is both a monomorphism and an epimorphism (the converse does not
hold in general).

PROOF PAGE 32



Definition 11 (Essentially Wide Sub-Category)
D is an essentially wide sub-category of C if it is a sub-category such that, for each object A of C,
there is an object A’ of D such that A’ ~ A.

1.3 Functors

Definition 12 (Functor)
A functor F between two categories C and D is:

e a function from the objects of C to the objects D
e for each A and B, a function from C(A4, B) to D(F A, FB)

such that the following diagrams in D commute:

Fida FA 4Ff> FB
N
FA FA l Fy
\“_“""“""/ F(f39)
ipa FC

A functor from a category to itself is called an endofunctor.

Example 3 (Constant Functor)
If C and D are two categories and D is an object of D, the constant functor Cp from C to D is
defined by:

e for any A € 0bj(C), CpA =D
e for any f € C(A,B), Cpf = idp
The constant functor Cy is the unique functor from any category C to T.
PROOF PAGE 32

Example 4 (Inclusion Functor)
If D is a sub-category of C, the inclusion functor I from D to C is defined by:

o for each A € obj(D), IA=A
e if A and B are in obj(D) and f € D(A,B), If = f
We denote by Idc the identity endofunctor of C which is the inclusion functor of C into itself.
PROOF PAGE 32

Example 5 (Category Cat)
The category of categories Cat is given by:

e objects are (small) categories
e morphisms are functors

e identities are identity functors



e composition is composition of functors: if F'is a functor from C to D and G is a functor from
D to E, their composition F'; G (or GF) is the functor from C to E which maps the object A
to G(FA) and the morphism f to G(F'f).

If F is an endofunctor of a category C, we use the notations F? for F; F = FF, F3 for F; F; F =
FFF, ...

PROOF PAGE 32

Property 2 (Preservation of Retracts)
Functors preserve retracts and isomorphisms: if F is a functor,

e A«B— FA<FB
e A~B=— FA~FB

Definition 13 (Bi-Functor)
A bi-functor from two categories C and D to a category E is a functor from C x D to E.
More concretely, if it is given by:

e a function from 0bj(C) x 0bj(D) to obj(E)

e for each A and B in 0bj(C) and A" and B’ in 0bj(D), a function from C(A4, B) x D(A’, B’) to
E(FAA', FBB')

such that the following diagrams in E commute:

| Fady ran L ppp
FAA FAA \ ngg’
\:imw«/’ F(f;:9)(f"59")
raal Foc’

One often uses the notations FAf for Flidaf and F fA for F fida, if A is an object.

Example 6 (Homset Functor)
The homset functor C(_, ) of a category C is the bi-functor from C° and C to Set given by:

e C(,,)(A,B)=C(A,B)
e C(,)(f,9)h=f;h;g (for feC(A,A),ge C(B,B’") and h € C(A, B))

Example 7 (Fixed Component Bi-Functor)
If F is a bi-functor from C and D to E and if A is an object of C, we can define a functor F4 from
D to E by:

e for any object B of D, FuB = FAB
e for any morphism g € D(B, B'), Fag = FidYg

Definition 14 (Full and Faithful Functors)

A functor F between two categories C and D is full if, for any pair (A, B) of objects of C, F' is
surjective from C(A, B) to D(F'A, FB).

A functor F' between two categories C and D is faithful if, for any pair (A, B) of objects of C, F is
injective from C(A, B) to D(F A, FB).



Definition 15 (Essentially Surjective Functor)
A functor F between two categories C and D is essentially surjective if, for each object A’ of D,
there exists an object A of C such that A’ is isomorphic to FA.

Example 8 (Inclusion Functor (bis))
If D is a sub-category of C, the inclusion functor is faithful. It is full if and only if D is a full
sub-category of C. It is essentially surjective if and only if D is an essentially wide sub-category of

C.

Example 9 (Projection Functor)
Let C and D be two categories, the projection functor P from C x D to C is defined by:

e for each (A, B) € obj(C x D), P(A,B) = A € 0bj(C)

e if A and A’ are objects in C, B and B’ are objects in D, and (f,g) € C x D((4, B), (4’,B’)),
P(f.9) = f € C(4,4)

It is a full functor if D has at least one morphism between any two objects.
PROOF PAGE 33

Definition 16 (Algebra)
An algebra for the endofunctor F' is a pair (A, h4) where:

e A is an object
e h 4 is a morphism from FA to A

Definition 17 (Algebra Morphism)
An algebra morphism f from (A, hy) to (B, hp) is a morphism from A to B such that the following
diagram commutes:

Ff
FA——FB
hAl lhB

A 7 B

If F is a functor, its category of algebras Alg(F') has objects the algebras of F' and morphisms the
algebra morphisms between them.

Definition 18 (Natural Transformation)

A transformation a between two functions F' and G from the objects of a category C to the
objects of a category D (in particular between two functors from C to D) is a family (@4)acopjc)
of morphisms from F'A to GA.

A transformation a between two functors F' and G is natural if the following diagram in D commutes
for all f € C(A, B):

Ff
FA——FB

GAW)GB



It is represented:

A natural isomorphism is a natural transformation where each element is an isomorphism.

Example 10 (Identity Natural Transformation)
If F is a functor between the categories C and D, (idra)acopjc) is @ natural isomorphism from F
to itself.
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Definition 19 (Vertical Composition)

Let F', G and H be three functors between the same two categories C and D, if « is a natural
transformation for F' to G and [ is a natural transformation from G to H, the vertical composition
a ;! B is the natural transformation from F to H defined by (a ;! 8)4 = aa ; Ba.

F F
m
C e D — C Jasls D
W
H H

PROOF PAGE 33

Definition 20 (Horizontal Composition)

Let C, D and E be three categories, F' and F’ be two functors from C to D and G and G’ be two
functors from D to E, if « is a natural transformation for F' to F” and S is a natural transformation
from G to G', the horizontal composition a ;0 B is the natural transformation from F ;G to F'; G’
defined by (o ; 8)a = Gaa ; Bpra = Bra; Gaa.

F G F;G
C o D |2 E — C Jai®8 _E
V \‘w.’/
F’ (el F/;Gl

PROOF PAGE 33

Example 11 (Category of Functors)
Let C and D be two categories, the category of functors Func(C,D) is given by:

e objects are functors between C and D
e morphisms are natural transformations
e identities are the identity natural transformations

e composition is the vertical composition of natural transformations



1.4 Objects

Definition 21 (Terminal Object)
A terminal object in a category C is an object T such that, for any object A of C, there exists a
unique morphism t4 from A to T.

If C is a category with a terminal object T, a point of an object A of C is a morphism from T to
A.

Definition 22 (Initial Object)

An initial object in a category C is an object L such that, for any object A of C, there exists a
unique morphism i4 from L to A.

It is thus a terminal object in C°P.

A zero object is an object 0 which is both initial and terminal. If 0 is a zero object in the category
C and A and B are two objects of C, the zero morphism z4, p is:

ta LA

A—0——>8B

Definition 23 (Product)
A product of two objects A and B in a category C is a triple (A x B, w4, 7) where:

e A x B is an object of C
e 74 is a morphism from A x B to A
e 7p is a morphism from A x B to B

such that, for any triple (C, f, g), where C is an object of C, f is a morphism from C to A and
¢ is a morphism from C to B, there exists a unique morphism (f,¢g) from C to A x B such that
(f,9);ma=fand (f,g);75 =g.

This can be written:

¢
I g
é(f,g>
v
A - Ax B P B

If (A x A, 7!y, ") is a product of A and A in C, the diagonal morphism A4 is (ida,id4) from A to
A x A. Tt a section of both projections 7rf4 and 7).
A category equipped with a product for each pair of objects and which has a terminal object is
called a cartesian category. In such a category, one can form all products of finite families of
objects. If C is a cartesian category, x defines a bi-functor from C and C to C, and A is a natural
transformation from Idc to _ x _.

PROOF PAGE 33

Definition 24 (Co-Product)
A co-product of two objects A and B in a category C is a triple (A + B, 4, tp) where:



e A+ B is an object of C
® .4 is a morphism from A to A+ B
e .5 is a morphism from B to A+ B

such that, for any triple (C, f, g), where C is an object of C, f is a morphism from A to C' and
g is a morphism from B to C, there exists a unique morphism [f, g] from A + B to C such that

vaif,g) = fand g |f,g] =g

It is thus a product in C°P.

If (A4 A, L%A, t"y) is a co-product of A and A in C, the co-diagonal morphism V 4 is [ida, ida] from
A+ Ato A.

Example 12 (Products and Co-Products in Set)

If A and B are two sets, the cartesian product A x B (with the projection functions) defines a
product of A and B in Set. The singleton set {*} is terminal in Set. With this structure, Set is a
cartesian category.

The disjoint union AW B (with the injection functions) is a co-product in Set. The empty set () is
an initial object in Set.

PROOF PAGE 33

Example 13 (Products in Cat)

If C and D are two categories, the product category C x I (with the projection functors) defines a
product of C and D in Cat. The unit category T is terminal in Cat. With this structure, Cat is a
cartesian category.

PROOF PAGE 34

Example 14 (Co-Products in Cat)
If C and D are two categories, the category C + D is given by:

e objects are in the disjoint union 0bj(C) & 0bj(D)

e morphisms from (0, A) to (0, B) are C(A, B), morphisms from (1, A’) to (1, B’) are D(4’, B')
(and there is no morphism from (i, A) to (j, B) if i # j)

e composition and identities come from those of C and D

Up to the identification of 0bj(C) and obj(ID) with their disjoint copies in 0bj(C) W 0bj(D), one can
consider the inclusion functors as functors from C to C + D and from D to C + D. The category
C + D with these two functors defines a co-product of C and D in Cat.

The empty category 1 with no object and no morphism is initial in Cat.

10
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Definition 25 (Bi-Product)
Let C be a category with a zero object 0 and A and B two objects of C, a bi-product of A and B
is a 5-tuple (A @ B, ta,tp, 74, 75) Where:

e (A® B,ma,mp) is a product of A and B in C
e (A® B,ta,tp) is a co-product of A and B in C

and such that:

LA TA = tdy
LB ;TR = idp
LA;TB = ZA,B

LB;TA = 2B,A

Definition 26 (Equalizer)

An equalizer of two morphisms f and g between the same two objects A and B in a category C is
a pair (F,e) where E is an object of C and e is a morphism from E to A such that e; f =e;h
and, for any pair (E’,€’), where E’ is an object of C and €’ is a morphism from E’ to A such that
e ; f =¢€'; g, there exists a unique morphism h from E’ to E such that ¢/ = h ;e.

This can be written:

If (E,e) is an equalizer, e is a monomorphism. Such monomorphisms coming from an equalizer are
called regular monomorphisms.
PROOF PAGE 34

2 Monoidal Categories

Definition 27 (Monoidal Category)
A monoidal category is a 6-tuple (C,®, 1, a, u', u") where:

e ® is a bi-functor from C and C to C

1 is an object of C
e a is a natural isomorphism from (-® /) ® " to _® (' ® )
e 4 is a natural isomorphism from Idc to - ® 1

e 1 is a natural isomorphism from Id¢ to 1 ® _

11



such that the following diagrams commute:

(A® B)®

(C®D)

(A2 B)@ C)® ® (B® (C ® D))

a,%\ %D

(A (B®(C)®D —— AR ((B®(C)® D)

QA,BQC,D

A®B

(A®1)®B A®(1® B)

QA,1,B

A monoidal category is strict if the natural isomorphisms a, u' and u" are the identity natural
isomorphism.
A symmetric monoidal category is a T-tuple (C,®, 1, a, u!, u", s) where:

e (C,®,1,a, ul, u") is a monoidal category
e s is a natural isomorphism from _® / to /' ® _

such that the following diagrams commute:

A9 B2 Bw A
SB,A
i@ i
A®B
(A®B) @ C22C A (Bo O) 22X (Bo ) A
5A73®Ol \LG‘B,C,A

(B®A)®Cm3®(A®C)B®TAz~B®(C®A)

From this definition, it is possible to deduce that, in any monoidal category, u| = ull

PROOF PAGE 35
From this definition, it is possible to deduce that, in any symmetric monoidal category:

A®1

1®A

54,1

12
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If (C,®, 1, a, u!, u") is a monoidal category (resp. a symmetric monoidal category) then (C°P,®,1,a~ %, u' ™, u" 1)
as well.

Example 15 (Cartesian Category)
A cartesian category C is a symmetric monoidal category (C, x, T) with the natural isomorphisms:

® ayBCc = (TAxB;TA, (TAxB ; TB,TC))
° uf4 = (ida, ta)
o Uy = (ta,ida)
® 54 = ("B, TA)
PROOF PAGE 36

Definition 28 (Monoidal Functor)
A monoidal functor between two monoidal categories (C,®,1) and (D,X,I) is a triple (F,m,n)
where:

e I is a functor from C to D
e m is a natural transformation from F_X F/ to F(_® )
e 1 is a morphism from I to F'1

such that the following diagrams in D commute:

(FARFB)R FC —2"21° pAR (FBR FC)
mA'BgFCl lFAleB,C
F(A® B)XFC FAXF(B®CO)
mA@B,Cl lmA,B@)C
F(A®B)®C) Fain F(A® (B® ())
ub g Up A
FA——FAKI FA——IKFA
lFAIZn in@FA
pu \FARF1 P \F1HFA
imm i’”
F(A®1) F(l1® A)

13



If C and D are symmetric monoidal, a symmetric monoidal functor is a monoidal functor such that
the following diagram in D commutes:

FARFB 2" FBRFA
mA,Bi J/mB,A
F(A® B) ——= F(B® A)

Let (F,m,n) be a monoidal functor, F' is strong if m4 p and n are isomorphisms and F' is strict if
they are equalities.

Definition 29 (Co-Monoidal Functor)

A co-monoidal functor between two monoidal categories (C,®, 1) and (D, X, I) is a triple (¥, m,n)
which is a monoidal functor between (C°?,®,1) and (D°P,X,I), thus: m natural transformation
from F(-® ) to F_.X F_ and n morphism from F1 to I.

We thus have the following commutative diagrams:

Fa
F((A® B)® C) 2P L F(A® (B®O))
mA@B’Cl lmA,B(@C
F(A BIRFC FAXF(B®(C)
mA,Bchl lFAX'mB,C
(FARFB)X FC FATB G FAX (FBX FC)
Fuf4 Fuly
FA——=F(A®1) FA—>F(1®A)
lmm imﬁ
! FAX 1 ur FIKFA
Up A FA
lFA&n in@FA
FAXI IKFA

Definition 30 (Monoidal Natural Transformation)

A monoidal natural transformation o between two monoidal functors F' and G between the same
two monoidal categories (C,®,1) and (D, X, I) is a natural transformation such that the following
diagrams in D commute:

F

Ma B n¥
FAX FB F(A® B) I—F1
asRap iaA@)B A lm
GARGB —> G(A® B) el
MA B

14



2.1 Monoids

Definition 31 (Monoid)
A monoid in a monoidal category (C,®,1) is a triple (A, ca,w4) where:

e A is an object
e c4 is a morphism from A ® A to A

e wy is a morphism from 1 to A

that is:
A A—"—>A~—"—1
such that the following diagrams commute:
A A A
(A®A)RA—""">Ax A ARl " A A< 154
CA
\ . CA UT
aA,AA A Uy A

A®(A®A)TCA>A®A

If C is symmetric monoidal, a monoid is symmetric if the following diagram commutes:

SAA

AR A AR A

N

A

Definition 32 (Monoidal Morphism)
A monoidal morphism f between two monoids (A, ca,w4) and (B, cp,wp) in a monoidal category
is a morphism from A to B such that the following diagrams commute:

Ao A BeB 1
| N
CA CcB

A———B A - B

Monoids of a monoidal category (C, ®, 1) and monoidal morphisms between them define a category
Mon(C) called the category of monoids of C.

Definition 33 (Co-Monoid)
A co-monoid in C is a monoid in C°?. It is thus a triple (A, da,e4) with d4 morphism from A to

15



A ® A and e4 morphism from A to 1 such that:

Ag A taeA

(AR A)®A A

A AA,AA

X A@lWA@)AW].@A

Definition 34 (Co-Monoidal Morphism)
A co-monoidal morphism f between two co-monoids (A,da,eq) and (B,dp,ep) in a monoidal
category is a morphism from A to B such that the following diagrams commute:

a—1 .p A ! B
“l l@ ;\\/4;

1
A®A——B&B

Co-monoids of a monoidal category (C,®,1) and co-monoidal morphisms between them define a
category coMon(C) called the category of co-monoids of C.

Example 16 (Co-Monoids and Cartesian Categories)

In a cartesian category C, each object A comes with a canonical structure of symmetric co-monoid
(A, Ay, tyg). Since any morphism of C is co-monoidal for these co-monoid structures, one can see
C as a full sub-category of coMon(C).

Conversely, let C be a monoidal category and M be a sub-category of coMon(C) such that:

e the forgetful functor U from M to C which maps triples (A, d4,e4) to A is full and injective
on objects

e if A and B are in the image of U then A ® B as well
e 1 is in the image of U
e the following diagram commutes:

dagB

A B—" > (A®B)® (A® B)

(AQep)®(eA®B)
u%@ug

(A®1)® (1® B)

® c1 — idl

then UM is a cartesian category with ® as product and 1 as terminal object.

16



Property 3 (Preservation of Monoids)
If (F,m,n) is a monoidal functor from (C,®,1) to (D, X, I) and (A, ca,w4) is a monoid in (C,®, 1),
then (FA,maa; Fea,n; Fwy) is a monoid in (D,X,I). We say that monoidal functors preserve

monoids.

mAa, A Fcp Fwap n

FAXFA F(A® A) FA 1 I

Similarly, symmetric monoidal functors preserve symmetric monoids, and co-monoidal functors
preserve co-monoids.

PROOF PAGE 39

3 Monads

Definition 35 (Monad)
A monad on a category C is a triple (T',n, u) where:

e T is an endofunctor of C
e 7 is a natural transformation from Id¢ to T
e 4 is a natural transformation from 72 to T
T2 —> T <" Idc

such that the following diagrams commute:

T T
T34 A 724 T2 A A A ey
S S
T?A—>TA TA

A co-monad on C is a monad on C°, that is a triple (T,e,9) (T endofunctor of C, ¢ natural
transformation from T to Idc and § natural transformation from 7 to 72) such that:

oA
TA——=T24 TA
) 1)
5Al \LT(SA / lim\
o 2 —> -2
T?°A——>T%A T°A - TA< - T°A

Definition 36 (Kleisli Triple)
A Kleisli triple on a category C is a triple (T, 7, (_)') where:

e T is a function from 0bj(C) to 0bj(C)
e 77 is a transformation from Idg to T

e ()T is a function from C(A,TB) to C(T' A, TB)

17



such that the following diagrams commute:

T
A"y nl AL~ 7B
N
\ lﬂ TA TA \ lgf
f ~— 7 (f;gDf

TB tdra TC
The notions of monad and Kleisli triple are equivalent through:
(T,n,p) = (T, T-; )
(T.n, (1) = (T i)

Definition 37 (Strong Monad)
A strong monad on a monoidal category C is a monad equipped with 7 where:

e 7 is a natural transformation from - ®@ 7T/ to T'(_® /)

such that the following diagrams commute:

19 TA—AT(1 A) (A® B)® TC rebe T(A® B)® C)
. iTU’A aA’B’TC\L lTaA,B,C
Ur A
TA A® (BoTC)— A®T(B®C) — T(A® (B® C))
®TB,C A

Ao B2 Ao TH AT T(A0 TB) % T2(A s B)

M \LTA,B A®u3l iﬂA@B

T(A® B) A®TB T(A® B)

TA,B

Definition 38 (Commutative Monad)
A commutative monad on a symmetric monoidal category C is a strong monad such that, if:

STA,B

T =TA® BT BeTA 24 T(B o A) 2% T(A® B)

then the following diagram commutes:

TARTB
y W\
T(A®TB) T(TA® B)
TTA7B\L \LTT’,A’B
T2(A® B) 2(A® B)

M %
T(A® B)
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Definition 39 (Monoidal Monad)

A monad (7,7, 1) on a monoidal category C is monoidal if T' is a monoidal functor, and n and u
are monoidal natural transformations.

If C is symmetric monoidal, the monad is symmetric monoidal if, moreover, T' is a symmetric
monoidal functor.

Property 4 (Monoidal and Commutative Monads)
Let C be a symmetric monoidal category and T be a strong monad on C:

o T equipped with either:

TTA,B

TA®TB —2% T(TA® B) GALEN T?(A® B) 2222, T(A @ B)
or
TA®TB 7% T(AeTB) T%% 12(A o B) "% T(A @ B)
and n : 1 — T1 is a monoidal functor
e in both cases, n and p are monoidal natural transformations
e T is a symmetric monoidal functor <= T is a commutative monad

Definition 40 (Algebra)
An algebra for the monad T is a pair (A, h4) which is an algebra for the functor 7" such that the
following diagrams commute:

A4 724 4> TA
ida lhA ThA\L \LhA
A TA— A
A

Example 17 (Free Algebra)
For any object A, (T'A, pu4) is an algebra called the free algebra generated by A.

Definition 41 (Eilenberg-Moore Category)

If T is a monad on the category C, its category of algebras is the full sub-category of the category
of algebras of the functor 7" whose objects are the algebras of the monad T'. It is also called the
FEilenberg-Moore category of T and denoted C”.

Definition 42 (Kleisli Category)

If T' is a monad on the category C, the Kleisli category Cr has objects the objects of C and for
morphisms: Cr(A, B) = C(A,TB). The identities are ny € C(A,TA), and the composition of
feC(ATB)and g € C(B,TC)is f;Tqg; uc € C(A,TC).

T
AL % pro 2t o

firg
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Definition 43 (Distributive Law)
If (7,07, u7) and (S,n°, u¥) are two monads on the category C, a distributive law of T over S is a
natural transformation [ from ST to T'S such that the following diagrams commute:

Spy \

STTA TSA
lra A
TSTA - TTSA
A
STA
Hia \
SSTA TSA
:& A;
STSA ; TSSA
54

Sng

‘X%
b
~N
s
~
3

STA

TSA STA

Example 18 (Composition of Monads)
Let (T,n",uT) and (S,n°, 1¥) be two monads on the category C, and I be a distributive law of T
over S, T'S equipped with

77SA

A*>SA TSA and TSTSA TTSSA TSSAHTSA

is a monad on C.

4 Adjunctions

Definition 44 (Adjunction)
An adjunction F' - G between two categories C and D is a triple (F, G, ¢) where:

e ['is a functor from C to D

e (G is a functor from D to C

20



e ¢ is a natural isomorphism from the functor D(F'_, ") to the functor C(-,G.) (both from
C? x D to Set).

F
/
¢ 1L D FAB
G

Equivalently, an adjunction F' 4 G between two categories C and D is a quadruple (F,G,n,¢€)
where:

e F'is a functor from C to D
e (G is a functor from D to C
e 7 is a natural transformation from Idc to GF
e ¢ is a natural transformation from FG to Idp

such that the following diagrams commute:

’ 3
GA —S4 GrG A’ FA—"2 PGrA
idck lG’aA/ m lEFA
GA FA

If FF 4 G is an adjunction, F' is called a left adjoint and G is called a right adjoint.

The diagram underlying the naturality of ¢ is, in C:

¥B,c’ (Ff;h';g")
B GC’

\ Gy’
A

GB’

_—
wa,p (h)

The equivalence between the two definitions is given by:

panl(f) =AM GrA S qa
A va,ra(idrpa)

na = GFA
ey = FGA' Fowatlend

Example 19 (Category of Adjunctions)
The category of adjunctions Adj is given by:

e objects are (small) categories
e morphisms in Adj(C, D) are adjunctions between C and D

e identities are identity adjunctions (Id, Id, id)
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e composition is composition of adjunctions: if (F,G, ) is an adjunction between C and D
and (F',G',¢") is an adjunction between D and E then (F; F',G"; G, ¢, ;¢ /) is an
adjunction between C and E.

F F’
A /\
C 1 D L E
\_é’/ \«\____/

lel

Definition 45 (Monoidal Adjunction)

An adjunction (F,G,n,e) between two monoidal categories C and D is monoidal if F' and G are
monoidal functors and 7 and € are monoidal natural transformations.

If C and D are symmetric monoidal, the adjunction is symmetric monoidal if, moreover, F' and G
are symmetric monoidal functors.

In a monoidal adjunction, F' is strong.

Property 5 (Monad of an Adjunction)

If (F,G,n,¢) is an adjunction, (GF,n,Gep_) is a monad called the monad of the adjunction.
Similarly, (FG,e, Fng.) is a co-monad.

If the adjunction is monoidal, the monad is monoidal. If the adjunction is symmetric monoidal,
the monad is symmetric monoidal.

Example 20 (Eilenberg-Moore Adjunction)

Let T be a monad on C, let I be the free-algebra functor from C to CT associating (T'A, 1) with
A, and associating T'f € CT((T A, jua), (T B, ug)) with f € C(A, B).

Let U be the forgetful functor from CT to C associating A with the algebra (A, h) and such that
Uf=tf.

F is a left adjoint to U and the monad associated with this adjunction is 7.

Example 21 (Kleisli Adjunction)

Let T be a monad on C, let E be the embedding functor from C to Cr associating A with A
(EA = A), and associating n4 ; T'f € Cy(A, B) with f € C(A4, B).

Let T" be the functor from Cp to C defined by T"TA =TA and T'f =T f ; up for f € Cr(A, B).

E

¢ 1 c
\\M/ T

T/
E is a left adjoint to 7" and the monad associated with this adjunction is 7.

Example 22 (Category of Adjunctions of a Monad)
Let T be a monad on a category C, the category T-Adj of adjunctions of the monad T is given by:

e objects are tuples (D, F, G, n,e) where (F,G,n,¢) is an adjunction between C and D which
induces the monad 7" on C (Property 5)
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e morphisms between (D, F, G, n,¢) and (D', F/,G’,n/,¢’) are functors L from D to D such that
the following diagram commutes:

]D)l
and Le = €.

The Kleisli adjunction is the initial object of T-Adj.
The Eilenberg-Moore adjunction is the terminal object of T-Adj.

Definition 46 (Equivalence of Categories)
A functor F' between two categories C and D is an equivalence of categories if one of the two
following equivalent properties is true:

e There exists an adjunction (G, F,n,e) between D and C such that n and e are natural iso-
morphisms.

e Fis full, faithful and essentially surjective.

Property 6 (Strict Monoidal Categories)
Every monoidal category is equivalent to a strict monoidal category.

Property 7 (Kleisli Category and Free Algebras)
If T is a monad on the category C, the category Cr is equivalent to the full-subcategory of CT
consisting of free algebras.

5 Closed Categories

Definition 47 (Symmetric Monoidal Closed Category)
A symmetric monoidal category (C,®,1, a,u,u", s) is closed if, for any object A of C, the functor
-® A has a right adjoint (noted A — _).

C®RA—B
C —A—-oB

curry

In a symmetric monoidal closed category, if f is a morphism from C ® A to B, we denote by
curry(f) the induced morphism from C to A — B. We define evy g as curry=!(ida—p) € C((A —
B)® A, B).

Definition 48 (Exponential Object)

If A and B are two objects of a symmetric monoidal category C, an exponential object of A and B is a
pair (B4, eva g) where B4 is an object of C and eva g € C(BA® A, B) such that, for any morphism
f € C(C ® A, B), there exists a unique morphism Af € C(C, B4) such that f = (Af ® ida); evA B-
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This can be written:
C' ® A

)\f & |ida

\%
BA®9 A—— B

evA,B

The notions of symmetric monoidal closed category and exponential object are related by the fact
that a symmetric monoidal category is closed if and only if each pair of objects has an associated
exponential object.

Definition 49 (Dual Object)
In a A symmetric monoidal category (C, ®, 1, a, o', u", s), a dual of an object A is an object A+ with
two morphisms 7 € C(1, A® A+) and € € C(A' ® A, 1) such that the following diagrams commute:

T
\ /

1 1
(A® AN) TAala ®(A-® A)
AJ_
ugL uzL
At®1 1@ At
M %
®(A® At) — (At @A) AL
Gy L LA AL

Definition 50 (Compact Closed Category)
A symmetric monoidal category is compact closed if each object has a dual object.

Example 23 (Closure of Compact Closed Categories)
A compact closed category is a symmetric monoidal closed category with A — _ = A+ ® _.

Remember (Example 15) that a cartesian category has a canonical symmetric monoidal structure.

Definition 51
Cartesian Closed Category A cartesian category is cartesian closed if, as a symmetric monoidal
category, it is closed.
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Definition 52 (x-Autonomous Category)

A symmetric monoidal closed category C is x-autonomous if it contains a dualizing object, that is
an object L such that, for each object A of C, the following morphism is an isomorphism between
Aand (A—o 1) — L:

SA,A—L

curry(A@(A—OJ_)H(A—OJ_)QbALA’tL)

Example 24 (Compact Closed and x-Autonomous Categories)

Any compact closed category is x-autonomous with 1 as dualizing object.

Any *-autonomous category such that (A® B) —o L ~ (B — 1) ® (A — 1) is compact closed
with A — | as dual of A.

6 2-Categories

Definition 53 (2-Category)
A 2-category C is given by:

e a class of objects 0bj(C)
e for any two objects A and B, a class of I-morphisms C(A, B)

e for any two object A and B and any two morphisms f and g in C(A, B), a class of 2-morphisms
(or 2-cells) C3(f,g)

e for any object A, a I-identity morphism idy in C(A, A)

e for any l-morphism f, a 2-identity morphism id} in C2(f, f)

e for any two morphisms f € C(A, B) and g € C(B, (), a composition f ;g € C(A4,C)

e for any two 2-morphisms a € C2(f, g) and 3 € C2(g, h), a vertical composition a;' B € C2(f, h)

e for any two 2-morphisms « € C?(f, g) and 3 € C2(f’, ¢') with f and g in C(A, B) and f’ and
g in C(B,C), an horizontal composition a;° B € C*(f; f',9:9")

such that:
e 0bj(C) with 1-morphisms, 1-identities, and composition is a category

e for any two objects A and B, C(A, B) with C2(A, B) for morphisms, 2-identities between
morphisms of C(A, B) for identities, and vertical composition for composition is a category

e 0bj(C) with 2-morphisms for morphisms, 2-identities between 1-identities as identities, and
horizontal composition for composition is a category
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and given any four 2-morphisms of the following shape:

f f
A * B —C
WW
h K

we have:

fif!
/ \ //\ /m
Jo/;18 = A C
h;h!
and we also have:
/ g fig
AL VBT be o = a Yids, c
\\J/
f g fig

Example 25 (2-Category Cat)

(Small) Categories with functors for 1-morphisms, natural transformations for 2-morphisms, iden-
tity functors for 1-identities, identity natural transformations for 2-identities, composition of func-
tors for composition, vertical composition of natural transformations for vertical composition, and
horizontal composition of natural transformations for horizontal composition is a 2-category.

Example 26 (Monoidal Categories)
A 2-category with one object is the same thing as a strict monoidal category.

Property 8 (Monoidal Structures in 2-Categories)
Each object A of a 2-category C defines a strict monoidal category:

e objects are 1-morphisms in C(A, A)
e morphisms are 2-morphisms between them
o identities are id'

e composition is vertical composition
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e tensor product on objects is composition of 1-morphisms
e temsor product on morphisms is horizontal composition of 2-morphisms
o unit of the tensor is ida

Example 27 (Monads as Monoids)
Let C be a category, since it is an object in the 2-category Cat, Func(C, C) has a strict monoidal
category structure given by Property 8. A monad is exactly a monoid in this monoidal category.
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algebra of a monad, 18
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full sub-category, 2, 7
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horizontal composition, 8, 25, 26 section, 4
section-retraction pair, 4
Id, 5 Set, 2, 10

%d, 1 split epimorphism, 4
%dempotent, 4 split idempotent, 4
identity, 1 split monomorphism, 4

identity endofunctor, 5
identity functor, 26
inclusion functor, 5, 7
initial object, 9
inverse, 4
isomorphism, 4, 6, 7

strict monoidal category, 12, 26

strict monoidal functor, 14

strong monad, 17

strong monoidal functor, 14
sub-category, 2, 5, 7

symmetric monoid, 15

symmetric monoidal adjunction, 21
symmetric monoidal category, 12, 23, 24
symmetric monoidal closed category, 23
left adjoint, 20 symmetric monoidal functor, 14
symmetric monoidal monad, 18

Kleisli category, 19, 22
Kleisli triple, 17

Mon, 15
monad, 16, 21 terminal object, 9
monad of an adjunction, 21 transformation, 7

monoid, 14

monoidal adjunction, 21

monoidal category, 11, 22
monoidal functor, 13, 16

monoidal monad, 18, 21 wide sub-category, 2
monoidal morphism, 15

monoidal natural transformation, 14
monomorphism, 3

morphism, 1

unit category, 3, 10

vertical composition, 8, 8, 25, 26

zero morphism, 9
zero object, 9, 11

natural isomorphism, 8
natural transformation, 7, 26

obj, 1
object, 1
opposite, 3

point, 9

product, 9

product category, 3, 10
projection functor, 7, 10

regular monomorphism, 11
retract, 4, 6

retraction, 4

right adjoint, 20
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Additional Properties

Cartesian Product

We consider a category C, two objects A and B of C and a product (A x B,m4,7p) of A and B in
C.

Fact 1 (Pair of Projections)
(ma,mB) = 1daxp-

PROOF: (w4, mp);7ma =7a = idaxp;7a and (w4, 7g) ;7 = T = idaxp ;™ thus, by uniqueness
of the pair, we have (14, 7p) = idaxB. O

Fact 2 (Composition with Pair)
Let C and D be two objects of C, if f € C(C,A), g € C(C,B) and h € C(D,C) then h; (f,g) =

(hifihsg).

PRrROOF:  We have h;(f,g);ma=h;f =(h; f,h;g);maand hi(f,g);7p =h;g=(h; [ h;g);np,
thus h; (f,g9) = (h; f,h; g) by uniqueness of the pair. O

Monoidal Categories

We consider a monoidal category (C,®, 1, a, u!, u").

Fact 3 (Equality upto _.® 1 and 1 ® .)

Let A and B be two objects of C and f and g be two morphisms of C from A to B, f® 1 =
IRl <—= f=9g = 10 f=1®g.

PrOOF: We have f =g implies both fl=g¢g®1land 1® f=1®g.

Now assume f ® 1 = g ® 1, the following diagram commutes:

!
fe1
u% T ulB
A—A®1 B®1l<=—20B
~
g1

g

since the two squares commute by naturality of u'. We conclude f = ¢ because ulB is an
isomorphism.
Similarly, we obtain the implication 1 ® f = 1® g = f = ¢ by naturality of «". O
Fact 4 (Unit of Unit)
Let A be an object of C, ujgy, =1@u) 10 A =1 (12 A).
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PrROOF: By naturality of «", we have:

-
Up

A 1®A

g T
u%i lu1®A

thus, since v/ is an isomorphism, vy, = 1 ® u/y. O

Fact 5 (Associativity of Unit)
Let A and B be two objects of C, the following diagram commutes:

A®B
e
(1 A)® B E 1®(A® B)

PRrOOF: Thanks to Fact 3, it is sufficient to prove the commutation of the following diagram (since
a is an isomorphism):

1® (A® B)

@1,A,B

19(u, ®B) 1®@u4ep
(e d)eB ul ®(A®B)
(a)

(1@uy)®B. hoaes (@
(c)

<1®(1®A>)®Bm“l®”®f‘>®3 WS (1®1)®(A® B)

/ (e) \\

12 ((1®A) @ B) 1®(1®(A® B))

1®a1,4,B
which commutes by:
(a) naturality of a
(b) triangle of monoidal categories
(c) triangle of monoidal categories
(d) naturality of a
(e) pentagon of monoidal categories O
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Proofs

Definition 9
e Ifg:s=h;stheng=g;ida=g;s;r=h;s;r=h;ida = h.
e lfr;g=r;htheng=ida;g=s;r;9=s;r;h=1da;h=nh.

e r:s;r;s=r;ida;s=1;8

Property 1

e Let f from A to B be an isomorphism and f~! be its inverse, we have f; f~! = idy and
71 f=idgp.

e There exist g € C(B, A) such that f; g = idqg and h € C(B, A) such that h; f = idp thus
h=h;idga=nh; f;g=1idg;g= g and we conclude that g = h is an inverse of f.

Comment Page 4

We give a direct proof: let f be an isomorphism from A to B, f~! be its inverse, if ¢ and ¢’ are
morphisms from A’ to A then g; f = ¢'; f implies g = g;ida = g f;f =g ;f;f =g ida =g
If h and A’ are morphisms from B to B’ then f;h = f;h impliesh = f~'; f;h = f~1;f;h =1
In the following category:

idACAHf B _) s

with ids ; f = f and f; idg = idp, f is both a monomorphism and an epimorphism but it is not
an isomorphism since there is no morphism from B to A.

Example 3

Let A be an object of C, Cpida = idp = idcpa, and if f € C(A,B) and g € C(B,C) then
Cp(f;g) =idp = idp ;idp = Cpf ; Cpy.

A functor F from C to T must satisfy FFA = x for any object A of C since * is the unique object
of T. We must then have F'f € T(*,x) = {id,}, so F = C,.

Example 4
We have Iidy = idg = idra and I(f;9) = f;9=1f;1g.

Example 5

If C and D are two (small) categories and F is a functor from C to D, let A be an object of C,
we have (Idc ; F)A = FldcA = FA = IdpFA = (F ; Idp)A and if f € C(A, B) then (Idc ; F)f =
Fldcf = Ff = IldpFf = (F; Idp)f.

If C, D and E are three (small) categories, F'is a functor from C to D and G is a functor from D to E,
let A be an object of C, we have ((F';G);H)A = H(F;G)A=HGFA=(G;H)FA= (F;(G;H))A
and if f € C(A,B) then (F;G);H)f =H(F;G)f=HGFf=(G;H)Ff=(F;(G;H))f.
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Example 9

If (A,B) S Obj((c X ]D)), Pid(A’B) = P(idA, idB) = ida = idP(A,B)-

If (f,9) € CxD((A,B),(A,B')) and (f',¢") € CxD((A',B'),(A",B")), P((f.9); (f',9") =
P(fifg:9)=f:f =@(f.9);P(f,9))

If D has at least one morphism between any two objects, let B and B’ be two objects of D and
g € D(B,B’), for any f € C(A,A") = C(P(A, B), P(A’, B’)), we have P(f,g) = f.

Example 10

If A is an object of C, idpgq € D(FA, FA) is an isomorphism (it is its own inverse).

Definition 19
If fEC(A,B), Ffi(a;'B)=Ff;ap;Be=aa;Gf;Bp=aa;Ba;Hf = (a;' B)a; HS.

Definition 20

Since 3 is a natural transformation from G to G’, we have G4 ; Bria = Bra ; G'aa.
If f € C(A,B), (F;G)f;(a;®B)p=GFf;Gap;Brp=G(Ff;ap);Brp=GCGlaa; F'f);Brp =
Gou; GF'f; Bpp = Gaa; Bpa; GF f=(a?B)a; (F';G)f.

Comment Page 9

For any two objects A and B, we have a product A x B. If f € C(4, B) and [’ € C(A’,B’), we
define f x f'=(wa; f,ma; f) € C(Ax A", B x B').

We have idg X idgr = (g ;ida,mar 5 ida) = (ma, mar) = idax 4 (using Fact 1).

If fe C(A,B),ge C(B,C), f'/ € C(A,B’) and ¢’ € C(B’,C"), we have, using Fact 2, (f x f');
(9xg)=(ma;fira s f')i{mpig. 75 9) = ((mas fimars [1)s7B39.(mas fimars f1)s7p 5 g') =
(masfigmas fi9)=(fi9)x(f'19)

If f € C(A, B), using Fact 2, f;Ap = f;(idp, idp) = (f ;idp, [ ; idg) = (f, f) = (ida; f,ida; f) =
((ida,ida) ; 7ly 5 £, (idayida) ;705 f) = (ida,ida) 5 (7l s fomly s ) = Aas (f < f).

Example 12
Iff:C— Aandg:C — B, we define:
(f.g) :C —>AxB
z = (f(x), g(x))

For all x € C, we have mj o (f,g)(z) = f(z) and w0 (f,g)(z) = g(z). Let h: C — A x B be such
that any « € C, m o h(xz) = f(x) and 72 o h(z) = g(x) then h(z) = (f(x),g(x)) = (f, g)(z) that is
h=(f9)-
For any set C, there is a unique function from C' to {x} defined by:
tc: C — {*}
Tk
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Iff:A—Candg:B— C, we define:

[f,9] : AwB = C
(0,a) — f(a) ifaec A
(1,b) — g(b) ifbe B

For any a € A, [f,g] oti(a) = f(a) and for any b € B, [f,g] o t2(b) = g(b). Let h : Aw B — C
be such that for any a € A, hot1(a) = f(a) and for any b € B, h o 15(b) = g(b), we have for any
z € AW B, h(z) = [f,g](2) that is h = [f, g].

For any set C, there is a unique function from ) to C' which is the empty function.

Example 13
If F:E— Cand G:E — D are two functors, we define:

(F,G):E —CxD
E~— (FE,GE) for objects of E
f—=(Ff,Gf) for morphisms of E

For any object E of E, we have Pc(F,G)E = FE and Pp(F,G)E = GE. For any morphism f of
E, we have Pc(F,G)f = Ff and Pp(F,G)f = Gf. Let H be a functor from E to C x D such that
PcHE =FE, pHE =GE, PcHf = Ff and PpH f = G f for any object E and any morphism f
of E, then HE = (FE,GE) = (F,G)E and Hf = (Ff,Gf) = (F,G) f that is H = (F,G).

Let E be a category, the unique functor 7x from E to T is defined by TgE =  for any object E of
E and Tg f = id, for any morphism f of E.

Example 14
If F:C— E and G: DD — E are two functors, we define:

[F,G] . C+D—E
(0,C) — FC if C € 0bj(C)
(1,D) - GD if D € obj(D)
f—=Ff if f morphism for C
g— Gg if ¢ morphism for D

For any C € 0bj(C), [F,G|IcC = FC and for any B € obj(D), [F,G|IpD = GD. For any f
morphism in C, [F,G]Icf = Ff and for any g morphism in D, [F,G]Ipg = Gg. Let H : C+D — E
be a functor such that for any C € 0bj(C), HIcC = FC, for any B € obj(D), HIpD = GD, for any
f morphism in C, Hicf = Ff and for any g morphism in D, HIpg = Gg, we have for any object
A and for any morphism h of C+ D, HA = [F,G|A and Hh = [F,G]h, that is H = [F,G].

Let E be a category, the empty functor is the unique functor from I to E.

Definition 26

Let (E,e) be an equalizer of f € C(A, B) and g € C(A, B), if f/ and ¢’ are in C(D, E) such that
f'se=4¢g ;ethen f';5e;f =g ;e;f =g ;e;g thus there exists a unique h € C(D, E) such that
flie=g;e=h;esothat f/=h=¢g.
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Comment Page 12

The following diagram commutes:

1®1

(@)l @ 1| @O |da @ (0]

m\\\ / //

I1®(1®1)
by:
(a) triangle of monoidal categories
(b) Fact 4
(¢) Fact 5

We thus have v} ® 1 = u} ® 1 since a1 1 is an isomorphism, and finally «} = u} by Fact 3.

Comment Page 13

Thanks to Fact 3, it is sufficient to prove the commutation of the following diagram (since s and a
are isomorphisms):

a;1,A

(6]

A®l)®l S|

which commutes by:
(a) triangle of monoidal categories
(b) naturality of s

(¢) naturality of u"
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(d) Fact 5
(e) Fact 5

(f) hexagon of symmetric monoidal categories

Example 15

x is a bi-functor from C and C to C (see page 9).
We consider three morphisms f € C(A, A’), g € C(B, B’) and h € C(C,C"). We have:

e using Fact 2 and the definition of the bi-functor x:

(f xg) X hi(marxp s mar, (Tarxp ;s T, TCr))

fxg)xhsmasp sma, (f X g) X hi{Tarxp ; Tpr, mer))
TaxB;TA; [, (f X g) x hi{marxp s 7B, mer))

TaxB ;WA f((f X g) X hsmap ;s mpr, (f X g) X hmer))
TaxBTA; [, (TaxB ;7B ;9,75 b))

o~ o~~~

and

(TaxB ;A (Taxp ;s 7B, 70)) 5 f ¥ (g % h)
= (TaxB ;TA, (TaxB ; ®B, 7C)) 5 (WA f,TBxC 59 X h)
= ((maxB; T, (TaxB ; TB,TC)) ;A [ (TAxB s TA, (TAxB ; TB, TC)) s TBxC 3 9 X h)
= (TaxB;7A; [,{TaxB;™B,7C) 5 g X h)
= (TaxB;7a; [,{TaxB ™8, 7C) s (TB; 9,7C ; h))
= (maxB;7a; [,{{TaxB ; 7B, TC) ;7B ; 9, (TAxB ; B, TC) s 7C 5 h)
=(maxB;mA; [,{TaxB ;7B 9, TC 5 h))

Moreover, with Fact 1 and Fact 2:

(TaxB ;TA, (TaxB ; TB, TC)) ; ({(TA, TBxC ; TB), TBxC ; TC)
= ((TaxB ;TA, (TAxB ; TB,TC)) ; (TA, TBxC ; TB), (TAxB ; TA, (TAxB ; TB, TC)) ; TBxC ; TC)
(TaxB ;™A (TaxB 1 TB,TC)) i (T4, TBxC ; TB), TC)

((MaxB ; TA, (TAxB ; TB, TC)) ; TA, (TAXB ; TA, (TAxB ; TByTTC)) ; TBxC ; TB), TC)

= (TaxB;(Ta,7B), TC)

(
(
= ((TAxB ; T4, TAxB ; TB), TC)
(
(

TAxB, TC)

Z'd(A><B)><C
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and

(T4, TBxC s TB), TBxC s TC) 5 (TAxB ; A, (TAxB ; TB, TC))
= (({(Ta, TBxC ; TB), TBxC ; TC) s TAxB ; TA, {{TA, TBxC ; TB), TBxC ; TC) 3 (TAxB ; TB, TC))
= (mA, ({TA, TBxC ; TB), TBxC ; TC) ; {TAxB ; TB, TC))
= (ma, (({Ta, TBxC ; TB), TBxC ; TC) s TAxB ; TB, {{TA, TBxC ; TB), TBxC ; TC) ; TC))
= (ma, (TBxC ; TB, TBxC ; TC))
= (74, TBxC ; (7B, 7C))
= (T4, TBxC)
= 1dAx(Bx0C)

e We first prove that m4 € C(A x T, A) is the inverse of (ida,t4) € C(A, A x T) using Fact 1
and Fact 2:

(ida,ta) ;ma = ida
and
7 (ida, ta) = (Ta 5 ida, T4 5 ta)
= (ma,7T)
= idaxT
We also have:

(ida, ta) s f X idt = (ida, ta) ; (ma; fymr ;5 idT)

= ((ida, ta) ;ma; f,(ida, ta) ; w7 5 idT)
=

=(f

fota)
sidar, f 5 tar)
= f ) <7“dA/7 tA/>

e The results for (t4,id4) are very similar.

e Using Fact 2:
f Xg;<7TB'>7TA/> = <f xg;ﬂ-Blaf Xg;ﬂ-A/>
=(rB;9,7A; f)
and
(T, mA) ;9 %X [ = (7B, mA); (TB 9, 7A; [)
= ((mB,mA) ;7B 9, (7B, TA) ;A f)
=(mB;g,mA; f)
Moreover, with Fact 1 and Fact 2:
(B, ma) 3 (Ta,TB) = ((TB,T4) ; TA, (TR, TA) ; TB)
= (ma,7B)
= Z.dA><B
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We now have to prove to the three additional commutative diagrams of symmetric monoidal cate-
gories.

e Pentagon of monoidal categories:

(T(AxB)xC 3 TAx B> (T(AxB)xC ; TCTD)) 5 (TAxB ; T, (TAxB ; TB, TCx D))
= ((T(axB)xC ; TAx B {T(AxB)xC s TC>TD)) 3 TAxB ; TA, (T(Ax ByxC } TAx B> (T(AxB)xC i TC>TD)) ; {TAxB ; TF
= (T(axB)xC ; TAxB ; TA; ({T(AxB)xC s TAxBs (T(AxB)xC ; TC, TD)) i TAXB ; TB, (T(Ax B)xC ; TAx B (T(Ax B)xi

= (T(AxB)xC ; TAXB ; TA; (T(AxB)xC ; TAXB } TB, (T(Ax B)xC ; TC:TD)))

and

(TAxB § A, (TAxB ; TB, TC)) X 1D § (T ax(BxC) s T, (TAx(BxC) ; TBxC>TD)) 5 ida X (Tpxc ; 7B, (TBxC ; TC, TD))
= ((maxB ; T4, (TAxB ; TB, TC)) X 1D 5 Tax(BxC) ; TA, (TAxB ; TA, (TAxB ; TB, TC)) X idp 5 {TAx(BxC) ; TBx
= (T(AxB)xC ; TAxB ; TA, ({TAxB ; TA, (TAxB ; TB, TC)) X 1dD ; TAx(BxC) ; TBxC» (TAxB ; TA, (TAxB ; TB, TC
= (T(AxB)xC s TAXB ; TA; {T(AxB)xC 5 {TAxB i TB, TC), TD)) ; (T4, T(BxC)x D ; (TBxC ; TB, {TBxC ; TC,TD)))
= ((T(axB)xC ; TAxB ; TA, (T(AxByxC ; {TAXB ; TB, TC)> TD)) 5 TA; (T(AxB)xC ; TAxB 5 TA, (T(AxB)xC ; {TAXE
= (T(AxB)xC s TAxB ; TA; (T(ax ByxC 5 (TAxB ; TB, TC), TD) ; (TBxC ; TB, (TBxC ; *C, TD)))
= (T(AxB)xC ; TAxB ; TA, ({T(AxByxC ; {TAXB ; TB, TC), TD) ; TBxC ; B> {T(AxB)xC 5 {TAxB ; TB, TC), WD) ;
= (T(AxB)xC ; TAxB ; TA; (T(AxB)xC ; TAxB 3 TBy ({T(AxB)xC ; (TAxB ; TB, TC), TD) § TBxC 3 TCs (T(Ax B)xC
= (

T(AxB)xC ; TAXB 3 TA; (T(AxB)xC § TAxB 3 TB, {T(Ax B)xC } TCTD)))
e Triangle of monoidal categories:

(ida, ta) X idp ; (TAxT ; Ta, (TAxT ; TT,TB))
((ida, ta) X idp ; TaxT ; Ta, (ida, ta) X idB ; (TaxT ; TT,7B))
= (ma, ((ida, ta) X idp ; TaxT ; 7T, (ida, t4) X idp ; 7B))

= (ma,(Ta;ta,7B))

= (7, (taxB, ™B))

= (ma, (7B ; 1B, TB))

(ma, 75 ; (tB, idB))

= 1idg X (tp,1dp)

e Hexagon of symmetric monoidal categories:

(TaxB s A, (TAxB ; TB, TC)) s {TBxC, TA) 5 (TBxC ; TB, (TBxC ; TC, TA))
= ((TaxB ; T4, (TAxB ; TB, TC)) ; TBxCs (TAxB ; TA, {TAxB ; TB, TC)) s TA) 3 (TBxC ; TB, {TBxC ; TC, TA))
((TaxB ;s TB, TC), TAxB ; TA) ; (TBxC ; TB, (TBxC ; TC» TA))
= (TaAxB ; TB, ({({TAxB ; TB, TC), TAxB ; TA) ; TBxC ; TC, {{TAXB ; TB, TC), TAxB ; TA) ; TA))
= (TAxB ; TB, (TC, TAxB ; TA))
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and

(B, ma) X idc 5 (TBxA; TB, (TBxA ; WA, TC)) ; idB X (TC,TA)
((mB,mA) X idc ; TBxA ; TR, (TR, TA) X @dc ; (TBxA ; TA,TC)) ; tdB X (TC, TA)
= (TaxB;TB, ((TB, TA) X idc ; TBx A ; TA, (TR, TA) X tdc ; TC)) 5 idp X (TC,TA)

TAxB ; TB, (TAxB ; TA, 7)) ; (TR, TaxC ; (TC, TA))
(TAxB i TB, (TAxB ; TA, TC)) ; TB, (TAxB ; TB, (TAxB ; TA, TC)) ; TAxC ; (TC, TA))
TAxB ; TB, (TAxB ; TA, TC) 5 (TC, TA))

TAxB ; TB, ({TAxB ; TA, TC) s TC, (TAXB ; TA,TC) ; TA))

(
(
(
(
(
(TAxB ; TB, (TC, TAxB ; TA))
Property 3

The diagram:

AFA,FAFA

(FARFA)R FA

FAXR (FAR FA)

(ma,a;Fca)XFA ma, ANFA FARm A A FAX(ma, a;Fca)

@ pAs A)RFA (®) FARF(A®4)

FcyXFA FAXFc»
MARA,A mA,ARA
Fapg aa

! |
Y Y
FAXFA @ F(A®A)®A) FA® (A®A) (/H FAXFA
MR F(CA®A) F(A@CA) g A
F(A® A) © F(A® A)
Fcp Fca
FA

commutes by:

(a) functoriality of X

(b) hexagon of monoidal functors
(
(d

naturality of m

[§]

)
)

c¢) functoriality of X
)
) pentagon of monoids
)

(
(f) naturality of m
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The diagram:

Fcy

commutes by:
(a) square of monoidal functors
(b) naturality of m
(c) triangle of monoids

The diagram:
F XFA
IRFA—2 PR A2 S FARFA

(a) mi A (v) ma A

commutes by:
(a) square of monoidal functors
(b) naturality of m

(c) triangle of monoids

In the case of a symmetric monoidal functor and a symmetric monoid, the diagram:

SFA,FA
FAXFA FAXFA
mA’A\L (a) \LmA’A
Fs
F(A® A) = F(A® A)
Fca ®) Fcay
FA

commutes by:
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(a) square of symmetric monoidal functors

(b) triangle of symmetric monoids
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