
About Translations of Classical Logic into Polarized Linear Logic

Olivier Laurent
Preuves Programmes Systèmes

CNRS - Paris 7
Olivier.Laurent@pps.jussieu.fr

Laurent Regnier
Institut de Mathématiques de Luminy

CNRS
regnier@iml.univ-mrs.fr

Abstract

We show that the decomposition of Intuitionistic Logic
into Linear Logic along the equationA ! B = !A (B
may be adapted into a decomposition of classical logic into
LLP, thepolarizedversion of Linear Logic. Firstly we build
a categorical model of classical logic (a Control Category)
from a categorical model of Linear Logic by a construc-
tion similar to the co-Kleisli category. Secondly we anal-
yse two standard Continuation-Passing Style (CPS) transla-
tions, the Plotkin and the Krivine’s translations, which are
shown to correspond to two embeddings ofLLP into LL.

1. Introduction

Curry-Howard for classical logic. Thanks to the sem-
inal work of Griffin [10] who showed that classical prin-
ciples could be used to type control operators such as
Scheme’scall/cc, it is now well known that classical
logic (LK), as intuitionistic logic (LJ), fits into the Curry-
Howard paradigm. Work onCPS-translations showing that
they correspond to::-translations [21] à la Gödel, have
been used to compile these control operators into lambda-
calculus. From the viewpoint of logic, work has been car-
ried out on the so-called “classical constructivization” prob-
lem, and proof systems have been designed for classical
logic enjoying properties analogous to those of intuition-
istic logic: normalization, Church-Rosser, denotational se-
mantics. . . Let us mention Girard’s systemLC which in-
troduces the important notion ofpolarities in logic [9],
Parigot’s lambda-mu-calculus [22] which is a natural ex-
tension of lambda-calculus embodying classical principles,
and Danos-Joinet-Schellinx (DJS)’s impressive classifica-
tion of classical constructivizations within the syntactical
frameworkLKtq [6, 7].

Decomposing the intuitionistic implication. An impor-
tant advance in the study of (typed) lambda-calculus, was
the discovery by Girard [8] that the intuitionistic implica-

tion could be decomposed in linear logic (LL) along the now
standard equationA! B = !A(B
yielding the so-called Girard’s translation:LJ

!A(B- LL.
This decomposition has also a categorical version by means
of the construction of a co-Kleisli of a monoidal closed cat-
egory.

Classical logic and linear logic. In this paper we will de-
fine some translations of classical logic into linear logic. We
use lambda-mu calculus (that is, classical natural deduction)
as our classical proof system. When dealing with lambda-
mu calculus as a logical system we shall spell itLK, which
shouldn’t be confused with Gentzen’s sequent calculus as
the latter is not constructive. We stick to theLK notation to
enforce the idea that our study does not depend on the cho-
sen system and could be carried out with anyconstructive
classical proof-system.

Such translations are easy to construct simply by com-
posing a CPS translation with a translation ofLJ into LL,
e.g. Girard’s translation:

LK
CPS - LJ

!A(B- LL

For example if we consider the call by name (CBN)

Plotkin’s translation [23], this yieldsLK
!?!A(?!B- LL

where the formula on the arrow is the linear formula as-
sociated to the implication ofLK. As we see the defect of
this method is that it makes intensive use of exponentials
hiding the underlying linear structure.

As a by-product of their work onLK tq, DJS have ame-

liorated this translation producingLK
!?A(?B- LL which

makes a more sensible use of exponentials. This ameliora-
tion relies on the remark that, in a CBN setting, continua-
tions are linear. The intuitive reason is that a continuation
is essentially a functional applying its function argument to
a stack of arguments; it is well known that this operation is
linear in the function argument.

We shall take advantage of the linearity of continuations
at the level of the target language; so we will use a target

language allowing the expression of linearity constraints.
More precisely, theCLC calculus is defined to be regular
lambda-calculus typed with usual types and linear types;
this kind of calculus has already been used in work analyz-
ing linearity in CPS translations, e.g. by Berdine et al. [2]
and Laird [15]. It allows us to give a clear factorization of
DJS translation:

LK
CPS- CLCHHHHHH!?A(?B j

LL

!A(B?
Linearity of continuations vs. continuation-passing.
The linearity of CBN continuations should be opposed to
the linearity ofcontinuation-passingwhich occurs in CPS
translations of the CBV lambda-calculus. This fact has been
remarked and analysed from a syntactical viewpoint by the
above mentioned work of Berdine et al., and more recently,
by Laird who uses a semantical approach; both prove a full
abstraction result for the translation. However as both au-
thors point, linearity of continuation-passing is only true in
the intuitionistic setting (withoutcall/cc), whereas lin-
earity of continuations remains true even when switching to
the classical and CBN world, as we do here.

Introducing polarities. An important remark is that the
target language of the translation depicted in the above di-
agram actually lies insideLLpol, the fragment ofLL consist-
ing of well polarized formulas (in the sense of Girard). In
fact all the classical and intuitionistic types are translated by
negative formulas. The first author has introduced a proof
systemLLP (Polarized Linear Logic) for polarized formu-
las, which relaxes the use of structural rules on negative for-
mulas [16]. This system is better suited thanLL or LLpol for
encoding classical logic because it allows to design a trans-

lationLK
!A(B- LLP which is a straightforward extension

of Girard’s translation.
The main achievement of this paper is to give a pre-

cise correspondence between CPS translations ofLK into
LJ and translations ofLLP into LL (really LLpol). We study
Plotkin’s and Krivine’s translations and show for each of
them that we get the following diagram:

LK
CPS- CLC

LLP

!A(B ? - LL

!A(B?
where the bottom horizontal arrow represents respectively
the so-calledbox and reversingtranslations. This shows
thatLLP stands in the same relation with respect toLL than
classical logic with respect to intuitionistic logic, thus giv-
ing a notion of CPS translation internal to linear logic which
can be used to compare them as we do with Krivine’s and

Plotkin’s translations. Typically the same work could be
achieved with the Hofmann-Streicher translation [11] which
is identified with Plotkin’s in the linear world.

Categorical semantics. The paper begins with the con-
struction of a categorical model of classical logic, a con-
trol category as defined by Selinger [25], by a method very
similar to the construction of the co-Kleisli of a monoidal
closed category. This construction may be seen as a seman-
tical version of the linear analysis of classical logic byLLP.

Logical systems used. We will take the Parigot’s call by
name lambda-mu-calculus [22] as source system for the
CPS-translations. This calculus is probably the most suit-
able for our purpose since it naturally features the Curry-
Howard correspondence for classical logic: from the logical
point of view it is a natural deduction system for classical
logic and from the computer science point of view it is an
extension of lambda-calculus encodingcall/cc like op-
erators.

Our target language for CPS translations will be regu-
lar lambda-calculus. We however change the typing assign-
ment system to allow the expression of linearity constraints
on continuations, getting a system calledCLC which, as
pointed above, is very similar to Berdine et al. and/or
Laird’s target language, and may also be seen as a subsys-
tem of Barber-Plotkin’sDILL [1].

The call by value case. For the sake of simplicity we
stick to CBN calculus and translations. Let us point
though that the call by value (CBV) case is symmetrical:
instead of Girard’s translation, use the CBV translation

LK
!(A(?B)- LLP which associatespositive formulas to

classical and intuitionistic types; then one may show that
Plotkin’s CBV translation is associated with the same box
translation ofLLP into LL [16].

Simulation properties. The paper will define various
translations between logical systems. Let us claim once for
all that all of them arereduction preserving, that is for each
translationt 7! jtj the following diagram commutes:t - jtjt0? - jtj0 = jt0j?
where the horizontal arrows are translations and the vertical
ones are reductions.

2. Polarized linear systems

We derive two proof systems from Linear Logic based
on the introduction ofpolaritiesin linear formulas:negative

(N) andpositive(P) formulas are defined by:N ::= X j ? j N P N j > j N &N j ?P [j ?N ℄P ::= X? j 1 j P
 P j 0 j P � P j !N [j !P ℄
Formulas of the form?N (resp.!P), that is the bracketed
cases above, will be saidweaklynegative (resp. weakly pos-
itive).

The systemLLpol is simply the restriction of linear logic
to polarized formulas (including weakly polarized ones);
thus it is a fragment of Linear Logic in the natural sense.
As a side-effect of this restriction, one easily checks that all
the rules preserve the fact that at most one positive formula
may occur in a polarized sequent.

The second system, namedLLP, is further restricted to
strongly polarized formulas only but also adds structural
rules for any negative formula (whereas Linear Logic has
structural rules only for? formulas):` �; N;N` �; N ` �` �; N ` N ; N` N ; !N
whereN is a context of negative formulas; again one easily
sees that at most one positive formula occurs in anyLLP se-
quent. The generalization ofLL structural rules, apparently
innocuous, has rather deep consequences andLLP may be
considered as a new system related to, but independent from
LL (see [16] for an extensive study ofLLP).

The study ofLLP has lead to two translations ofLLP
into LLpol that we are going to describe now. For the sake of
simplicity, as these translations are meant to be related with
CPS translations of lambda-mu calculus, we will only con-
sider lambda-mu calculus without products andLLP with-
out additives. The work presented is however easily ex-
tendible to the more general setting.

The box translation. The first translation is based on a
decoration ofLLP derivations by exponential connectives
in the spirit of decorations of classical logic into linear logic
by Danos-Joinet-Schellinx [7]; it has been used to prove the
strong normalization ofLLP in [18]. Viewed from the pos-
itive side, this translation encapsulates every positive for-
mula of a proof into a!-box, thus its name.

The goal is to makeLL-correct each application of a gen-
eralized structural rule by decorating it with the adequate
exponential. To achieve this, as any negative formula may
be the premisse of a structural rule, they are decorated with
a? in the following way:Xb = ?X(N PM)b = ?(N b PM b)(?P)b = ?P b
and dually for the positive formulas. Sequents` � are trans-
lated as̀ �b.

The decoration of proofs just requires to add dereliction
and promotion rules corresponding to the exponential dec-
oration of formulas. We show only the translation of the
tensor and contraction rules:` �b; P b ` �b; Qb` �b;�b; P b
Qb` �b;�b; !(P b
Qb)` �b;�b; (P
Q)b
and ` �b; (N PM)b; (N PM)b` �b; ?(N b PM b); ?(N b PM b)` �b; ?(N b PM b)` �b; (N PM)b
where the dashed lines indicate equality between sequents;
note that the promotion rule in the translation of the
 is LL
correct because,P andQ being positive,� and� contain
only negative formulas the translations of which begin with
a?.
The reversing translation. The second translation, that
has been used by Tortora de Falco and Quatrini [24] to refine
the DJS embedding ofLK into LL, uses a lighter decoration:X� = ?X?(N PM)� = N� PM�(?P)� = ?P �
and dually for the positive formulas. Sequents` � are trans-
lated as̀ ��. Note that, contrasting with the box transla-
tion, the reversing translation of a sequent is strongly polar-
ized.

We still have to transform any negative formula premisse
of a structural rule into a? formula to be able to apply the
rule inLLpol but this time we will use a syntactical version of
the?-algebra morphisms (see below), that is proofs�N of `!N�?; N� for any negative formulaN . One easily shows by
induction onN that such a proof exists (this fact was used
in particular by DJS who called this class of proofs the?-fix
proofs; they were meant to achieve the so-calledreversing
of proofs). We show only the translation of a contraction
rule, the other rules being treated similarly:

...` ��; N�; N�` ��; ?N�; N�` ��; ?N�; ?N�` ��; ?N� �N` !N�?; N�` ��; N�

Note that contrarily to the box translation, this one intro-
duces cut rules. For this reason in order to plainly fulfill our
claim that it is reduction preserving one should really define
the translation of a proof as the one obtained after reducing
these cuts.

3. A construction of a control category

In this section we will give a categorical counterpart of
the syntactical translation ofLLP into LLpol by extracting
a control category (thus a model ofLLP, see [16]) from a
categorical model ofLLpol (of full LL really).

3.1. Notations and terminology

We first briefly record known facts relative to the cate-
gorical semantics of linear logic and set up the notations
used throughout.

The �-autonomous structure. Let C be a model of
MALL (multiplicative, additive linear logic), that is a�-
autonomous category with finite products (and finite co-
products by duality). We follow the linear logic notations
and denote:1 the unit of the tensor,? the dualizing object
(thus dual of1), P the cotensor (by which we mean thatP
is defined as the dual of
 but this shouldn’t hide the fact
thatP really is also a tensor product) so that? is the neutral
ofP, & the cartesian product,� the sum (dual of&), 0 and> the units of� and&.

The terminology is slightly unfortunate as we will
mainly define our constructions with respect to the cotensorP which therefore would be better named “tensor”. This
choice is reflecting the global choice of the paper to treat
CBN calculus which is naturally associated to thenegative
fragment ofLLP.

If f : A ! B is aC-morphism thenf? : B? ! A? is
the dual morphism. Finally we denote"A;B : (A P B?)
B ! A the evaluation morphism inC; it is natural inA and
also satisfies a kind of naturality inB.

Transposing a morphism. The �-autonomous structure
yields a bijection betweenC(A;B P C) andC(A
C?; B)
which associates to anyf : A
C? ! B a unique~f : A!B P C called thetransposedof f such thatf = A
 C? ~f
C?- (B P C)
 C? "B;C?- BP-monoids. A P-monoid on C is a triple N =(�N;
N ; wN) where �N is an object ofC,
N : �N P �N ! �N
andwN : ? ! �N are morphisms ofC satisfying the stan-
dard neutral, associativity an commutativity equations.P-
monoids are meant to interpret negative formulas ofLLP.

A
-comonoidP is the dual of aP-monoid, that is, a
triple (�P ;
P ; wP) where
P : �P ! �P
 �P andwP : �P ! 1
are such that(�P?;
P?; wP?) is aP-monoid.

Given twoP-monoidsM andN , a P-morphismis a
monoidalC-morphismf : �M ! �N , that is,f commutes
with theP-monoid structure. We denote byP-Mon(C) the
category ofP-monoids andP-morphisms. Given twoP-
monoidsM andN , and using the associativity ofP, one
may build morphisms
MPN : (�M P �N) P (�M P �N) !�M P �N andwMPN : ? ! �M P �N giving M P N
a P-monoid structure. ClearlyP is a tensor product onP-Mon(C). Interestingly it is also a coproduct. One may
also show that& is a cartesian product onP-Mon(C).
Adjunction. Let UC : P-Mon(C) ! C be the forgetful
functor. In the sequel we will suppose thatC has the prop-
erty thatUC has a left adjoint?C 1. A typical example of
such a situation is given by the category of coherent spaces
with the multiset version of!.

We denote by? the endofunctorUC Æ?C onC (and by! its
dual). It is standard fact that it is a monad onC (see [19]).
Still in accordance with linear logic terminology we will
denotederA : A ! ?A anddigA : ??A ! ?A the natural
transformations associated to?. To keep notations light we
will also denotederA : !A ! A anddigA : !A ! !!A the
dual natural transformations associated to the comonad!.

The property thatUC has a left adjoint makesC a Lafont
category[14]. A detailed proof that Lafont’s categories are
sound models of linear logic has been produced by Bierman
(see [3, 4]). It uses some interesting consequences of the
existence of an adjunction among which:� for any pair of objectsA andB we have?(A � B) _'?A P ?B.� Any P-monoidN is a?-algebra and anyP-morphism

is a?-algebra morphism, that is, there is aP-morphismalgN : ? �N ! �N , natural inN and satisfying:�N der �N- ? �N algN- �N = Id �N?? �N dig �N- ? �N algN- �N = ?? �N ?algN- ? �N algN- �N
such thatP-morphisms commute with the?-algebra
structure.

Dually any
-comonoidP has a!-coalgebra structure
oalgP : �P ! ! �P .� The monad? is monoidal, that is, for each pair of ob-
jectsA andB there is a morphismmA;B : ?(A PB) ! ?A P ?B which is aP-morphism. As before
we will use the same notation for the dual morphism:mA;B : !A
 !B ! !(A
B).

1Following [20] one may weaken this condition and only suppose that
the restriction ofUC to a subcategory ofP-Mon(C) closed byP and&
has a left adjoint.

3.2. Building a control category

We will now construct fromC a control categoryK C as
defined by Selinger [25]. It is defined by:� objects ofK C areP-monoids;� given twoP-monoidsM andN , we setK C (M;N) =C(! �M; �N).
Informally one may think ofK C as the co-Kleisli of the sub-
category ofC consisting inP-monoids. Just as for the co-
Kleisli of C one obtains thatK C is a CCC: composition is
defined using the! comonad and digging as usual, the carte-
sian product is the& and the closeness is obtained by noting
thatNM = ?C(�M?) P N is aP-monoid.

The natural transformation �. For each pair ofC-
objectsA, B we define theC-morphism�A;B : !(A PB)! !A P ?B to be the transposed of!(A P B)
 !B? m- !((A P B)
B?) !"- !A
Equivalently we have:�A;B = !(A P B) ~m- !((A P B)
B?) P ?B!"P?B- !A P ?B

By construction we get that�A;B is natural inA. As a
consequence of properties of transposition and ofm, it is
also natural inB.

Interpreting promotion. The natural transformation�
should be understood as a classical version of the trans-
formationm. It is used to interpret the promotion rule as
follows: if f : G! A P D then we definef ! : !G! !A P?D by: f ! = !G !f- !(A P D) �A;D- !A P ?D:
Polarized promotion. Given a C-object A and aP-
monoidN we define theC-morphism A;N : !(A P �N)!!A P �N as: A;N = !(A P �N) �A; �N- !A P ? �N !APalgN- !A P �N
It is worth noting that A;N is the transposed of:!(A P �N)
 �N? Id

oalgN?- !(A P �N)
 ! �N?m- !((A P �N)
 ! �N?) !"- !A
By construction is natural inA.

Just as� is used to interpret functorial promotion, is
used to interpretpolarizedpromotion: iff : �P ! A P �N
whereP is a
-comonoid andN is aP-monoid, we definef ! : �P ! !A P �N by�P
oalg- ! �P !f- !(A P �N) - !A P �N

The PK functor. Let N be a fixedP-monoid. We are
now able to define the functorPK N onK C by:� for eachP-monoidA, A PK N = A P N ;� if f : ! �A!C �B (that isf : A!KC B) we setf PK N = !(�A P �N) � �A; �N- ! �A P ? �N fPalgN- �B P �N= !(�A P �N) �A;N- ! �A P �N fP �N- �B P �N

so thatf PK N : A P N !KC B P N as expected.

Using the naturality of , the functoriality of PK N is
consequence of the commutation of the following two dia-
grams:!(�A P �N) der- �A P �N����derP �N�! �A P �N ? !(�A P �N) dig- !!(�A P �N)!(! �A P �N)! ?! �A P �N ? digP �N- !! �A P �N ?
These diagrams may be proved by transposing them and us-
ing the properties ofC. It should be noted that they express
invariance of the categorical semantics w.r.t. the dereliction
and commutative cut eliminations in polarizedLL.

Control categories. We roughly recall the definition of
control categories, see [25] for the detailed one: a control
category is a distributive, symmetric premonoidal category
with codiagonals which is also cartesian closed and such
that the canonical morphismsA;B;C : BA P C ! (B PC)A is a natural isomorphism inA, B andC satisfying
some coherence conditions.

We already have seen thatK C is a CCC. The symmetric
premonoidal structure is given by the definition ofPK . As
for the co-Kleisli ofC, we have a functor which embedsP-Mon(C) into K C , which associates to anyP-morphismf :M ! N the central morphism:! �M der- �M f- �N
In particular codiagonals inK C are given by the images ofw
and
 by this embedding. Also the distributivity ofK C (es-
sentially the fact that PK N preserves finite products) is
consequence of the distributivityP-Mon(C)-isomorphism:A P (B & C) _' (A P B) & (A P C).

Selinger calls exponential strengththe morphismsA;B;C . In K C , BA is ?C �A? P B so thatsA;B;C is just
built from the associativity isomorphism forP. More pre-
cisely:sA;B;C = !((? �A? P �B) P �C) der- (? �A? P �B) P �C�- ? �A? P (�B P �C)
The coherence conditions are immediately checked.

Theorem 3.1 Let C be a Lafont category. ThenK C is a
control category. In particularK C is a model ofLLP as
defined in [16].

In particular when applying this construction to Girard’s
coherent spaces, one gets back the so-calledcorrelation
spacesthat were used to define the semantics ofLC [9].
Actually the whole construction above is the categorical ab-
straction of this particular concrete case.

4. CPS-Translations

As explained in the introduction we use Parigot’s
lambda-mu calculus for encoding classical logic. We
use lambda-calculus as the target language of the CPS-
translations. However, in the spirit of [2], we will design
a typing system (à la Curry) which allows to express some
linearity constraints; more precisely we add to ordinary in-
tuitionistic types a linear and a non linear negation that are
used to type the (translations of) continuations. This typing
system may be viewed as a fragment of the linear lambda-
calculusDILL [1] where the negation:A is a shorthand forA! ? whereas:0A isA(?.

We use the standard notations for contexts of typed vari-
ables; in particular�;�0 denotes the union of two contexts
and� n x : A is the context� from which the declarationx : A has been removed if it was there.

4.1. The lambda-mu-calculus

Let be given two denumerable disjoint sets respectively
of �-variables (denotedx, y, etc.) and�-variables (de-
noted�, �, etc.). Lambda-mu-terms are constructed by
the usual lambda-calculus operations (�-variable, applica-
tion denoted(u)v and abstraction) together with:

naming: [�℄t;
mu abstraction: �� t;
where the�-variable� is bound in the abstraction case. A
term of the form[�℄t is called anamed term.

The two reduction rules for CBN lambda-mu-calculus
are: (�x t)u!� t[u=x℄(�� t)u!� �� t[[�℄(v)u=[�℄v℄
We use the notationt ! t0 if t can be reduced int0 by one
step of�- or �-reduction.

Types are the atomic types (X , Y , . . .) and the arrow
types (A! B). Typing judgments are sequents of the form� ` u : A;� or � ` u;� where� (resp. �) contains
type declarations for (at least) all the�-variables free inu
(resp. all the�-variables). The second case of judgment, the

one whereu has no type, may be understood as a shorthand
for u : ?; we writeu : � where� may be an empty type
when we don’t want to specify whetheru is typed or not in
a judgment. The derivation rules are:x : A ` x : A� ` u : B;�� n fx : Ag ` �xu : A! B;�� ` t : A! B;� �0 ` u : A;�0�;�0 ` (t)u : B;�;�0� ` t : A;�� ` [�℄t; � : A;� n f� : Ag� ` t;�� ` �� t : A;� n f� : Ag
4.2. The continuation lambda-calculusCLC

Terms ofCLC are the usual lambda-terms in which we
indifferently use lambda and mu-variables. Differences
arise with types which are augmented with: negation types
(:A) and linear negation types (:0A).

The typing judgments are sequents of the form� ` t : A
or� ` t where� is a context of the formx1 : A1; : : : ; xn :An or x1 : A1; : : : ; xn : An j z : A0. The second case
of context will be said to contain alinear part z : A0. A
context in which it is not specified whether it contains or
not a linear part will be denoted� j�.

We will further restrict types by asking that in a judg-
ment only the top-level formulas (that isA and theA i’s)
may have the shape:0B, all the inner occurrences of:0
in the sequent must be immediately lying under a:. This
constraint which is satisfied by the (to be defined) Plotkin’s
and Krivine’s translations will be useful to faithfully embed
CLC into LLpol.

The typing rules are given in figure 1 where in all the
rules the variable possibly occurring in� is distinct from
any variable in� and� and in the:0-elim, at least one of� and�0 is empty.

4.3. Plotkin’s CBN translation

This translation is definable on untyped lambda-mu
terms as follows:x� = �k (x)k(�xu)� = �k (k)�xu�((u)v)� = �k (u�)�m ((m)v�)k(��u)� = �� u�([�℄u)� = (u�)�

j x : A ` x : A � j x : A ` t : ��; x : A ` t : �� j z : A ` t� ` �z t : :0A � j � ` t : :0A � j �0 ` u : A�;� j� [�0 ` (t)u� j � ` t� n fx : Ag j � ` �x t : :A � j� ` t : :A � ` u : A�;� j � ` (t)u� j� ` t : B� n fx : Ag j � ` �x t : A! B � j� ` t : A! B � ` u : A�;� j � ` (t)u : B
Figure 1. Typing CLC

The idea is to encode continuations as lists of arguments
(as we are in CBN) using some list encoding in lambda-
calculus; in particular the term(x)u1 : : : un is translated as:�k (x)�k1 ((k1)u1)�k2 ((k2)u2) : : : �kn ((kn)un)k
up to some easy reductions (“easy” here may be understood
as “linear”).

The translation may be extended to types; firstly we de-
fine the type translation:X� = X(A! B)� = ::0A� ! ::0B�
and finally typing judgments are translated as:(� ` t : �;�)� = ::0��;:0�� ` t� : ::0��
with the convention that if� is the empty type then so is::0��. Note that, as we announced, our restriction on:0-
types is satisfied by this translation.

It is straightforward to check that the type translation
rules are compatible with the term ones.

4.4. Krivine’s translation

Krivine’s translation [12, 13] is essentially a slight ame-
lioration of the former Gödel’s translation of classical into
intuitionistic logic; contrarily to Plotkin’s one it is type de-
pendent. ACLC typeA� is associated to a lambda-mu typeA by the following rules:X� = :X(A! B)� = A� ! B�

The two kinds of typing judgments in lambda-mu are
translated as follows:(� ` t : A;�)� = ��;:0��; k : :0A� ` t�(� ` t;�)� = ��;:0�� ` t�

where in the first formk is a variable not occurring in�,�. It is immediate to check that the:0-type restriction is
satisfied. The translation is defined by induction on the type
derivation oft as follows:(xA : A)�= (k:0A�)xA�(�xA tB : A! B)�= (k:0(A�!B�))�xA�(CB)�k:0B� t�((uA!B)vA : B)�=(k:0B�)((CA!B)�k:0(A�!B�) u�)(CA)�k:0A� v�(��A u : A)�= u�[k:0A�=�:0A� ℄([�A℄uA)�= u�[�:0A�=k:0A� ℄
where theCA are terms of type::0A� ! A� defined by
induction onA as follows:CX = �n::0:X0 �xX (n0)�n:X1 (n1)xCA!B =�n::0(A�!B�) �aA� (CB)�k:0B� (n)�fA�!B� (k)(f)a
One easily shows by induction onn that if A = A1 !� � � ! An ! X (so thatA� = A�1 ! � � � ! A�n ! :X)
thenCA = �n::0A� �aA�11 : : : �aA�nn �xX (n)�fA� (f)a1 : : : anx
4.5. Translations of CLC and lambda-mu into po-

larized LL

We first define the translation of types. Lambda-mu
types are translated asLLP formulas andCLC types asLLpol

formulas. We take advantage that lambda-mu types form a
subset ofCLC types and thatLLP formulas form a subset
of LLpol formulas to factorize these two translations into the
following:X� = X(A! B)� = !A� (B� = ?(A�)? P B�(:A)� = ?(A�)?(:0A)� = (A�)?

Note that the type:0A is translated as a positive formula;
due to our restriction onCLC types all the other ones are
translated as negative formulas. Also the reason for allow-
ing weakly polarized formulas inLLpol is that theCLC type::0A is translated as?A� where by definitionA� is al-
ready negative.

Similarly we define in one shot the judgment transla-
tions: typing judgments are translated as linear sequents:(� j � ` u : �;�)� = ` ?(��)?; (��)?;��;�� where� is empty in theCLC case and� is empty in the lambda-
mu case.

CLC. The translations of type derivations into sequent
calculus proofs inLLpol are given in figure 2.

Lambda-mu-calculus. The lambda-calculus rules (vari-
able, abstraction, application) are translated as in theCLC
case (with� always empty and adding a context� on each
right member of sequents) and the mu-rules are given by:([�A℄tA)� = ...` ?(��)?; A�;��` ?(��)?; A�;�� n fA�g(��A t : A)� = ...` ?(��)?;��` ?(��)?; A�;�� n fA�g
4.6. Linear analysis of CPS-translations

The embedding of lambda-systems into polarized lin-
ear systems allows to also embed the CPS-translations.
Plotkin’s translation is shown to correspond to the box
translation(:)b of LLP into LLpol, and Krivine’s translation
to the reversing one(:)�. We therefore get:

Theorem 4.1 Up to some axiom reductions and some�-
expansions the following diagrams commute:�� (:)�- LLP

CLC

(:)� ? (:)�- LLpol

(:)b? �� (:)�- LLP

CLC

(:)� ? (:)�- LLpol

(:)�?
The proof relies on the following facts:� For any lambda-mu typeA we haveA�b = ?A��.� For any lambda-mu judgment� ` t : �;� we have(� ` t : �;�)�b = (� ` t : �;�)��.� For any lambda-mu typeA we haveA�� = A��.

� Recall that�N is the “canonical” proof of̀ !N?; N ,
that is the syntactic version of the?-algebra structure
of N . For any lambda-mu typeA we have(CA)� =�A�� , up to some axiom reductions.

5. Syntax and semantics

Selinger [25] has given a canonical construction of con-
trol categories asRC where(C; R) is a suitablecontinuation
category(see [11]). We denote byJtKRC the call by name
interpretation of the lambda-mu-termt in the control cate-
goryRC (as defined by Selinger) and byJtK(C;R) the inter-
pretation of the target termt in (C; R). With these notations,
and using the fact that Hofmann-Streicher’s translation co-
incides, in our setting, with Plotkin’s one, we may refor-
mulate one of Selinger’s results (deduced from Hofmann-
Streicher’s work) as:

Theorem 5.1 (Hoffman-Streicher / Selinger)Let t be a
lambda-mu-term, thenJtKRC = Jt�K(C;R).

This gives the relation between Plotkin’s syntactical
translation and theRC construction of a control category.
We can do the same analysis for Krivine’s translation.
If JtKKC is Selinger’s call by name interpretation of the
lambda-mu-termt in K C and JtKC is the natural interpre-
tation of theCLC-termt in the Lafont categoryC, we get:

Lemma 5.1 If u : ::0A� is a CLC-typed lambda-term,
thenJ(CA)uKC = JuKC ; algA�
Theorem 5.2 Let t be a lambda-mu-term,JtKKC =J(C)�k t�KC .

Proof: By induction, we consider each typing rule for the
lambda-mu-calculus:� for a contraction or weakening rule, we use the

monoidality ofalgA and lemma 5.1;� for the logical rules, we apply the induction hypothe-
sis, lemma 5.1 andderA; algA = IdA. �

6. Conclusion

We have shown how to establish a correspondence be-
tween call by name CPS-translations and the translations
from LLP to LLpol. This can be extended to the call by value
case, by a positive embedding (type7! positive formula) of
the lambda-mu-calculus inLLP. In particular for Plotkin’s
call by value translation [23], we obtain the following dia-
gram: �� (:)+- LLP

CLC

(:)� ? (:)+- LLpol

(:)b?

(xA : A)� = ` (A�)?; A� � j x : A ` t : ��; x : A ` t : � !� = ...` ?(��)?; (A�)?;��` ?(��)?; ?(A�)?;��(�xA tB : A! B)� = ...` ?(��)?; (��)?; B�` ?(��)? n f?(A�)?g; (��)?; ?(A�)? P B�(�xA t : :A)� = ...` ?(��)?; (��)?` ?(��)? n f?(A�)?g; (��)?; ?(A�)?(�xA t : :0A)� = ...` ?(��)?; (A�)?((tA!B)uA : B)� = ...` ?(��)?; (��)?; ?(A�)? P B� ...` ?(�0�)?; A�` ?(�0�)?; !A� ` (B�)?; B�` ?(�0�)?; !A�
 (B�)?; B�` ?(��)?; ?(�0�)?; (��)?; B�((t:A)uA)� = ...` ?(��)?; (��)?; ?(A�)? ...` ?(�0�)?; A�` ?(�0�)?; !A�` ?(��)?; ?(�0�)?; (��)?((t:0A)uA)� = ...` ?(��)?; (��)?; (A�)? ...` ?(�0�)?; (�0�)?; A�` ?(��)?; ?(�0�)?; ((� [�0)�)?
Figure 2. Translation of CLC into LLpol

A call by value analogue of Krivine’s translation is possible
to define but would require to replaceCLC by a system with
at most one formula on the left which is less natural.

This approach maps the CPS translations (from classical
to intuitionistic logic) to the two translations(:)b and(:)�
in linear logic. A natural question is to check whether this
holds for any CPS translation. If it is the case, which is our
current opinion, then the whole set of CPS translations can
be classified into only two classes showing that many vari-
ations in the definitions of CPS translations are innocuous;
e.g. there is no difference between Plotkin’s translation and
Hofmann-Streicher one when viewing them as translations
of LLP into LL. It could also be that there are CPS trans-
lations the image of which are neither(:)b nor (:)�, which
would yield some new translation ofLLP into LLpol. Al-
though we doubt such a new translation exists, it would cer-
tainly be very interesting for the theory of polarized linear
systems if one eventually shows up.

An interesting remaining question is to study CPS trans-
lations in the framework of game semantics, in particu-
lar using the first author game model forLLP [17]. This
could yield some similar relation between game semantics
for classical logic and abstract machines as the ones stud-
ied in [5] for intuitionistic logic. There is also the work
by Jim Laird [15] mentioned in the introduction, that intro-
duces a special kind of game models for CPS translations.
The question remains open whether this game model is re-
lated to the first author’s one forLLP.

References

[1] A. Barber and G. Plotkin. Dual intuitionistic linear logic.
Technical report, LFCS, University of Edinburgh, 1997.

[2] J. Berdine, P. O’Hearn, U. Reddy, and H. Thielecke. Linear
continuation-passing.Higher-Order and Symbolic Compu-
tation, 15, 2002.

[3] G. Bierman.On Intuitionistic Linear Logic. PhD thesis, Uni-
versity of Cambridge, Computer Laboratory, 1993. Avail-
able as Technical Report 346, August 1994.

[4] G. Bierman. What is a categorical model of Linear Logic?
In M. Dezzani and G. Plotkin, editors,Proceedings of the
Second International Conference on Typed Lambda Calculi
and Applications, volume 902 ofLecture Notes in Computer
Science. Springer-Verlag, Apr. 1995.

[5] V. Danos, H. Herbelin, and L. Regnier. Games semantics
and abstract machines. InProceedings of the 11th Sympo-
sium on Logic in Computer Science, New Brunswick, 1996.
IEEE Computer Society Press.

[6] V. Danos, J.-B. Joinet, and H. Schellinx. LKQ and LKT:
Sequent calculi for second order logic based upon dual lin-
ear decompositions of classical implication. In J.-Y. Girard,
Y. Lafont, and L. Regnier, editors,Advances in Linear Logic,
volume 222 ofLondon Mathematical Society Lecture Note
Series. Cambridge University Press, 1995.

[7] V. Danos, J.-B. Joinet, and H. Schellinx. A new decon-
structive logic: Linear logic. Journal of Symbolic Logic,
62(3):755–807, 1997.

[8] J.-Y. Girard. Linear logic.Theoretical Computer Science,
50:1–102, 1987.

[9] J.-Y. Girard. A new constructive logic: classical logic.
Mathematical Structures in Computer Science, 1(3):225–
296, 1991.

[10] T. Griffin. A formulae-as-types notion of control. InPro-
ceedings of the 1990 Principles of Programming Languages
Conference, pages 47–58. IEEE Computer Society Press,
1990.

[11] M. Hofmann and T. Streicher. Continuation models are uni-
versal for lambda-mu-calculus. InProceedings of the 12th
Symposium on Logic in Computer Science, pages 387–397,
Warsaw, 1997. IEEE Computer Society Press.

[12] J.-L. Krivine. Lambda-Calcul : Types et Modèles. Études et
Recherches en Informatique. Masson, 1990.

[13] J.-L. Krivine. A general storage theorem for integers in
call-by-name�-calculus. Theoretical Computer Science,
129:79–94, 1994.

[14] Y. Lafont. The linear abstract machine.Theoretical Com-
puter Science, 59:157–180, 1988.

[15] J. Laird. A game semantics of linearly used continuations.
In A. Gordon, editor,Foundations of Software Science and
Computation Structures, volume 2620 ofLecture Notes in
Computer Science, pages 313–327. Springer-Verlag, 2003.

[16] O. Laurent. Étude de la polarisation en logique. Thèse de
doctorat, Université Aix-Marseille 2, 2002.

[17] O. Laurent. Polarized games (extended abstract). InPro-
ceedings of the seventeenth annual IEEE symposium on
Logic In Computer Science, pages 265–274. IEEE Computer
Society Press, July 2002.

[18] O. Laurent. Polarized proof-nets and��-calculus.Theoret-
ical Computer Science, 290(1):161–188, 2003.

[19] S. Mac Lane. Categories for the Working Mathematician.
Springer-Verlag, 1971.

[20] P.-A. Melliès. Categorical models of
linear logic revisited. Available at
http://www.pps.jussieu.fr/�mellies/papers/catmodels.ps.gz,
2002.

[21] C. Murthy. An evaluation semantics for classical proofs.
In Proceedings of the 6th Symposium on Logic in Com-
puter Science, pages 96–107. IEEE Computer Society Press,
1991.

[22] M. Parigot. ��-calculus: an algorithmic interpretation of
classical natural deduction. InProceedings of Internation-
nal Conference on Logic Programming and Automated De-
duction, volume 624 ofLecture Notes in Computer Science,
pages 190–201. Springer-Verlag, 1992.

[23] G. Plotkin. Call-by-name, call-by-value and the�-calculus.
Theoretical Computer Science, 1:125–159, 1975.

[24] M. Quatrini and L. Tortora de Falco. Polarisation des
preuves classiques et renversement.Compte-Rendu à
l’Académie des Sciences, 323:113–116, 1996.

[25] P. Selinger. Control categories and duality: on the categor-
ical semantics of the lambda-mu calculus.Mathematical
Structures in Computer Science, 11(2):207–260, 2001.

