
Classical isomorphisms of types

Olivier LAURENT

Preuves Programmes Systèmes

CNRS – Université Paris VII

UMR 7126 – Case 7014

2, place Jussieu – 75251 Paris Cedex 05 – FRANCE

Olivier.Laurent@pps.jussieu.fr

July 16, 2004

Abstract

The study of isomorphisms of types has been mainly carried out in an intuitionistic set-
ting. We extend some of these works to classical logic for both call-by-name and call-by-value
computations by means of polarized linear logic and game semantics. This leads to equational
characterizations of these isomorphisms for all the propositional connectives.

Introduction

The study of isomorphisms of types started from theoretical questions about the characterization
of isomorphisms in free cartesian closed categories [27] and in the λ-calculus [13, 9]. The possibility
of using these results as a basis for more practical tools (programming library search [25], gluing
of software components, ...) has considerably increased the interest of people in the subject.

The underlying problem is the following: given the definition of isomorphisms of types,

Definition 1 (Isomorphims of types)
Let S be a logical system, with an equational theory =S on proofs, two formulas A and B are
isomorphic, denoted by A ≃S B, if there exist two proofs πA of B ⊢ A and πB of A ⊢ B such that
by cutting πA and πB on the conclusion B (resp. A) we obtain a proof equal, up to =S , to the
axiom A ⊢ A (resp. B ⊢ B).

is it possible to find an equational theory corresponding exactly to the isomorphisms of the system
S?

Much work has been done for characterizing these isomorphisms of types for fragments of the
propositional λ-calculus, second order λ-calculus, extensions with recursive types (see for exam-
ple [23]), with dependent types (see for example [12, 7]), ... However all these works have been
carried out in an intuitionistic setting. Our main goal is to give first attempts in the direction of
extending these results to a classical setting.

While the question of the study of intuitionistic isomorphisms of types seems clear to formulate,
the classical case is not so simple. There are mainly three different possible questions:

• what are the isomorphisms in a non-deterministic classical setting (such as LK)?

1

• what are the isomorphisms in a call-by-name classical setting?

• what are the isomorphisms in a call-by-value classical setting?

We are going to address these three questions in a propositional setting with all the classical
connectives. The first question is essentially degenerate and does not give an interesting notion
of isomorphism. In order to solve the two other questions, we will study the isomorphisms of
the polarized variant of linear logic LLP [18] because both call-by-name and call-by-value classical
logics are embedded into LLP through syntactical reduction-preserving translations. This entails
that, from the characterization of isomorphisms in LLP, we can deduce both call-by-name and
call-by-value isomorphisms.

For the study of the isomorphisms of LLP, we use a semantical approach. Such an approach
consists in finding a denotational model of the system (so that any syntactical isomorphism leads
to an isomorphism in the model) in which first the isomorphisms can be computed and second
there are no more isomorphisms in the model than in the syntax. For that purpose, we will use
game semantics which is known to give precise models of the syntax (full abstraction and full
completeness results) and makes computations easier than in the syntax. This gives an application
of game semantics to a purely syntactical question, showing that even if games seem very near to
the syntax they are however abstract enough to simplify computations. The main consequences are
two different characterizations of the polarized isomorphisms: an equational theory and a graphical
representation through polarized forests.

We have tried to organize the paper by putting in different sections the intermediate results
that use different techniques in such a way that the reader only interested in a particular topic
could understand it by only reading the statements of the final results of the previous sections.

Section 1 is a short section devoted to solve our first question about non-deterministic classical
isomorphisms of types. The other sections only look at the deterministic case.

Section 2 contains the syntactical definition of polarized linear logic (LLP) which is the main
logical system used in the following sections. Section 3 gives some elements of game semantics
and proves the key result of the paper which is the characterization of the isomorphisms in the
game model. Section 4 defines the interpretation of LLP in the game model showing that any
isomorphism in LLP leads to an isomorphism in games. Section 5 relates isomorphisms in the game
model and isomorphisms in LLP (without using games anymore except through the underlying
forests) by computing the corresponding equational theory and by showing that all the obtained
isomorphisms are syntactically correct. This ends the study of isomorphisms in LLP. Section 6
uses embeddings of the call-by-name λµ-calculus and of the call-by-value λµ-calculus into LLP to
derive the corresponding equational theories of isomorphisms. As a consequence, we get back the
intuitionistic case (this is a new proof of a known result for the call-by-name case, but as far as we
know this is new for the call-by-value case).

Section 7 explains the relation between our classical results on isomorphisms with disjunction
and the intuitionistic ones of Balat-Di Cosmo-Fiore [15] by showing that they are in fact not
really comparable due to different underlying theories of the disjunction. Section 8 presents a
relation between our classical theory of isomorphisms and the equations of the real exponential
field (R,+, 0, ·, 1, e) in the spirit of Tarski’s problems for natural numbers studied in the usual
theory of isomorphisms of types.

2

1 Non-deterministic isomorphisms

In this very short section, we just want to close quickly the question of isomorphisms in the non-
deterministic classical setting by proving that it is degenerate. We prove that this non-determinism
entails that any two equiprovable formulas are isomorphic due to the too strong equational theory
on proofs generated by cut elimination (any two proofs of a given sequent are equal).

We consider proofs in Gentzen’s sequent calculus LK up to cut elimination and:

...
Γ ⊢ A,∆

wkrΓ ⊢ A,A,∆
ctrr

Γ ⊢ A,∆

=
...

Γ ⊢ A,∆
and

...
Γ, A ⊢ ∆

wklΓ, A,A ⊢ ∆
ctrl

Γ, A ⊢ ∆

=
...

Γ, A ⊢ ∆

Proposition 1 (Isomorphisms in LK)
A ⊣⊢LK B if and only if A ≃LK B.

Proof: The second direction is immediate. For the first one, from A ⊢LK B and B ⊢LK A we can
deduce a proof πA of A ⊢LK A and a proof πB of B ⊢LK B, but using Lafont’s critical pair,
these two proofs are equal to the identity:

πA

A ⊢ A wkrA ⊢ A,C

ax
A ⊢ A wklC,A ⊢ A

cut
A,A ⊢ A,A

ctrl
A ⊢ A,A

ctrr
A ⊢ A

reduces to both πA and the identity axiom. 2

This explains why we have to go to some more constrained systems to get interesting theories
of isomorphisms. That is a notion of isomorphisms that respects more structure of the objects.

From a semantics point of view, this corresponds to moving from Boolean algebras to control
categories [26], according to the fact that Boolean algebras arise as control categories with at most
one morphism between two objects.

2 Polarized Linear Logic

Polarized linear logic (LLP) is based on a restriction of the formulas of linear logic in order to get
a simpler system rich enough to interpret the λ-calculus and classical logic. Polarized formulas are
given by the following grammar:

P ::= X | 1 | 0 | P ⊗ P | P ⊕ P | !N
N ::= X⊥ | ⊥ | ⊤ | N ` N | N & N | ?P

3

The orthogonal of a formula is defined by the De Morgan’s laws:

(X)⊥ = X⊥ (X⊥)⊥ = X
1⊥ = ⊥ ⊥⊥ = 1
0⊥ = ⊤ ⊤⊥ = 0

(P ⊗ Q)⊥ = P⊥ ` Q⊥ (N ` M)⊥ = N⊥ ⊗ M⊥

(P ⊕ Q)⊥ = P⊥ & Q⊥ (N & M)⊥ = N⊥ ⊕ M⊥

(!N)⊥ = ?N⊥ (?P)⊥ = !P⊥

and for any polarized formula A, (A⊥)⊥ = A.
The rules of LLP are not just the rules of LL restricted to polarized formulas, otherwise classical

logic would not be so easy to embed. This is why we also generalize structural rules (?w, ?c and
context of !) to any negative formula and not only ?-formulas.

ax
⊢ N,N⊥

⊢ Γ, N ⊢ N⊥,∆
cut

⊢ Γ,∆

⊢ Γ, N,M
`

⊢ Γ, N ` M

⊢ Γ, P ⊢ ∆, Q
⊗

⊢ Γ,∆, P ⊗ Q

⊢ Γ, N ⊢ Γ,M
&

⊢ Γ, N & M

⊢ Γ, P
⊕1

⊢ Γ, P ⊕ Q

⊢ Γ, Q
⊕2

⊢ Γ, P ⊕ Q

⊢ N , N
!

⊢ N , !N

⊢ Γ, P
?d

⊢ Γ, ?P
⊢ Γ

?w
⊢ Γ, N

⊢ Γ, N,N
?c

⊢ Γ, N

⊤
⊢ Γ,⊤

⊢ Γ
⊥

⊢ Γ,⊥
1

⊢ 1

The context of the ⊤-rule must contain at most one positive formula and N is a context of negative
formulas.

Lemma 1 (Positive formula)
If ⊢ Γ is provable in LLP, Γ contains at most one positive formula.

The equational theory we consider on LLP proofs, denoted by π1 =βη π2, is given by cut-
elimination (see appendix A), η-expansion of axioms (see appendix B) and the following equation
(Rétoré’s reduction):

...
⊢ Γ, N

?w
⊢ Γ, N,N

?c
⊢ Γ, N

=
...

⊢ Γ, N

We use the notation =βη with the idea that β means “up to cut elimination” and η means “up
to expansion of axioms”, even if this relation is stronger than the usual βη-equivalence of the
λ-calculus.

Definition 2 (Polarized isomorphims)
Let A and B be two polarized formulas, A and B are isomorphic, denoted by A ≃LLP B, if there

4

N ` M = M ` N P ⊗ Q = Q ⊗ P
(N ` M) ` L = N ` (M ` L) (P ⊗ Q) ⊗ R = P ⊗ (Q ⊗ R)

N `⊥ = N P ⊗ 1 = P

N & M = M & N P ⊕ Q = Q ⊕ P
(N & M) & L = N & (M & L) (P ⊕ Q) ⊕ R = P ⊕ (Q ⊕ R)

N & ⊤ = N P ⊕ 0 = P

N ` (M & L) = (N ` M) & (N ` L) P ⊗ (Q ⊕ R) = (P ⊗ Q) ⊕ (P ⊗ R)
N `⊤ = ⊤ P ⊗ 0 = 0

!(N & M) = !N ⊗ !M ?(P ⊕ Q) = ?P ` ?Q
!⊤ = 1 ?0 = ⊤

for all negative formulas N , M and L and all positive formulas P , Q and R.

Figure 1: Equational theory E

exist two proofs πA of ⊢ B⊥, A and πB of ⊢ A⊥, B such that by cutting πA and πB on the conclusion
B (resp. A) we obtain a proof equal to the axiom ⊢ A⊥, A (resp. ⊢ B⊥, B), up to =βη.

Let N and M be two negative formulas, N and M are intuitionistically isomorphic, denoted by
N ≃i

LLP
M , if there exist two proofs πN of ⊢ ?M⊥, N and πM of ⊢ ?N⊥,M such that:

• By cutting, on the conclusion !M , πN and πM with a promotion on M , we obtain a proof

equal to the proof
ax

⊢ N⊥, N
?d

⊢ ?N⊥, N
up to =βη.

• By cutting, on the conclusion !N , πM and πN with a promotion on N , we obtain a proof

equal to the proof
ax

⊢ M⊥,M
?d

⊢ ?M⊥,M
up to =βη.

If P and Q are two positive formulas, P ≃i
LLP

Q if P⊥ ≃i
LLP

Q⊥.

We immediately have A ≃LLP B ⇒ A ≃i
LLP

B by adding dereliction rules to πA and πB .

Definition 3 (E-isomorphism)
E is the equational theory given in figure 1.

Let A and B be two polarized formulas, A and B are E-isomorphic, denoted by A ≃E B, if they
are equal in the theory E .

Lemma 2 (Correctness of E)
If A ≃E B then A ≃LLP B (and thus A ≃i

LLP
B).

Proof: The proofs corresponding to the equations are:

ax
⊢ N⊥, N

ax
⊢ M⊥,M

⊗
⊢ N⊥ ⊗ M⊥, N,M

`
⊢ N⊥ ⊗ M⊥,M ` N

5

ax
⊢ N⊥, N

ax
⊢ M⊥,M

⊗
⊢ N⊥ ⊗ M⊥, N,M

ax
⊢ L⊥, L

⊗
⊢ (N⊥ ⊗ M⊥) ⊗ L⊥, N,M,L

`
⊢ (N⊥ ⊗ M⊥) ⊗ L⊥, N,M ` L

`
⊢ (N⊥ ⊗ M⊥) ⊗ L⊥, N ` (M ` L)

ax
⊢ N⊥, N

1
⊢ 1

⊗
⊢ N⊥ ⊗ 1, N

ax
⊢ N⊥, N

⊥
⊢ N⊥, N,⊥

`
⊢ N⊥, N `⊥

⊤
⊢ N,⊤, 0

`
⊢ N `⊤, 0

⊤
⊢ N⊥ ⊗ 0,⊤

ax
⊢ M⊥,M

⊕2
⊢ N⊥ ⊕ M⊥,M

ax
⊢ N⊥, N

⊕1
⊢ N⊥ ⊕ M⊥, N

&
⊢ N⊥ ⊕ M⊥,M & N

ax
⊢ N⊥, N

⊕1
⊢ N⊥ ⊕ M⊥, N

⊕1
⊢ (N⊥ ⊕ M⊥) ⊕ L⊥, N

ax
⊢ M⊥,M

⊕2
⊢ N⊥ ⊕ M⊥,M

⊕1
⊢ (N⊥ ⊕ M⊥) ⊕ L⊥,M

ax
⊢ L⊥, L

⊕2
⊢ (N⊥ ⊕ M⊥) ⊕ L⊥, L

&
⊢ (N⊥ ⊕ M⊥) ⊕ L⊥,M & L

&
⊢ (N⊥ ⊕ M⊥) ⊕ L⊥, N & (M & L)

ax
⊢ N⊥, N

⊤
⊢ N⊥,⊤

&
⊢ N⊥, N & ⊤

ax
⊢ N⊥, N

⊕1
⊢ N⊥ ⊕ 0, N

ax
⊢ N⊥, N

ax
⊢ M⊥,M

⊕1
⊢ M⊥ ⊕ L⊥,M

⊗
⊢ N⊥ ⊗ (M⊥ ⊕ L⊥), N,M

`
⊢ N⊥ ⊗ (M⊥ ⊕ L⊥), N ` M

ax
⊢ N⊥, N

ax
⊢ L⊥, L

⊕2
⊢ M⊥ ⊕ L⊥, L

⊗
⊢ N⊥ ⊗ (M⊥ ⊕ L⊥), N,L

`
⊢ N⊥ ⊗ (M⊥ ⊕ L⊥), N ` L

&
⊢ N⊥ ⊗ (M⊥ ⊕ L⊥), (N ` M) & (N ` L)

ax
⊢ N,N⊥

ax
⊢ M,M⊥

⊗
⊢ N,M,N⊥ ⊗ M⊥

⊕1
⊢ N,M, (N⊥ ⊗ M⊥) ⊕ (N⊥ ⊗ L⊥)

ax
⊢ N,N⊥

ax
⊢ L,L⊥

⊗
⊢ N,L,N⊥ ⊗ L⊥

⊕2
⊢ N,L, (N⊥ ⊗ M⊥) ⊕ (N⊥ ⊗ L⊥)

&
⊢ N,M & L, (N⊥ ⊗ M⊥) ⊕ (N⊥ ⊗ L⊥)

`
⊢ N ` (M & L), (N⊥ ⊗ M⊥) ⊕ (N⊥ ⊗ L⊥)

6

ax
⊢ N⊥, N

⊕1
⊢ N⊥ ⊕ M⊥, N

?d
⊢ ?(N⊥ ⊕ M⊥), N

!
⊢ ?(N⊥ ⊕ M⊥), !N

ax
⊢ M⊥,M

⊕2
⊢ N⊥ ⊕ M⊥,M

?d
⊢ ?(N⊥ ⊕ M⊥),M

!
⊢ ?(N⊥ ⊕ M⊥), !M

⊗
⊢ ?(N⊥ ⊕ M⊥), ?(N⊥ ⊕ M⊥), !N ⊗ !M

?c
⊢ ?(N⊥ ⊕ M⊥), !N ⊗ !M

ax
⊢ N,N⊥

?d
⊢ N, ?N⊥

?w
⊢ N, ?N⊥, ?M⊥

ax
⊢ M,M⊥

?d
⊢ M, ?M⊥

?w
⊢ M, ?N⊥, ?M⊥

&
⊢ N & M, ?N⊥, ?M⊥

!
⊢ !(N & M), ?N⊥, ?M⊥

`
⊢ !(N & M), ?N⊥ ` ?M⊥

⊤
⊢ ⊤

!
⊢ !⊤

⊥
⊢ !⊤,⊥

1
⊢ 1

?w
⊢ ?0, 1

We then have to verify that, up to =βη, cutting the two corresponding proofs gives an axiom.

Let us, for example, have a quick look at the proof of ⊢ ?(N⊥ ⊕ M⊥), !(N & M) thus obtained:

ax
⊢ N⊥, N

⊕1
⊢ N⊥ ⊕ M⊥, N

?d
⊢ ?(N⊥ ⊕ M⊥), N

?w
⊢ ?(N⊥ ⊕ M⊥), ?(N⊥ ⊕ M⊥), N

ax
⊢ M⊥,M

⊕2
⊢ N⊥ ⊕ M⊥,M

?d
⊢ ?(N⊥ ⊕ M⊥),M

?w
⊢ ?(N⊥ ⊕ M⊥), ?(N⊥ ⊕ M⊥),M

&
⊢ ?(N⊥ ⊕ M⊥), ?(N⊥ ⊕ M⊥), N & M

!
⊢ ?(N⊥ ⊕ M⊥), ?(N⊥ ⊕ M⊥), !(N & M)

?c
⊢ ?(N⊥ ⊕ M⊥), !(N & M)

if we introduce cuts with the appropriate η-expansions of axioms and if we eliminate them,
we obtain:

ax
⊢ N⊥, N

⊕1
⊢ N⊥ ⊕ M⊥, N

?d
⊢ ?(N⊥ ⊕ M⊥), N

?w
⊢ ?(N⊥ ⊕ M⊥), ?(N⊥ ⊕ M⊥), N

?c
⊢ ?(N⊥ ⊕ M⊥), N

ax
⊢ M⊥,M

⊕2
⊢ N⊥ ⊕ M⊥,M

?d
⊢ ?(N⊥ ⊕ M⊥),M

?w
⊢ ?(N⊥ ⊕ M⊥), ?(N⊥ ⊕ M⊥),M

?c
⊢ ?(N⊥ ⊕ M⊥),M

&
⊢ ?(N⊥ ⊕ M⊥), N & M

!
⊢ ?(N⊥ ⊕ M⊥), !(N & M)

7

and then, with Rétoré’s reduction:

ax
⊢ N⊥, N

⊕1
⊢ N⊥ ⊕ M⊥, N

?d
⊢ ?(N⊥ ⊕ M⊥), N

ax
⊢ M⊥,M

⊕2
⊢ N⊥ ⊕ M⊥,M

?d
⊢ ?(N⊥ ⊕ M⊥),M

&
⊢ ?(N⊥ ⊕ M⊥), N & M

!
⊢ ?(N⊥ ⊕ M⊥), !(N & M)

which is a normal form of the following proof, obtained by cutting two expansions of axioms:

ax
⊢ N⊥, N

⊕1
⊢ N⊥ ⊕ M⊥, N

ax
⊢ M⊥,M

⊕2
⊢ N⊥ ⊕ M⊥,M

&
⊢ N⊥ ⊕ M⊥, N & M

?d
⊢ ?(N⊥ ⊕ M⊥), N & M

!
⊢ ?(N⊥ ⊕ M⊥), !(N & M)

ax
⊢ N⊥, N

⊕1
⊢ N⊥ ⊕ M⊥, N

ax
⊢ M⊥,M

⊕2
⊢ N⊥ ⊕ M⊥,M

&
⊢ N⊥ ⊕ M⊥, N & M

?d
⊢ ?(N⊥ ⊕ M⊥), N & M

!
⊢ ?(N⊥ ⊕ M⊥), !(N & M)

cut
⊢ ?(N⊥ ⊕ M⊥), !(N & M)

2

The goal of sections 3, 4 and 5 is to prove the converse of lemma 2 which is the difficult direction
(theorem 2) by means of game semantics.

3 Game semantics

Game semantics gives denotational models for various systems. We will use it because it is far
enough from the syntax to simplify computations and not too much to betray the syntax. Types
are interpreted by arenas (forests) and proofs or programs by strategies on these arenas.

3.1 Arenas and strategies

We just recall the key definitions of usual game semantics. All these definitions with more details,
explanations and justifications appear in [16].

Definition 4 (Forest)
A forest is a partial order (E,≤) such that for any x ∈ E, ({y ∈ E | y ≤ x},≤) is a finite total
order.

The nodes of a forest (E,≤) are the elements of E and the forest is finite if E is finite. The
roots are the minimal elements. If x is the maximum element under y, we say that y is a son of x,
denoted by x ⊢ y. If (E,≤) is a forest, the relation ≤ is the transitive reflexive closure of ⊢ and we
will often represent (E,≤) by (E,⊢).

8

Definition 5 (Morphism)
A morphism between two forests (E,≤) and (E′,≤′) is a function from E to E′ which respects the
order (if x ≤ y then f(x) ≤′ f(y)).

If there exists a forest isomorphism between E and E′, we use the notation E ≃f E′.

Definition 6 (Arena)
An arena A is a finite forest whose nodes are called moves.

The polarity λA(a) of a move a is O (resp. P) if the length of the path (i.e. its number of edges)
going from a root of A to a is even (resp. odd).

A move a of A is initial, denoted by ⊢A a, if it is a root of A. If b is a son of a in A, we say
that a enables b, denoted by a ⊢A b. The set of the initial moves of A is denoted by Ai.

Definition 7 (Arrow)
Let (A,≤A) and (B,≤B) be two arenas, the arena (A → B,≤A→B) is defined by:

• the set A → B is the disjoint union of A × Bi and B;

• if (a, b0) ∈ A × Bi and (a′, b0) ∈ A × Bi with a ⊢A a′, then (a, b0) ⊢A→B (a′, b0);

• if b ∈ B and b′ ∈ B with b ⊢B b′, then b ⊢A→B b′;

• if b0 ∈ Bi and (a0, b0) ∈ Ai × Bi, then b0 ⊢A→B (a0, b0).

Definition 8 (Justified sequence)
Let A be an arena, a justified sequence s on A is a sequence of moves of A with, for each non-initial
move b of s, a pointer to an earlier occurrence of move a of s, called the justifier of b, such that
a ⊢A b.

Definition 9 (Projections in A → B)
If s is a justified sequence on A → B, the projection s ↾A (resp. s ↾B) is the justified sequence on A
(resp. B) containing only the moves a such that (a, b0) is a move of s for some b0 (resp. the moves
b such that b is a move of s).

In this spirit, given a justified sequence s on A → B, we will often say that a move of s is in A
when it is in A × Bi.

Definition 10 (Play)
Let A be an arena, a play s on A is a justified sequence on A with moves of alternated polarity.

The set of plays of A is denoted by PA. We use the notation t ≤P s if t is a prefix of s ending
with a P -move. We say that t is a P -prefix of s.

Definition 11 (View)
Let A be an arena and s be a play on A, the view psq of s is the sub-play of s defined by:

• psaq = psqa if a is a P -move;

• psaq = a if a is an initial O-move;

• psatbq = psqab is b is an O-move justified by a.

Definition 12 (Strategy)
A strategy σ on A, denoted by σ : A, is a non-empty P -prefix closed set of even length plays of A
such that:

9

• determinism: if sab ∈ σ and sac ∈ σ, then sab = sac.

• visibility : if sab ∈ σ, the justifier of b is in psaq.

• innocence: if sab ∈ σ, t ∈ σ, ta ∈ PA and psaq = ptaq then tab ∈ σ.

Remark: Due to the innocence condition, a strategy is completely characterized by its views.

Definition 13 (Composition)
Let A, B and C be three arenas, an interaction sequence u on A, B and C is a justified sequence
on (A → B) → C such that u ↾A→B ∈ PA→B , u ↾B→C ∈ PB→C and u ↾A→C ∈ PA→C . A move
of u in A pointing to a move in B is an initial move of A and its justifier is an initial move of
B, the play u ↾A→C is obtained by choosing as a pointer for these initial moves of A the justifier
of their justifier which is an initial move of C (the other moves in A are pointing in u ↾A and the
moves in C are pointing in u ↾C). The set of the interaction sequences on A, B and C is denoted
by int(A,B,C).

Let σ : A → B and τ : B → C be two strategies, the composition of σ and τ is the strategy
σ; τ = {u ↾A→C | u ∈ int(A,B,C) ∧ u ↾A→B ∈ σ ∧ u ↾B→C ∈ τ} : A → C.

Lemma 3 (Zipping)
Let σ : A → B and τ : B → C be two strategies, if s is a play in σ; τ , there exists exactly one
interaction sequence u ending with a move in A or C such that u ↾A→B ∈ σ, u ↾B→C ∈ τ and
u ↾A→C = s.

Proof: The existence of u is immediately given by the definition of composition.

Let u and v be two such interaction sequences on A, B and C. We prove the result by
induction on the length of s. If s = ε, we have u = v = ε. If s = tmn, we decompose u (resp.
v) into u1u2mu3n (resp. v1v2mv3n) where u1 ends with the last move of t, and u2 and u3

contain only moves in B. By induction hypothesis applied to t, we have u1 = v1. We first
show that u2 = v2 = ε: the last move of u1 is a P -move in A → C thus by the alternation
conditions (see the state diagram in [16]) it cannot be followed by a move in B. We show
that u3 = v3:

• If u3 is a strict prefix of v3, let b ∈ B be the first move in v3 not in u3. We have
both u1mu3n ↾A→B ∈ σ and v1mu3b ↾A→B ∈ σ which is not possible with n ∈ A by
determinism of σ and not possible with n ∈ C by determinism of τ .

• If v3 is a strict prefix of u3, this is the same.

• Otherwise, let w be the maximal common prefix of u3 and v3. If u3 6= v3, we have
u3 = wb and v3 = wb′ with b 6= b′. If b and b′ are P -moves (resp. O-moves) in B,
we have u1mwb ↾A→B ∈ σ (resp. τ) and v1mwb′ ↾A→B ∈ σ (resp. τ) contradicting the
determinism of σ (resp. τ).

This entails u3 = v3 and finally u = v. 2

Definition 14 (Identity)
Let A be an arena, the identity strategy idA is idA = {s ∈ PA1→A2

| ∀t ≤P s, t ↾A1
= t ↾A2

} : A → A
(the indexes are only used to distinguish occurrences).

10

Lemma 4
If s is a justified sequence on A, there exists a unique play s′ ∈ PA1→A2

of idA such that s′ ↾A1
=

s′ ↾A2
= s.

Proof: By induction on the length of s. If s = ε, we have s′ = ε. If s = ta, by induction
hypothesis, there exists a play t′ of idA such that t′ ↾A1

= t′ ↾A2
= t. If a is an O-move, we

have s′ = t′a2a1 and if a is a P -move, we have s′ = t′a1a2 where ai is the copy of a in Ai. 2

Definition 15 (Total strategy)
Let σ : A be a strategy, σ is total if whenever s ∈ σ and sa ∈ PA, there exists some b such that
sab ∈ σ.

3.2 Isomorphisms

We next give a characterization of isomorphisms in the game model, which is the key result of the
paper.

Proposition 2
If f is a forest isomorphism from A to B, then {s ∈ PA→B | ∀t ≤P s, f(t ↾A) = t ↾B} is a strategy,
called the strategy generated by f (where f(s) is the justified sequence obtained from s by replacing
each move a by f(a) and by preserving the pointers).

Proof: We denote this set of plays by σ. By definition, σ is a P -prefix closed set of even length
plays of A → B. We have to prove the three properties of strategies:

• If sab ∈ σ and sac ∈ σ, and assuming a in A, the condition in the definition of σ entails
that b and c are in B, so that sab ↾B = f(sab ↾A) = f(sa ↾A) = f(sac ↾A) = sac ↾B and
thus sab = sac.

• If sab ∈ σ, and assuming a in A, the condition in the definition of σ entails that b is in
B and, since sab ↾B = f(sab ↾A), the justifier of b is the move just before the justifier of
a in sab so that it is in the view psaq.

• If sab ∈ σ, t ∈ σ, ta ∈ PA→B and psaq = ptaq, and assuming a in A, the condition in
the definition of σ entails that b is in B and, we have sab ↾B = f(sab ↾A) thus b = f(a)
and we conclude tab ↾B = f(tab ↾A) that is tab ∈ σ. 2

Definition 16 (Game isomorphism)
Let A and B be two negative arenas, a game isomorphism between A and B is a pair of strategies
σ : A → B and τ : B → A such that σ; τ = idA and τ ;σ = idB .

If there exists a game isomorphism between A and B, we use the notation A ≃g B.

Definition 17 (Zig-zag play)
A play s in A → B is zig-zag if:

• each P -move following an O-move in A (resp. B) is in B (resp. A);

• each P -move in A following an initial O-move in B is justified by it;

• s ↾A and s ↾B have the same pointers.

If only the first two conditions are verified, s is a pre-zig-zag play.

11

Lemma 5 (Dual pre-zig-zag play)
If s is a pre-zig-zag play of even length in A → B, there exists a unique pre-zig-zag play s̄ in B → A
such that s̄ ↾A = s ↾A and s̄ ↾B = s ↾B.

Proof: We define s̄ by induction on the length of s: if s = ε, s̄ = ε; if s = tab then s̄ = t̄ba; if
s = tba then s̄ = t̄ab.

It is easy to check that s̄ is a pre-zig-zag play. Moreover due to the alternation condition
of pre-zig-zag plays and due to the condition s̄ ↾A = s ↾A and s̄ ↾B = s ↾B , s̄ is unique: the
moves in A and B and their pointers are given by the projections and their interleaving is
given by alternation. 2

Lemma 6 (Composition of zig-zag plays)
If s ∈ PA→B is a pre-zig-zag play of even length, there exists an interaction sequence s̃ ∈ int(B,A,B)
such that s̃ ↾B→A = s̄ and s̃ ↾A→B = s.

Proof: We prove the result by induction on the length of s. If s = ε, we have s̄ = ε and s̃ = ε. If
s = tab, by induction hypothesis, there exists an interaction sequence t̃ such that t̃ ↾B→A = t̄
and t̃ ↾A→B = t. If a is in A thus b is in B (resp. a in B and b in A), we consider s̃ = t̃b1ab2

where b1 is the copy of b in the leftmost B and b2 is the copy of b in the rightmost B (resp.
s̃ = t̃a2ba1 where a2 is the copy of a in the rightmost B and a1 in the leftmost one). 2

Theorem 1 (Strict isomorphisms)
If there exists a game isomorphism (σ, τ) between A and B, then there exists a forest isomorphism
f from A to B, such that moreover σ (resp. τ) is the strategy generated by f (resp. f−1).

Proof: We first show by induction on the even number k that if s ∈ σ with length k then s is a
zig-zag play and {t | t ∈ τ ∧ |t| = k} = {s̄ | s ∈ σ ∧ |s| = k}:

• If k = 0 then s = ε and the result is immediate.

• If k = k′+2 and s is a play in σ of length k, we have s = tmn with t ∈ σ and by induction
hypothesis t is zig-zag and t̄ ∈ τ . We assume m ∈ B (the case m ∈ A is similar). If
n ∈ B then, using lemma 6, t̃mn ∈ int(B,A,B) is such that t̃mn ↾B→A = t̃ ↾B→A = t̄ ∈ τ
and t̃mn ↾A→B = t̃ ↾A→Bmn = tmn ∈ σ, so that t̃mn ↾B→B ∈ τ ;σ = idB but this is
impossible because a play in idB cannot contain two successive moves in the same B.
This entails n ∈ A.

According to lemma 4, we consider the play s′ ∈ PB1→B2
of idB such that s′ ↾B1

=
s′ ↾B2

= s ↾B = t ↾Bm. By definition of the composition τ ;σ, there exists u ∈ int(B,A,B)
such that u ↾B→B = s′, u ↾B→A ∈ τ and u ↾A→B ∈ σ. By lemma 3, u = t̃mnm,
which entails that n is justified by m in s if m is initial (otherwise u ↾B→B /∈ idB),
so that s is a pre-zig-zag play. Moreover t̃mnm ↾B→A = s̃ ↾B→A = s̄ ∈ τ so that
{s̄ | s ∈ σ ∧ |s| = k} ⊂ {t | t ∈ τ ∧ |t| = k}. We obtain the converse in the same way.

We still have to show that s is a zig-zag play. The justifier of n in s ↾A must be a move
before the justifier of m in s ↾B by visibility of σ, and it must be the move just before
it, otherwise the justifier of m in t̄nm ∈ τ is not in pt̄nq, contradicting the visibility
condition for τ .

We have shown that τ = {s̄ | s ∈ σ}. We have almost shown that σ is total: if s ∈ σ and
sm ∈ PA→B, we assume m ∈ B (the case m ∈ A is similar), we consider the play s′ ∈ PB1→B2

12

of idB such that s′ ↾B1
= s′ ↾B2

= sm ↾B (lemma 4). By definition of the composition τ ;σ,
there exists u ∈ int(B,A,B) such that u ↾B→B = s′, u ↾B→A ∈ τ and u ↾A→B ∈ σ. We can
write u = u′mnm for some n since σ and τ contain only zig-zag plays, and by lemma 3, we
have u′ = s̃ so that s̃mnm ↾A→B = smn ∈ σ. This immediately gives τ also total.

Let a be a move of A and a1 . . . ap be the sequence of moves of A such that a1 is initial, ai

enables ai+1 for each 1 ≤ i ≤ p − 1 and ap = a, we are going to define a function f from the
moves of A to the moves of B by induction on p. In fact we enrich the induction hypothesis
by requiring that f(a1)a1a2f(a2)f(a3)a3 . . . ∈ σ. If p = 1, we look at the unique play of the
shape ab in τ (which exists by totality) and we define f(a) = b. If p = p′ + 1 with p odd, we
have by induction hypothesis a1f(a1)f(a2)a2a3f(a3) . . . f(ap′)ap′ ∈ τ , let f(ap) be the unique
move such that a1f(a1)f(a2)a2a3f(a3) . . . f(ap′)ap′apf(ap) ∈ τ which exists by totality of τ . If
p = p′ +1 with p even, we have by induction hypothesis f(a1)a1a2f(a2)f(a3)a3 . . . f(ap′)ap′ ∈
σ, let f(ap) be the unique move such that f(a1)a1a2f(a2)f(a3)a3 . . . f(ap′)ap′apf(ap) ∈ σ
which exists by totality of σ.

In the same way, we can associate a function g with τ and we easily verify that f ◦ g is
the identity on the moves of B and g ◦ f is the identity on the moves of A so that f is a
bijection. Moreover, by construction, if a ≤ a′ in A we have f(a) ≤ f(a′) in B, so that f is
an isomorphism between the forests A and B.

Finally, we show that if σ is innocent, σ is the strategy generated by f . Let σf be this
strategy, we just have to show that if s is a view then s ∈ σ ⇐⇒ s ∈ σf . Let s be a zig-zag
view in A → B, we prove by induction on the length of s that s ↾A is a sequence a1 . . . ap such
that ai justifies ai+1 for 1 ≤ i ≤ p − 1 and s ↾B is a sequence b1 . . . bq such that bj justifies
bj+1 for 1 ≤ j ≤ q − 1. If s = ε the result is straightforward. If s = mn, m ∈ B and n ∈ A
are initial. If s = tn′m′mn, m is justified by m′ since s is a view and n is justified by n′ since
s is zig-zag (and we apply the induction to t). If s is a view in σf , it is a zig-zag view and
we have already shown that plays of the shape f(a1)a1a2f(a2) . . . where ai justifies ai+1 are
in σ. If s is a view in σ, it is zig-zag and a straightforward induction shows that s is of the
shape f(a1)a1a2f(a2) . . . thus s ∈ σf . 2

Remark: In the setting of sequential algorithms [8], Berry and Curien have given a similar char-
acterization of isomorphisms based on a decomposition of algorithms into a purely functional part
(giving the underlying order-theoretic isomorphism) and an index choice part.

4 The game model of LLP

In order to characterize the isomorphisms of types in LLP, we give the game interpretation of
LLP and we show that it gives a denotational model. In fact the relation between LLP and its
game model is very much stronger (completeness, ...) but we just need soundness here. A precise
comparison between LLP and the same game model is given in [19].

Definition 18 (Polarized arena)
A polarized arena A is an arena with a polarity πA which is P or O (also denoted by + or −).

The polarity λA(a) of a move a is πA (resp. πA) if the length of the path going from a root of
A to a is even (resp. odd).

13

Definition 19 (Constructions of arenas)
We consider the following constructions on polarized arenas:

Dual. If A is an arena, its dual A⊥ is obtained by changing its polarity.

Empty. There are two empty polarized arenas: the positive one and the negative one.

Unit. The unit arenas are the forests reduced to one node ◦ and with polarity O or P .

Sum. If A and B are two arenas of the same polarity, A+B is the disjoint union of the two forests.

Product. If A and B are two arenas of the same polarity, the trees of A × B are obtained by
taking a tree in A and a tree in B and by identifying their roots. More formally:

• the underlying set of A × B is (Ai × Bi) + (A \ Ai) × Bi + Ai × (B \ Bi);

• if (a0, b0) ∈ Ai × Bi, (a, b0) ∈ (A \ Ai) × Bi and a0 ⊢A a then (a0, b0) ⊢A×B (a, b0);

• if (a0, b0) ∈ Ai × Bi, (a0, b) ∈ Ai × (B \ Bi) and b0 ⊢B b then (a0, b0) ⊢A×B (a0, b);

• if (a, b0) ∈ (A \ Ai) × Bi, (a′, b0) ∈ (A \ Ai) × Bi and a ⊢A a′ then (a, b0) ⊢A×B (a′, b0);

• if (a0, b) ∈ Ai × (B \ Bi), (a0, b
′) ∈ Ai × (B \ Bi) and b ⊢B b′ then (a0, b) ⊢A×B (a0, b

′);

• πA×B = πA = πB.

Lift. If A is an arena of polarity πA, ˜A is obtained by adding a unique new root ◦ under all the
trees of A. It is an arena of polarity πA.

Remark: If N and M are two negative arenas, N → M ≃f ˜N⊥ ×M , and this corresponds to an
encoding of implication in Linear Logic: A → B = ?A⊥ ` B.

Definition 20 (Projections)
If s is a justified sequence on A + B, the projection s ↾A (resp. s ↾B) is the justified sequence
containing only the moves of s in A (resp. in B).

If s is a justified sequence on A × B, the projection s ↾A (resp. s ↾B) is the justified sequence
containing only the moves a (resp. b) such that (a, b0) (resp. (a0, b)) is a move of s for some initial
move b0 (resp. a0). In this spirit, we will say that a move of the shape (a, b0) with a non-initial
(resp. (a0, b) with b non-initial) is a move in A (resp. in B).

A polarized formula A is interpreted by a polarized arena A⋆ of the same polarity. Given such
an interpretation for the variables, we then have:

0⋆ = (∅, P) ⊤⋆ = (∅, O)
1⋆ = (◦, P) ⊥⋆ = (◦, O)

(P ⊕ Q)⋆ = P ⋆ + Q⋆ (N & M)⋆ = N⋆ + M⋆

(P ⊗ Q)⋆ = P ⋆ × Q⋆ (N ` M)⋆ = N⋆ × M⋆

(!N)⋆ = ˜N⋆ (?P)⋆ = ˜P ⋆

with the property A⋆⊥ = A⊥⋆
.

Example 1
The polarized arena associated with ?(1 ⊕ !(?!⊤ & ⊥)) & (?(!⊥ ⊕ 1) ` ?!(⊥ & ⊥)) is:

14

with polarity O.

We now move to the constructions on strategies.
The product of strategies is not definable for any two strategies (as given by the structure of

control categories [26]) but only for a particular class of strategies: central strategies.

Definition 21 (Central strategy)
Let σ : A → B be a strategy,

• σ is linear if in each play of σ, each initial move in B has exactly one move in A justified by
it.

• σ is strict if, for each initial move b in B, it contains a play ba with a in A.

• σ is central, denoted by σ : A •→ B, if it is strict and linear.

Definition 22 (Product)
If σ : A •→ C and τ : B •→ D are two central strategies, σ×τ is the central strategy on A×B •→ C×D
defined by:

σ × τ = {s ∈ PA×B→C×D | s ↾A→C ∈ σ ∧ s ↾B→D ∈ τ}

Definition 23 (Weakening)
The set of views of the weakening strategy wN is {ε} ∪ {n◦ | n initial in N} which gives a central
strategy on ⊥ •→ N .

Definition 24 (Contraction)
If s is a play on N1 × N2 → N0 we define si (i = 1, 2) to be the sub-sequence of s defined by:

• the initial moves in N0 are in si;

• the moves in Ni are in si;

• a P -move in N0 following a move of si is in si;

• a O-move in N0 pointing to a move of si is in si.

The contraction strategy is cN = {s ∈ PN1×N2→N0
| ∀t ≤P s, t1 ∈ idN ∧ t2 ∈ idN} : N × N •→ N .

By lemma 1, a provable sequent of LLP is ⊢ N ,Π where Π is empty or is a positive formula.
The interpretation of a proof π of ⊢ N ,Π is a strategy π⋆ on Π⊥ •→ N (this is a notation for N ⋆ if
Π is empty and P ⋆⊥ •→ N ⋆ if Π = P) central if Π is not empty.

The strategy π⋆ is defined by induction on π:

(ax) ax⋆ = idN .

(cut) if Γ = Γ′,Π, π⋆
1 : Π⊥ •→ Γ′`N and π⋆

2 : N •→ ∆, the strategy π⋆ is π⋆
1 ; (idΓ′×π⋆

2) : Π⊥ •→ Γ′`∆.

15

(`) this rule does not modify the interpretation.

(⊗) if π⋆
1 : P⊥ •→ Γ and π⋆

2 : Q⊥ •→ ∆, the strategy π⋆ is π⋆
1 × π⋆

2 : (P ⊗ Q)⊥ •→ Γ ` ∆.

(&) if Γ = Γ′,Π, π⋆
1 : Π⊥ •→ Γ′ ` N and π⋆

2 : Π⊥ •→ Γ′ ` M , the views of π⋆ are the views of π⋆
1

and the views of π⋆
2 which give a strategy on Π⊥ •→ Γ′ ` (M & N).

(⊕i) if π⋆
1 : P⊥

i
•→ Γ, π⋆ is π⋆

1 seen as a strategy on (P1 ⊕ P2)
⊥ •→ Γ.

(!) if π⋆
1 : N `N , a view of π⋆ : (!N)⊥ •→ N is ε, or m◦ with m initial in N , or m◦ns where (m,n)s

is a view of π⋆
1.

(?d) if π⋆
1 : P⊥ •→ Γ, we have π⋆ = {ε} ∪ {s[(a,◦)/a] | s ∈ π⋆

1} : Γ ` ?P where s[(a,◦)/a] is obtained
from s by replacing any initial move a by (a, ◦).

(?w) if Γ = Γ′,Π and π⋆
1 : Π⊥ •→ Γ′, we can define a strategy σ on Π⊥ •→ Γ′ `⊥ as in the case of a

⊥-rule, we have π⋆ = σ; (idΓ′ × wN) : Π⊥ •→ Γ′ ` N .

(?c) if Γ = Γ′,Π and π⋆
1 : Π⊥ •→ Γ′ ` N ` N , we have π⋆ = π⋆

1; (idΓ′ × cN) : Π⊥ •→ Γ′ ` N .

(⊤) if Γ = Γ′,Π, we have ⊤⋆ = {ε} : Π⊥ •→ Γ′ `⊤.

(⊥) if Γ = Γ′,Π and π⋆
1 : Π⊥ •→ Γ′, we have π⋆ = {ε} ∪ {s[(a,◦)/a] | s ∈ π⋆

1} : Π⊥ •→ Γ′ `⊥.

(1) The views of 1⋆ are ε and ◦⊥◦1 which give a strategy on 1⊥ •→ ⊥.

Proposition 3 (Soundness)
If π and π′ are two proofs of ⊢ Γ in LLP, π =βη π′ entails π⋆ = π′⋆.

Proof: The proof of this result is given in [19]. 2

Corollary 3.1 (Model of isomorphisms)
If A ≃i

LLP
B then A⋆ ≃g B⋆.

5 Polarized type isomorphisms

Using the previous two sections, we can move from the study of isomorphisms in LLP to the study
of isomorphic forests: A ≃LLP B ⇒ A ≃i

LLP
B ⇒ A⋆ ≃g B⋆ ⇒ A⋆ ≃f B⋆.

5.1 Polarized isomorphisms without variables

The game interpretation of variables is not precise enough for us to directly obtain a characterization
of types isomorphisms with variables. This is why we first study the variable free case.

Definition 25 (Additive form)
A positive formula P is an additive form if it can be written:

P ≡
n⊕

i=1

!P⊥
i

up to associativity of ⊕, with the Pis in additive form. The case n = 0 corresponds to the formula
0.

A negative formula N is an additive form if N⊥ is.

16

Remark: A polarized formula is an additive form if and only if it does not contain any of the
connectives ⊗, `, 1 and ⊥ and it does not contain any sub-formula of the shape ⊕ 0 or &⊤ (or
0 ⊕ or ⊤ &).

Lemma 7 (Additive translation)
Let A be a polarized formula without variable, there exists an additive form Aa such that A ≃E Aa.

Proof: We consider the following rewriting system (up to commutativity of the binary connec-
tives) which is derived from the theory E :

N `⊥ N P ⊗ 1 P
N & ⊤ N P ⊕ 0 P
N `⊤ ⊤ P ⊗ 0 0

N ` (M & L) (N ` M) & (N ` L) P ⊗ (Q ⊕ R) (P ⊗ Q) ⊕ (P ⊗ R)
?P ` ?Q ?(P ⊕ Q) !N ⊗ !M !(N & M)

⊥ ?0 1 !⊤

To show the termination of this system, we define a function ϕ which associates with each
polarized formula A without variable an integer ϕ(A) ≥ 2 by:

ϕ(A ` B) = ϕ(A ⊗ B) = ϕ(A)ϕ(B)
ϕ(A & B) = ϕ(A ⊕ B) = ϕ(A) + ϕ(B) + 1

ϕ(!A) = ϕ(?A) = ϕ(A) + 1
ϕ(⊥) = ϕ(1) = 4
ϕ(⊤) = ϕ(0) = 2

For any rewriting rule A B, we have ϕ(A) > ϕ(B).

According to the remark after definition 25, we have to show that a normal form does not
contain any `, ⊗, ⊥ and 1. By ⊥ ?0 and 1 !⊤, the case of ⊥ and 1 is immediate.
We consider the case of ⊗ (` is the same). If A ⊗ B appears in the formula with A and B
which are additive forms, the main connective of A and B must be ⊕, 0 or !. If one of these
two main connectives is ⊕ or 0, we can apply a rule P ⊗ (Q ⊕ R) (P ⊗ Q) ⊕ (P ⊗ R) or
P ⊗ 0 0 and if both of them are !, we can apply !N ⊗ !M !(N & M). 2

Remark: If P is an additive form, the number of trees of P ⋆ is exactly the natural number n of
definition 25 and each !P⊥

i corresponds to one of these trees.

Lemma 8 (Additive arenas)
Let A and B be two polarized formulas without variable which are additive forms, and such that
A⋆ ≃f B⋆, we have A ≃E B.

Proof: By induction on the size of A⋆, with A and B positive:

• If A⋆ is empty, B⋆ is also empty and A = B = 0.

• If A⋆ is a tree, B⋆ is also a tree and A = !A′ and B = !B′. The forest A′⋆ (resp. B′⋆)
is obtained by removing the root of A⋆ (resp. B⋆) so that A′⋆ ≃f B′⋆ and by induction
hypothesis, A′ ≃E B′ and finally A ≃E B.

17

• If A⋆ contains n ≥ 2 trees, B⋆ also contains n trees and A is obtained from n formulas
A1, ..., An by adding the correct ⊕ connectives, this entails by associativity: A ≃E

((A1 ⊕ A2) · · · ⊕ An−1) ⊕ An where each A⋆
i is one of the trees of A⋆. In the same way,

we get B ≃E ((B1 ⊕ B2) · · · ⊕ Bn−1) ⊕ Bn and each B⋆
i is one of the trees of B⋆. From

A⋆ ≃f B⋆, we can find a permutation θ of the trees of A⋆ such that for each 1 ≤ i ≤ n,
A⋆

θ(i) ≃f B⋆
i . By induction hypothesis, Aθ(i) ≃E Bi so that using commutativity of ⊕ in

E we have A ≃E B. 2

Proposition 4 (Variable free polarized isomorphisms)
Let A and B be two polarized formulas without variable,

A ≃LLP B ⇐⇒ A⋆ ≃g B⋆ ⇐⇒ A⋆ ≃f B⋆ ⇐⇒ A ≃E B

Proof: We prove the following implications:

• A ≃E B ⇒ A ≃LLP B, by lemma 2.

• A ≃LLP B ⇒ A ≃i
LLP

B ⇒ A⋆ ≃g B⋆, by soundness of the game model (corollary 3.1).

• A⋆ ≃g B⋆ ⇒ A⋆ ≃f B⋆, by theorem 1.

• A⋆ ≃f B⋆ ⇒ A ≃E B, we have A ≃E Aa and B ≃E Ba by lemma 7, and this entails
with the previous implications: Aa⋆ ≃f A⋆ ≃f B⋆ ≃f Ba⋆. By lemma 8 we can deduce
Aa ≃E Ba and finally A ≃E B. 2

5.2 Recovering variables

The last result allows us to forget everything about games but their underlying forests. We show
that the correspondence between (isomorphic) polarized formulas and forests can be extended with
variables.

Definition 26 (Multiplicative forms)
A positive formula P is a multiplicative form if it can be written:

P ≡
n⊗

i=1

!P⊥
i ⊗

m⊗

j=1

Xj

up to associativity of ⊗, with the Pis in multiplicative form. The case n = 0 and m = 0 corresponds
to the formula 1. A negative formula N is a multiplicative form if N⊥ is.

A positive formula P is a quasi-multiplicative form if it can be written:

P ≡

p
⊕

k=1

Pk

up to associativity of ⊕, with the Pks in multiplicative form. The case p = 0 corresponds to the
formula 0. A negative formula N is a quasi-multiplicative form if N⊥ is.

Remark: A polarized formula is a multiplicative form if and only if it does not contain any of the
connectives ⊕, &, 0 and ⊤ and it does not contain any sub-formula of the shape ⊗ 1 or `⊥ (or
1 ⊗ or ⊥`).

18

Lemma 9 (Quasi-multiplicative translation)
Let A be a polarized formula (possibly with variables), there exists a quasi-multiplicative form Am

such that A ≃E Am.

Proof: We use the same proof as for lemma 7 but we reverse the following rewriting rules:

?(P ⊕ Q) ?P ` ?Q !(N & M) !N ⊗ !M
?0 ⊥ !⊤ 1

and we use:
ϕ(A ` B) = ϕ(A ⊗ B) = ϕ(A)ϕ(B)
ϕ(A & B) = ϕ(A ⊕ B) = ϕ(A) + ϕ(B) + 1

ϕ(!A) = ϕ(?A) = ϕ(A)!
ϕ(⊥) = ϕ(1) = 2
ϕ(⊤) = ϕ(0) = 3

ϕ(X⊥) = ϕ(X) = 2

According to the remark after definition 26, we have to show that a normal form does not
contain any ⊤, 0, &, ⊕ except in head position. If there is such a connective in a normal form
which is not in head position, we consider one such connective with a different connective
just above it. We first consider the case of 0 (⊤ is the same), if the connective above it is a
⊗ we can apply A⊗ 0 0, if it is a ⊕ we can apply A ⊕ 0 A and if it is a ? we can apply
?0 ⊥. For a ⊕ connective (& is the same), if the connective above it is a ⊗ we can apply
A ⊗ (B ⊕ C) (A ⊗ B) ⊕ (A ⊗ C) and if it is a ? we can apply ?(A ⊕ B) ?A ` ?B. 2

Definition 27 (Atomized forests)
An atomized forest is a forest with nodes labelled by finite (possibly empty) multi-sets of positive
variables.

We can generalize the interpretation of LLP formulas by forests to an interpretation of LLP

formulas by atomized forests, still denoted by (.)⋆:

• The atomized forest X⋆ (resp. (X⊥)⋆) is the one point positive (resp. negative) forest labelled
by [X].

• The atomized forest 1⋆ (resp. ⊥⋆) as an empty associated multi-set.

• The atomized forest (P ⊕Q)⋆ (resp. (N &M)⋆) has the same multi-sets as the ones associated
with P and Q (resp. N and M).

• The atomized forest (P ⊗Q)⋆ (resp. (N `M)⋆) has the same multi-sets as the ones associated
with P and Q (resp. N and M) for the non-root nodes, and the union of the labelling multi-
sets for the identified roots.

• The atomized forest (!N)⋆ (resp. (?P)⋆) is obtained by adding the new root with an empty
associated multi-set.

Example 2
The interpretation of ?(X⊥ ⊗ Y ⊥ ⊗ !1) & ?(Z⊥ ⊗ (!X ⊕ 1)) is the negative atomized forest:

19

[]

[X,Y]

[]

[]

[Z]

[X]

[Z]

Definition 28 (Atomized forest morphism)
Let A and B be two atomized forests, an atomized forest morphism from A to B is a forest
morphism f from A to B such that, if n is a node of A, the multi-set of variables of n is included
in the multi-set of f(n).

Definition 29 (Atomized forest substitution)
A forest substitution θ is a partial function from positive variables to atomized forests.

If θ is a forest substitution and A is a forest, the forest Aθ is obtained by replacing each node
with associated multi-set [X1, . . . ,Xn, Y1, . . . , Yp] (where the Xjs are in the domain of θ and the
Yks are not) by the forest θ(X1) × · · · × θ(Xn) × Y1 × · · · × Yp.

More formally, by induction on the size of A:

• If A is empty, Aθ is empty.

• Otherwise, for each root ri of A with the forest Fi above it and with labelling multi-set
[Xi

1, . . . ,X
i
ni

, Y i
1 , . . . , Y i

pi
] (where the Xi

js are in the domain of θ and the Y i
k s are not), we

build the forest F ′
i = ˜(Fiθ)× θ(Xi

1)× · · · × θ(Xi
ni

)× Y i
1 × · · · × Y i

pi
(which is empty if one of

the θ(Xi
j)s is empty). The forest Aθ is the union (or sum) of the F ′

i s.

Example 3

The application of the substitution Y 7→ ∅ and Z 7→ []

[W]
to the forest of example 2 leads to:

[] []

[]

[X] [W]

[]

[W]

Lemma 10
If A is a polarized formula and θ is a substitution, we can associate with θ a forest substitution θ⋆

by θ⋆(X) = (θ(X))⋆ for any X. We have (Aθ)⋆ = A⋆θ⋆.

Remark: If P is a multiplicative form, P ⋆ is a tree with a root labelled with [X1, . . . ,Xm] and
it has n sons where the Xjs and n are given as in definition 26. Moreover each P ⋆

i is one of the
immediate sub-trees of P ⋆

If P is a quasi-multiplicative form, P ⋆ is a forest of p trees where p is given as in definition 26
and each Pk corresponds to one of these trees.

Lemma 11 (Quasi-multiplicative arenas)
Let A and B be two quasi-multiplicative forms such that A⋆ ≃f B⋆, we have A ≃E B.

Proof: By induction on the size of A⋆ (that is the number of nodes of A⋆ plus the sum of the
sizes of its multi-sets), with A and B positive.

• If A⋆ and B⋆ are empty, A = B = 0.

20

• If A⋆ and B⋆ are two trees with roots labelled with a multi-set containing X, according
to the previous remark, A (resp. B) can be written A = A′⊗X (resp. B = B′⊗X) where
A′⋆ (resp. B′⋆) is obtained by removing an occurrence of X in the multi-set associated
with the root of A⋆ (resp. B⋆). By induction hypothesis applied to A′ and B′, we have
A′ ≃E B′ and thus A ≃E B.

• If A⋆ and B⋆ are two trees with an empty associated multi-set, let n be the number
of sons of their root (which is the same for A⋆ and B⋆). Moreover, according to the
previous remark, we have A =

⊗n
i=1 !Ai and B =

⊗n
i=1 !Bi where each Ai (resp. Bi)

corresponds to an immediate sub-tree of A⋆ (resp. B⋆). From A⋆ ≃f B⋆ we can deduce
a permutation θ of the Ai’s such that A⋆

θ(i) ≃f B⋆
i . By induction hypothesis, Aθ(i) ≃E Bi

and thus, up to commutativity, A ≃E B.

• If A⋆ and B⋆ are two forests containing p ≥ 2 trees, according to the previous remark,
we have A =

⊕p
k=1 Ak and B =

⊕p
k=1 Bk where each Ak (resp. Bk) corresponds to a

tree of A⋆ (resp. B⋆). As in the previous case, up to a permutation θ, we can apply the
induction hypothesis to the Aks and Bks and we conclude A ≃E B. 2

Remark: It would also be possible to use an adaptation of the additive translation in the previous
lemma but the quasi-multiplicative one makes things simpler.

The main result of the paper follows, it gives two characterizations of polarized isomorphisms:
a “geometrical” one (two types are isomorphic if the associated forests are isomorphic) and an
equational one.

Theorem 2 (Polarized isomorphisms)
Let A and B be two polarized formulas,

A ≃LLP B ⇐⇒ A⋆ ≃f B⋆ ⇐⇒ A ≃E B

Proof: We prove the following implications:

• A ≃E B ⇒ A ≃LLP B, by lemma 2.

• A ≃LLP B ⇒ A⋆ ≃f B⋆. First note that, for any substitution θ, we have Aθ ≃LLP Bθ.
In particular, assuming that the set of variables is indexed by natural numbers: X1,
X2, ... we can define the substitution θh given by Xi 7→ !?!· · · ?1 or !?!· · · !⊥ with exactly
i(h + 1) − 1 exponential connectives, where h is the height of A⋆ (which is also the
height of B⋆). We have Aθh ≃LLP Bθh and Aθh and Bθh are closed formulas, so that by
proposition 4 we have (Aθh)⋆ ≃f (Bθh)⋆ and by lemma 10 A⋆θ⋆

h ≃f B⋆θ⋆
h. We still have

to deduce A⋆ ≃f B⋆.

The forest A⋆θ⋆
h is A⋆[ci/Xi

] where ci is the branch of length i(h + 1). We prove the
result by induction on the number of elements of all the multi-sets associated with the
nodes of A⋆. If all these multi-sets are empty, we have A⋆θ⋆

h = A⋆ and we can conclude.
If there are k + 1 occurrences of variables, let n be a node of A⋆θ⋆

h of maximal height,
its height is of the shape k + i0(h + 1) with 0 ≤ k ≤ h. Let m be the node which is
i0(h + 1) levels under n, this node has an occurrence X of Xi0 associated with it in
A⋆. It is also the case for f(m) in B⋆, otherwise f(m) cannot have a branch of length
i0(h + 1) above it in B⋆θ⋆

h. By induction hypothesis applied to A⋆[/X] and B⋆[/X],
we have A⋆[/X] ≃f B⋆[/X] and we can conclude A⋆ ≃f B⋆ (where is the one node
forest with an empty associated multi-set, that is 1⋆).

21

• A⋆ ≃f B⋆ ⇒ A ≃E B, we have A ≃E Am and B ≃E Bm by lemma 9, and this entails
with the previous implications: Am⋆ ≃f A⋆ ≃f B⋆ ≃f Bm⋆. By lemma 11 we can
deduce Am ≃E Bm and finally A ≃E B. 2

Corollary 2.1
Let A and B be two polarized formulas, A ≃LLP B ⇐⇒ A ≃i

LLP
B ⇐⇒ A ≃E B.

Proof: We have A ≃LLP B ⇒ A ≃i
LLP

B ⇒ A⋆ ≃f B⋆ ⇒ A ≃E B ⇒ A ≃LLP B. 2

6 Deterministic classical isomorphisms

As shown by many works [10, 11, 18, 20] deterministic classical systems can be classified into two
categories: call-by-name and call-by-value systems. In each category the different systems are
essentially equivalent. To represent these two evaluation paradigms, we will use call-by-name and
call-by-value λµ-calculi.

We consider Selinger’s extension of the λµ-calculus with disjunction [26]. The λµ-terms are
built from two disjoint sets of variables, the λ-variables x, y, ... and the µ-variables α, β, ...:

t ::= x | λx.t | (t)t | <t, t> | π1t | π2t | ⋆
| µα.t | [α]t | µ(α, β).t | [α, β]t

The associated simple types are:

A ::= X | A → A | A ∧ A | ⊤ | A ∨ A | ⊥

and a typing judgment has the shape Γ ⊢ t : A | ∆ where Γ contains typing declarations for the
λ-variables and ∆ contains typing declarations for the µ-variables. The typing rules are:

x : A ⊢ x : A | Γ ⊢ ⋆ : ⊤ | ∆

Γ ⊢ t : B | ∆

Γ \ {x : A} ⊢ λx.t : A → B | ∆

Γ ⊢ t : A → B | ∆ Γ′ ⊢ u : A | ∆′

Γ ∪ Γ′ ⊢ (t)u : B | ∆ ∪ ∆′

Γ ⊢ t : A | ∆ Γ ⊢ u : B | ∆

Γ ⊢ <t, u> : A ∧ B | ∆

Γ ⊢ t : A ∧ B | ∆

Γ ⊢ π1t : A | ∆

Γ ⊢ t : A ∧ B | ∆

Γ ⊢ π2t : B | ∆

Γ ⊢ t : ⊥ | ∆

Γ ⊢ µα.t : A | ∆ \ {α : A}

Γ ⊢ t : A | ∆

Γ ⊢ [α]t : ⊥ | ∆ ∪ {α : A}

Γ ⊢ t : ⊥ | ∆

Γ ⊢ µ(α, β).t : A ∨ B | ∆ \ {α : A, β : B}

Γ ⊢ t : A ∨ B | ∆

Γ ⊢ [α, β]t : ⊥ | ∆ ∪ {α : A, β : B}

If we consider the call-by-name =cbn
βηµρθ and the call-by-value =cbv

βηµρθ equational theories (defined
in the next sections), we obtain the following notions of isomorphisms:

Definition 30 (Isomorphims of types)
Two types A and B are isomorphic in the call-by-name (resp. call-by-value) λµ-calculus, denoted
by A ≃cbn

λµ B (resp. A ≃cbv
λµ B), if there exist two λµ-terms t such that x : B ⊢ t : A | and u such

that y : A ⊢ u : B | with (λx.t)u =cbn
βηµρθ y (resp. (λx.t)u =cbv

βηµρθ y) and (λy.u)t =cbn
βηµρθ x (resp.

(λy.u)t =cbv
βηµρθ x).

22

(λx.t)u =β t[u/x] : A
λx.(t)x =η t : A → B x /∈ t

π1<t, u> =β t : A
π2<t, u> =β u : A

<π1t, π2t> =η t : A ∧ B
⋆ =η t : ⊤

(µα.t)u =µ µα.t[[α](v)u/[α]v] : A

π1µα.t =µ µα.t[[α]π1v/[α]v] : A

π2µα.t =µ µα.t[[α]π2v/[α]v] : A

[β]µα.t =ρ t[β/α] : ⊥
µα[α]t =θ t : A α /∈ t

[α, β]µγ.t =ρ t[[α,β]v/[γ]v] : ⊥

[α′, β′]µ(α, β).t =ρ t[α
′

/α, β′

/β] : ⊥
µ(α, β)[α, β]t =θ t : A ∨ B α, β /∈ t

[α]t =ρ t : ⊥

where t[C{v}/[α]v] is obtained by substituting any subterm of t of the shape [α]v by C{v} and any
subterm of t of the shape [α, β]v by C{µα[α, β]v}.

Figure 2: Call-by-name typed equational theory of the λµ-calculus

6.1 Call-by-name isomorphisms

The call-by-name typed equational theory =cbn
βηµρθ of the λµ-calculus [26] is given in figure 2.

In order to apply our result about polarized isomorphisms of types to the λµ-calculus, we use
a translation into LLP.

The translation of the call-by-name λµ-calculus into LLP is obtained by translating types as
negative formulas:

X− = X⊥

(A → B)− = ?A−⊥
` B−

(A ∧ B)− = A− & B−

⊤− = ⊤

(A ∨ B)− = A−
` B−

⊥− = ⊥

the judgment Γ ⊢ t : A | ∆ is translated as ⊢ ?(Γ−)⊥, A−,∆−. The translation of terms is then
easy to derive and is given in [18].

Proposition 5 (Simulation)
If t and u are two λµ-terms such that t =cbn

βηµρθ u then t− =βη u−.

Definition 31 (En-isomorphism)
En is the equational theory generated by the equations of figure 3, and En(→,∧,⊤) is the one given
by figure 4.

23

A ∧ B = B ∧ A

A ∧ (B ∧ C) = (A ∧ B) ∧ C

A ∧ ⊤ = A

A ∨ B = B ∨ A

A ∨ (B ∨ C) = (A ∨ B) ∨ C

A ∨ ⊥ = A

A ∨ (B ∧ C) = (A ∨ B) ∧ (A ∨ C)

A ∨ ⊤ = ⊤

(A ∧ B) → C = A → (B → C)

⊤ → A = A

A → (B ∨ C) = (A → B) ∨ C

Figure 3: Equational theory En

A ∧ B = B ∧ A

A ∧ (B ∧ C) = (A ∧ B) ∧ C

A ∧ ⊤ = A

(A ∧ B) → C = A → (B → C)

⊤ → A = A

A → (B ∧ C) = (A → B) ∧ (A → C)

A → ⊤ = ⊤

Figure 4: Equational theory En(→,∧,⊤)

24

Two types A and B are En-isomorphic, denoted by A ≃En
B, if they are equal in the theory En.

Two types A and B are En(→,∧,⊤)-isomorphic, denoted by A ≃En(→,∧,⊤) B, if they are equal in
the theory En(→,∧,⊤).

The theory En(→,∧,⊤) corresponds to the correct restriction of En to the connectives (→, ∧,
⊤) and it will be used in corollaries 6.1 and 6.2.

Lemma 12
The theory En(→,∧,⊤) is included in En.

Proof: We have two equations to prove:

A → (B ∧ C) = A → (⊥ ∨ (B ∧ C))

= (A → ⊥) ∨ (B ∧ C)

= ((A → ⊥) ∨ B) ∧ ((A → ⊥) ∨ C)

= (A → (⊥ ∨ B)) ∧ ((A → ⊥) ∨ C)

= (A → B) ∧ ((A → ⊥) ∨ C)

= (A → B) ∧ (A → (⊥ ∨ C))

= (A → B) ∧ (A → C)

and

A → ⊤ = A → (⊥ ∨⊤)

= (A → ⊥) ∨ ⊤

= ⊤

2

Proposition 6
If A and B are two types, A ≃cbn

λµ B ⇐⇒ A− ≃LLP B− ⇐⇒ A ≃En
B.

Proof: The first implication A ≃cbn
λµ B ⇒ A− ≃LLP B− is a consequence of proposition 5: if

x : B ⊢ t : A | and y : A ⊢ u : B | with compositions equal to identity, we obtain two proofs

t− of ⊢ ?A−⊥
, B− and u− of ⊢ ?B−⊥

, A− which are isomorphisms in LLP (see definition 2
and corollary 2.1).

The second implication A− ≃LLP B− ⇒ A ≃En
B is proved with theorem 2 which implies

A−⋆
≃f B−⋆

. In the spirit of lemma 9, we can show that any type is equal in En to a type
with the connectives ∧ and ⊤ appearing only in head position and with only arrow types of
the shape A → ⊥. We then show, as for lemma 11, that two such types corresponding to
isomorphic forests are equal in En.

The third implication A ≃En
B ⇒ A ≃cbn

λµ B is just a syntactical verification. 2

Corollary 6.1
If A and B are two types using only the connectives →, ∧ and ⊤, A ≃cbn

λµ B ⇐⇒ A ≃En(→,∧,⊤) B.

25

Proof: By proposition 6, we have A ≃En
B. Up to the equations of En(→,∧,⊤), any formula

with only →, ∧ and ⊤ is equal to a formula which is either ⊤ or a conjunction of formulas
with only → (this corresponds to lemma 9). We can then verify that two such formulas A
and B equal in En (thus such that A−⋆

≃f B−⋆
) are equal in En(→,∧,⊤) (following the idea

of lemma 11).

The second direction is immediate with proposition 6 and lemma 12. 2

If isomorphisms in the λ-calculus are considered up to usual βη-equivalence, we have:

Corollary 6.2
If A and B are two types using only the connectives →, ∧ and ⊤ then A ≃λ B ⇐⇒ A ≃En(→,∧,⊤) B.

Proof: Since the λ-calculus is a subsystem of the λµ-calculus, any type isomorphism of the λ-
calculus is an isomorphism of the λµ-calculus. We conclude with corollary 6.1. In the other
direction we just verify that the theory En(→,∧,⊤) is validated by the λ-calculus. 2

This gives a new proof of the equational theory of the isomorphisms of types for the λ-
calculus [27, 14].

6.2 Call-by-value isomorphisms

Values are particular λµ-terms defined by the following grammar:

V ::= x | λx.t | <V, V > | π1V | π2V | ⋆
| µ(α, β)[α]V | µ(α, β)[β]V

with α, β /∈ V .
The call-by-value typed equational theory =cbv

βηµρθ of the λµ-calculus [26] is given in figure 5.
The translation of the call-by-value λµ-calculus into LLP is obtained by translating types as

positive formulas:

X+ = X

(A → B)+ = !(A+ ⊸ ?B+) = !(A+⊥
` ?B+)

(A ∧ B)+ = A+ ⊗ B+

⊤+ = 1

(A ∨ B)+ = A+ ⊕ B+

⊥+ = 0

the judgment Γ ⊢ t : A | ∆ is translated as ⊢ (Γ+)⊥, ?A+, ?∆+. The translation of terms is then
easy to derive and is given in [18].

Proposition 7 (Simulation)
If t and u are two λµ-terms such that t =cbv

βηµρθ u then t+ =βη u+.

Definition 32 (Ev-isomorphism)
Ev is the equational theory generated by the equations of figure 6, and Ev(→,∧,⊤) is the one given
by figure 7.

Two types A and B are Ev-isomorphic, denoted by A ≃Ev
B, if they are equal in the theory Ev.

Two types A and B are Ev(→,∧,⊤)-isomorphic, denoted by A ≃Ev(→,∧,⊤) B, if they are equal in
the theory Ev(→,∧,⊤).

26

(λx.t)V =β t[V /x] : A
λx.(V)x =η V : A → B x /∈ V

π1<V,W> =β V : A
π2<V,W> =β W : A

<π1V, π2V > =η V : A ∧ B
⋆ =η V : ⊤

(λx.x)t =β t : A
(λy.u)(λx.t)v =β (λx.(λy.u)t)v : A x /∈ u

(λx.(λy.(x)y)t)u =β (u)t : A x /∈ t
(λx.(λy.<x, y>)t)u =β <u, t> : A ∧ B x /∈ t

(λx.π1x)t =β π1t : A
(λx.π2x)t =β π2t : A

(λx.t)µα.u =µ µα.u[(λx.[α]t)v/[α]v] : A α /∈ t

[β]µα.t =ρ t[β/α] : ⊥
µα[α]t =θ t : A α /∈ t

[α′, β′]µ(α, β).t =ρ t[α
′

/α, β′

/β] : ⊥
µ(α, β)[α, β]t =θ t : A ∨ B α, β /∈ t

[α]t =ρ t : ⊥
(λx.[α]x)t =β [α]t : ⊥

(λx.[α, β]x)t =β [α, β]t : ⊥

where V and W are values.

Figure 5: Call-by-value typed equational theory of the λµ-calculus

A ∧ B = B ∧ A

A ∧ (B ∧ C) = (A ∧ B) ∧ C

A ∧ ⊤ = A

A ∨ B = B ∨ A

A ∨ (B ∨ C) = (A ∨ B) ∨ C

A ∨ ⊥ = A

A ∧ (B ∨ C) = (A ∧ B) ∨ (A ∧ C)

A ∧ ⊥ = ⊥

(A ∨ B) → C = (A → C) ∧ (B → C)

⊥ → A = ⊤

Figure 6: Equational theory Ev

27

A ∧ B = B ∧ A

A ∧ (B ∧ C) = (A ∧ B) ∧ C

A ∧ ⊤ = A

Figure 7: Equational theory Ev(→,∧,⊤)

The theory Ev(→,∧,⊤) corresponds to the correct restriction of Ev to the connectives (→, ∧,
⊤) and it will be used in corollaries 8.1 and 8.2.

Remark: As given by figure 7, A → (B → C) 6≃ B → (A → C) in call-by-value because
λx.λy.(f)xy 6= f .

Proposition 8
If A and B are two types, A ≃cbv

λµ B ⇐⇒ A+ ≃LLP B+ ⇐⇒ A ≃Ev
B.

Proof: The first implication A ≃cbv
λµ B ⇒ A+ ≃LLP B+ is a consequence of proposition 7: if

x : B ⊢ t : A | and y : A ⊢ u : B | with compositions equal to identity, we obtain two proofs

t+ of ⊢ A+⊥
, ?B+ and u+ of ⊢ B+⊥

, ?A+ which are isomorphisms in LLP (see definition 2
and corollary 2.1).

The second implication A+ ≃LLP B+ ⇒ A ≃Ev
B is proved with theorem 2 which implies

A+⋆
≃f B+⋆

. In the spirit of lemmas 9 and 11, we can show that any type is equal in Ev

to a type with the connectives ∨ and ⊥ appearing only in head position, and two such types
corresponding to isomorphic forests are equal in Ev.

The third implication A ≃Ev
B ⇒ A ≃cbv

λµ B is just a syntactical verification. 2

Corollary 8.1
If A and B are two types using only the connectives →, ∧ and ⊤, A ≃cbv

λµ B ⇐⇒ A ≃Ev(→,∧,⊤) B.

Proof: By theorem 2, we have A+⋆
≃f B+⋆

and we can show that two types based only on →,
∧ and ⊤ with the same associated forest are equal in Ev(→,∧,⊤) as for lemma 11.

The other direction is immediate with proposition 8. 2

The equational theory for the call-by-value λ-calculus [24] (or λv-calculus) is given in figure 8.
We obtain a characterization of the isomorphisms of types for the λv-calculus. The associated

theory is very weak but has not been identified before.

Corollary 8.2
If A and B are two types using only the connectives →, ∧ and ⊤, A ≃λv

B ⇐⇒ A ≃Ev(→,∧,⊤) B.

Proof: The call-by-value λ-calculus is a subsystem of the call-by-value λµ-calculus and that gives
the first implication by corollary 8.1. In the other direction we just verify that the theory
Ev(→,∧,⊤) is validated by the λv-calculus. 2

28

(λx.t)V =β t[V /x] : A
λx.(V)x =η V : A → B x /∈ V

π1<V,W> =β V : A
π2<V,W> =β W : A

<π1V, π2V > =η V : A ∧ B
⋆ =η V : ⊤

Figure 8: Call-by-value typed equational theory of the λ-calculus

7 Classical and intuitionistic disjunctions

In the previous sections, we have been able to give a finite axiomatization of the theory of isomor-
phisms of types for the call-by-name λµ-calculus with disjunction (∨) and contradiction (⊥) types.
However, Balat, Di Cosmo and Fiore [15] have shown that, in the λ-calculus case, this theory is
not finitely axiomatizable. We are going to discuss this seeming contradiction.

The equational theory of the call-by-name λµ-calculus for the language corresponding to types
→, ∧ and ⊤ is a conservative extension of the equational theory of the λ-calculus for the same
types. When we go to the disjunction case, this is not true anymore. The equational theory of the
λ-calculus with disjunction corresponding to the axioms of bicartesian closed categories contains:

case t with x 7→ u[inl x/z]

y 7→ u[inr y/z]
= u[t/z] (1)

which is used to prove the isomorphism (A ∨ B) → C ≃ (A → C) ∧ (B → C) (wrong in the
call-by-name λµ-calculus). If we consider the two main particular cases of (1): u = z and t = z,
we obtain for u = z:

case t with x 7→ inl x

y 7→ inr y
= t (2)

This equation is validated in the λµ-calculus and corresponds to:

µγ[γ](λy.µ(α, β)[β]y)µβ[γ](λx.µ(α, β)[α]x)µα[α, β]t = t

with α, β /∈ t. But with t = z in (1):

case z with x 7→ u[inl x/z]

y 7→ u[inr y/z]
= u (3)

and this equation is not realized in the λµ-calculus.
From a categorical point of view, the notion of control category [26] which gives the models

of the call-by-name λµ-calculus is based on a disjunction which is a binoidal functor and not a
bifunctor. Selinger proved that a control category with a bifunctorial disjunction is a Boolean
algebra and we are back to section 1. This shows that, in some sense, the theories of the λ-calculus
with disjunction and of the λµ-calculus with disjunction are incompatible.

This explains how our result is not comparable with Balat-Di Cosmo-Fiore’s one, in particu-
lar the disjunction distributes over the conjunction here and this is the converse in their setting.
The only result we can deduce about the λ-calculus from ours are the equations for the isomor-
phisms of types of the λ-calculus with a constrained disjunction which verifies equation (2) but not
equation (1).

29

8 Tarski’s problem

The question of isomorphisms of types consists in finding some equational characterization of the
isomorphisms of a given logical system, whereas Tarski’s problem consists in proving that some
equational theory characterizes the equality in some number structure (natural numbers with se-
lected operations: +, ×, ..., real numbers, ...).

Composing these two questions, we can try to find number structures and logical systems such
that equality in the first one corresponds to isomorphisms of types in the second one. The key
result of this kind is given by theorem 3 and an interesting use of such a correspondence is given
in [15].

We are going to describe the relations between polarized isomorphisms and the associated
number models. As a consequence, these results give also relations with call-by-name and call-by-
value classical isomorphisms.

Definition 33 (Tarski model of isomorphisms)
Let S be a logical system, a Tarski model of the isomorphisms of S is a model of the equational
theory corresponding to the isomorphisms of types of S which does not validate any other universally
closed equation.

Theorem 3 (Soloviev [27])
(N, (−)−, ·, 1) is a Tarski model of the isomorphisms of the simply typed λ-calculus with the con-
nectives (→, ∧, ⊤).

Corollary 3.1
(N, (−)−, ·, 1) is a Tarski model of the isomorphisms of the simply typed call-by-name λµ-calculus
with the connectives (→, ∧, ⊤).

Proof: We have shown in corollary 6.2 that the equational theory for the isomorphisms of types
of the call-by-name λµ-calculus and of the λ-calculus are the same for the language (→, ∧,
⊤). 2

We are going to use Macintyre’s result on Schanuel’s conjecture and exponential rings [21] to
give a sufficient condition to be a Tarski model of the positive isomorphisms of LLP. By duality,
this gives also models of the negative isomorphisms and, as a consequence, models of call-by-name
and call-by-value classical isomorphisms.

We recall some definitions about exponential rings [28] with the slightly more general case of
exponential semi-rings. For the basic notions of algebra, see [17].

Definition 34 (Semi-ring)
A semi-ring is a tuple (R,+, 0, ·, 1) such that (R,+, 0) is a commutative monoid and (R, ·, 1) is a
monoid (if it is commutative, the semi-ring is commutative), and moreover:

x · (y + z) = (x · y) + (x · z)

(y + z) · x = (y · x) + (z · x)

x · 0 = 0

0 · x = 0

30

A ⊗ B = B ⊗ A
(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)

A ⊗ 1 = A
A ⊕ B = B ⊕ A

(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C)
A ⊕ 0 = A

A ⊗ (B ⊕ C) = (A ⊗ B) ⊕ (A ⊗ C)
A ⊗ 0 = 0

¬(A ⊕ B) = ¬A ⊗ ¬B
¬0 = 1

where ¬P stands for !P⊥.

Figure 9: Positive equational theory for LLP

Definition 35 (Exponential semi-ring)
An exponential semi-ring (R,+, 0, ·, 1, E) is a commutative semi-ring (R,+, 0, ·, 1) with a map E
from R to R such that:

E(x + y) = E(x) · E(y)

E(0) = 1

so that E is a monoid morphism from (R,+, 0) to (R, ·, 1).

The theory of exponential semi-rings is equational and coincides with the theory of polarized
isomorphisms written in a purely positive language, as in figure 9. We just interpret ⊕ by +, 0 by
0, ⊗ by ·, 1 by 1 and ¬ by E.

Definition 36 (Exponential ring)
An exponential semi-ring R is an exponential ring if the underlying semi-ring is a ring.

Definition 37 (Schanuel’s condition)
Let R be an exponential ring which is an integral domain and has characteristic 0, R satisfies
Schanuel’s condition if for any α1, ..., αn in R linearly independent over Q, the ring Z[α1, . . . , αn, E(α1), . . . , E(αn

has transcendence degree at least n over Z.

Theorem 4 (Macintyre [21])
Let R be an exponential ring which satisfies Schanuel’s condition, if e1 = e2 is a closed equation in
the language (+, 0, ·, 1, E) true in R, it is also true in the free exponential ring on 0 generators.

Corollary 4.1
If R is an exponential ring which satisfies Schanuel’s condition, R is a Tarski model of the positive
isomorphisms of LLP.

The fact that the exponential ring (R,+, 0, ·, 1, e) satisfies Schanuel’s condition is called Schanuel’s
conjecture.

Corollary 4.2
If Schanuel’s conjecture is true, (R,+, 0, ·, 1, e) is a Tarski model of the positive isomorphisms of
LLP.

31

The terminology for the linear connectives given by Girard is the following: ⊗, `, 1 and ⊥
are the multiplicative connectives, ⊕, &, 0 and ⊤ are the additive connectives and ! and ? are the
exponential connectives. This originally came from linear algebra and from the key isomorphism
of LL: !(A & B) = !A⊗ !B. We somehow give here a concrete interpretation of these ideas by really
interpreting the linear connectives by the corresponding operations on real numbers: additives by
+, multiplicatives by · and exponentials by e.

Macintyre’s result gives a sufficient condition for having a Tarski model. Concerning a necessary
condition we can just make a few remarks. A Tarski model of the positive isomorphisms of LLP

must be an exponential semi-ring S and its characteristic must be 0. Otherwise there exists some
p such that 1 + · · · + 1

︸ ︷︷ ︸

p

= 0. This gives an equation which is not valid in LLP. We can always move

to the case of rings by introducing the free exponential ring R generated by S. If this ring does
not satisfy Schanuel’s condition, it must at least verify that E(1), E(E(1)), E(E(E(1))), ... are
transcendental, otherwise from a polynomial P such that P (En(1)) = 0 we can derive an equation
on the language (+, 0, ·, 1, E) by decomposing P = P1 − P2 with P1 and P2 in this language:
P1(E

n(1)) = P2(E
n(1)) which is not valid in LLP. In particular if (R,+, 0, ·, 1, e) is a Tarski model

of LLP, ee must be transcendental and this is an open problem in number theory.

Remark: If we look at the translation of the call-by-value implication A → B into LLP, we obtain
!(A⊸ ?B) = !(A⊥ ` ?B). A naive matching between this expression and the definition of expo-
nentiation: BA = eA lnB for the reals would lead to match ? with ln. However ? transforms ⊕ into
` while ln transforms · into +, we have a mismatch!

Assuming Schanuel’s conjecture, R is a Tarski model of the isomorphisms of LLP, this entails
that we can associate with any equation on real numbers in the language (+, 0, ·, 1, e), an algo-
rithmic interpretation by computing the proofs in LLP corresponding to this isomorphism (or the
corresponding λµ-terms).

Further work

We have shown how a game semantics approach allows us to characterize classical isomorphisms
of types (and as a consequence to give a new proof for the intuitionistic call-by-name ones and a
new result for the intuitionistic call-by-value ones), in a propositional setting. Previous syntactical
works [14] offered results on polymorphic systems as well. We wonder if it is possible to extend our
game approach to the second order setting.

An advantage of game semantics is the possibility of modeling not only the λ-calculus and other
logical systems but also programming primitives of various kinds: non-determinism [16], ground
type references [3], general references [1], ... The key result of our approach is theorem 1 and if
we look at the proof we can see that we only use determinism and visibility of strategies and from
a computational viewpoint this corresponds to the game model of Idealized Algol (IA) [3]. As a
consequence this theorem gives a characterization of the isomorphisms of types for IA by the theory
En(→,∧,⊤) (figure 4). However we use the visibility condition so that our result cannot be directly
applied to general references and we wonder if it is possible to remove this constraint in our proof
and to extend our results in that direction.

32

A more general question than isomorphisms of types is the characterization of retractions in a
given logical system. This is known to be a difficult problem for the λ-calculus [22]. We can try
to apply game semantics ideas to address this problem.

Another related question is the study of isomorphisms of types in usual Linear Logic. Balat
and Di Cosmo have given a syntactical characterization of the isomorphisms of types in MLL [6]
(the multiplicative fragment of Linear Logic). The question of the extension of this result to richer
fragments of LL remains open. Our complete characterization of polarized isomorphisms cannot
be directly of help for the LL problem which is a strongly more general one. However we could
hope to apply game semantics, as we have done here, in a non-polarized setting. For example MLL

game semantics [2] might be used to give an alternative proof of Balat and Di Cosmo’s result. The
extension to richer fragments is once again problematic since we still do not know if game models
are precise enough for these fragments. Two possible fragments to look at are the MALL (resp.
MELL) case for which Abramsky and Melliès’ model [4] (resp. Baillot-Danos-Ehrhard-Regnier’s
model [5]) might be used.

33

A Cut elimination in LLP (β-rules)

⊢ Γ, A
ax

⊢ A⊥, A
cut

⊢ Γ, A
 ⊢ Γ, A

⊢ Γ,M⊥ ⊢ ∆, N⊥

⊗
⊢ Γ,∆,M⊥ ⊗ N⊥

⊢ M,N,Ξ
`

⊢ M ` N,Ξ
cut

⊢ Γ,∆,Ξ

 ⊢ Γ,M⊥

⊢ ∆, N⊥ ⊢ M,N,Ξ
cut

⊢ M,∆,Ξ
cut

⊢ Γ,∆,Ξ

⊢ Γ, N⊥
i ⊕i

⊢ Γ, N⊥
1 ⊕ N⊥

2

⊢ N1,∆ ⊢ N2,∆
&

⊢ N1 & N2,∆
cut

⊢ Γ,∆

⊢ Γ, N⊥

i ⊢ Ni,∆
cut

⊢ Γ,∆

1
⊢ 1

⊢ Γ
⊥

⊢ Γ,⊥
cut

⊢ Γ

 ⊢ Γ

⊤
⊢ ⊤,Γ, A ⊢ A⊥,∆

cut
⊢ ⊤,Γ,∆

 ⊤
⊢ ⊤,Γ,∆

⊢ N , N
!

⊢ N , !N

⊢ N⊥,Γ
?d

⊢ ?N⊥,Γ
cut

⊢ N ,Γ

⊢ N , N ⊢ N⊥,Γ

cut
⊢ N ,Γ

⊢ M,N , N
!

⊢ !M,N , N ⊢ N⊥,Γ
cut

⊢ !M,N ,Γ

⊢ M,N , N ⊢ N⊥,Γ
cut

⊢ M,N ,Γ
!

⊢ !M,N ,Γ

⊢ Γ, N,N
?c

⊢ Γ, N ⊢ N⊥,∆
cut

⊢ Γ,∆

⊢ Γ, N,N ⊢ N⊥,∆
cut

⊢ Γ,∆, N ⊢ N⊥,∆
cut

⊢ Γ,∆,∆
?c

⊢ Γ,∆

⊢ Γ
?w

⊢ Γ, N ⊢ N⊥,∆
cut

⊢ Γ,∆

⊢ Γ

?w
⊢ Γ,∆

The commutative steps are left to the reader (see [18] for a precise description in proof-nets).

B Expansion of axioms (η-rules)

ax
⊢ 1,⊥

1
⊢ 1

⊥
⊢ 1,⊥

34

ax
⊢ 0,⊤ ⊤

⊢ 0,⊤

ax
⊢ N⊥ ⊗ M⊥, N ` M

ax
⊢ N⊥, N

ax
⊢ M⊥,M

⊗
⊢ N⊥ ⊗ M⊥, N,M

`
⊢ N⊥ ⊗ M⊥, N ` M

ax
⊢ N⊥ ⊕ M⊥, N & M

ax
⊢ N⊥, N

⊕1
⊢ N⊥ ⊕ M⊥, N

ax
⊢ M⊥,M

⊕2
⊢ N⊥ ⊕ M⊥,M

&
⊢ N⊥ ⊕ M⊥, N & M

ax
⊢ !N, ?N⊥

ax
⊢ N,N⊥

?d
⊢ N, ?N⊥

!
⊢ !N, ?N⊥

Thanks to V. Danos for his suggestions on a previous game model that led to this work, and
thanks to V. Balat and R. Di Cosmo for having introduced me to the question of isomorphisms of
types. Thanks also to the referees for their useful comments and suggestions.

35

References

[1] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game semantics for
general references. In Proceedings of the thirteenth annual symposium on Logic In Computer
Science, pages 334–344, Indianapolis, June 1998. IEEE, IEEE Computer Society Press.

[2] Samson Abramsky and Radha Jagadeesan. Games and full completeness for multiplicative
linear logic. Journal of Symbolic Logic, 59(2):543–574, June 1994.

[3] Samson Abramsky and Guy McCusker. Full abstraction for idealized algol with passive ex-
pressions. Theoretical Computer Science, 227:3–42, September 1999.

[4] Samson Abramsky and Paul-André Melliès. Concurrent games and full completeness. In
Proceedings of the fourteenth annual symposium on Logic In Computer Science, pages 431–
442, Trento, July 1999. IEEE, IEEE Computer Society Press.

[5] Patrick Baillot, Vincent Danos, Thomas Ehrhard, and Laurent Regnier. Believe it or not,
AJM’s games model is a model of classical linear logic. In Proceedings of the twelfth annual
symposium on Logic In Computer Science, pages 68–75, Warsaw, June 1997. IEEE, IEEE
Computer Society Press.

[6] Vincent Balat and Roberto Di Cosmo. A linear logical view of linear type isomorphisms. In
Jörg Flum and Mario Rodŕıguez-Artalejo, editors, Computer Science Logic, volume 1683 of
Lecture Notes in Computer Science, pages 250–265. Springer, 1999.

[7] Gilles Barthe and Olivier Pons. Type isomorphisms and proof reuse in dependent type theory.
In F. Honsell and M. Miculan, editors, Foundations of Software Science and Computation
Structures, volume 2030 of Lecture Notes in Computer Science, pages 57–71, 2001.

[8] Gérard Berry and Pierre-Louis Curien. Sequential algorithms on concrete data structures.
Theoretical Computer Science, 20:265–321, 1982.

[9] Kim Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable isomorphisms of types. Math-
ematical Structures in Computer Science, 2(2):231–247, 1992. Proceedings of Symposium on
Symbolic Computation, ETH, Zurich, March 1990.

[10] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. LKQ and LKT: Sequent calculi
for second order logic based upon dual linear decompositions of classical implication. In Jean-
Yves Girard, Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic, volume
222 of London Mathematical Society Lecture Note Series, pages 211–224. Cambridge University
Press, 1995.

[11] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new deconstructive logic: linear
logic. Journal of Symbolic Logic, 62(3):755–807, September 1997.

[12] David Delahaye, Roberto Di Cosmo, and Benjamin Werner. Recherche dans une bibliothèque
de preuves Coq en utilisant le type et modulo isomorphismes. In PRC/GDR de programmation,
Pôle Preuves et Spécifications Algébriques, November 1997.

36

[13] Mariangiola Dezani-Ciancaglini. Characterization of normal forms possessing an inverse in the
λβη-calculus. Theoretical Computer Science, 2:323–337, 1976.

[14] Roberto Di Cosmo. Isomorphisms of Types. Progress in Theoretical Computer Science.
Birkhäuser, 1995.

[15] Marcelo Fiore, Roberto Di Cosmo, and Vincent Balat. Remarks on isomorphisms in typed
lambda calculi with empty and sum types. In Proceedings of the seventeenth annual symposium
on Logic In Computer Science, pages 147–156, Copenhagen, July 2002. IEEE, IEEE Computer
Society Press.

[16] Russel Harmer. Games and Full Abstraction for Nondeterministic Languages. Ph.D. thesis,
Imperial College and University of London, 1999.

[17] Serge Lang. Algebra. Graduate Texts in Mathematics. Springer, third edition, 2002.

[18] Olivier Laurent. Étude de la polarisation en logique. Thèse de doctorat, Université Aix-
Marseille II, March 2002.

[19] Olivier Laurent. Syntax vs. semantics: a polarized approach. Theoretical Computer Science,
2005. To appear.

[20] Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In Jean-Yves Girard, editor,
Typed Lambda Calculi and Applications ’99, volume 1581 of Lecture Notes in Computer Science,
pages 228–242. Springer, April 1999.

[21] Angus Macintyre. Schanuel’s conjecture and free exponential rings. Annals of Pure and Applied
Logic, 51:241–246, 1991.

[22] Vincent Padovani. Retracts in simple types. In Samson Abramsky, editor, Typed Lambda
Calculi and Applications ’01, volume 2044 of Lecture Notes in Computer Science, pages 376–
384. Springer, May 2001.

[23] Jens Palsberg and Tian Zhao. Efficient and flexible matching of recursive types. Information
and Computation, 171:364–387, 2001.

[24] Gordon Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical Computer Science,
1:125–159, 1975.

[25] Mikael Rittri. Using types as search keys in function libraries. Journal of Functional Program-
ming, 1(1):71–89, 1991.

[26] Peter Selinger. Control categories and duality: on the categorical semantics of the lambda-mu
calculus. Mathematical Structures in Computer Science, 11(2):207–260, April 2001.

[27] Sergei Soloviev. The category of finite sets and cartesian closed categories. Journal of Soviet
Mathematics, 22(3):1387–1400, 1983.

[28] Lou van den Dries. Exponential rings, exponential polynomials and exponential functions.
Pacific Journal of Mathematics, 113(1):51–66, 1984.

37

