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Abstract

We show that the decomposition of Intuitionistic Logic
into Linear Logic along the equatioA - B = !A — B
may be adapted into a decomposition of classical logic into
LLP, thepolarizedversion of Linear Logic. Firstly we build
a categorical model of classical logic (a Control Category)
from a categorical model of Linear Logic by a construc-
tion similar to the co-Kleisli category. Secondly we anal-
yse two standard Continuation-Passing Style (CPS) transla-
tions, the Plotkin and the Krivine's translations, which are
shown to correspond to two embeddingd aP into LL.

1. Introduction

Curry-Howard for classical logic. Thanks to the sem-
inal work of Griffin [10] who showed that classical prin-
ciples could be used to type control operators such as
Scheme’scal | / cc, it is now well known that classical
logic (LK), as intuitionistic logic J), fits into the Curry-
Howard paradigm. Work o@PStranslations showing that
they correspond te-—-translations [21] a la Godel, have
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tion could be decomposed in linear logid {) along the now
standard equation

A—-B=!4A—-8B

yielding the so-called Girard’s translatioh:J AE L

This decomposition has also a categorical version by means
of the construction of a co-Kleisli of a monoidal closed cat-
egory.
Classical logic and linear logic. In this paper we will de-
fine some translations of classical logic into linear logic. We
use lambda-mu calculus (that is, classical natural deduction)
as our classical proof system. When dealing with lambda-
mu calculus as a logical system we shall spdlldt which
shouldn’t be confused with Gentzen’s sequent calculus as
the latter is not constructive. We stick to thi notation to
enforce the idea that our study does not depend on the cho-
sen system and could be carried out with aopstructive
classical proof-system.

Such translations are easy to construct simply by com-
posing a CPS translation with a translationLdfinto LL,
e.g. Girard’s translation:

CPS !A—B

LK LJ LL

been used to compile these control operators into lambda-For example if we consider the call by name (CBN)

calculus. From the viewpoint of logic, work has been car-
ried out on the so-called “classical constructivization” prob-
lem, and proof systems have been designed for classica
logic enjoying properties analogous to those of intuition-
istic logic: normalization, Church-Rosser, denotational se-
mantics. .. Let us mention Girard’s systdt@ which in-
troduces the important notion gdolarities in logic [9],
Parigot's lambda-mu-calculus [22] which is a natural ex-
tension of lambda-calculus embodying classical principles,
and Danos-Joinet-Schellinx (DJS)’s impressive classifica-
tion of classical constructivizations within the syntactical
frameworkLKY [6, 7].

Decomposing the intuitionistic implication. An impor-
tant advance in the study of (typed) lambda-calculus, was
the discovery by Girard [8] that the intuitionistic implica-

171A—-?!B

Plotkin's translation [23], this yielddK LL
where the formula on the arrow is the linear formula as-
sociated to the implication dfK. As we see the defect of
this method is that it makes intensive use of exponentials
hiding the underlying linear structure.

As a by-product of their work ohK™, DJS have ame-

liorated this translation producing< —2—"% LL which
makes a more sensible use of exponentials. This ameliora-
tion relies on the remark that, in a CBN setting, continua-
tions are linear. The intuitive reason is that a continuation
is essentially a functional applying its function argument to
a stack of arguments; it is well known that this operation is
linear in the function argument.

We shall take advantage of the linearity of continuations
at the level of the target language; so we will use a target




language allowing the expression of linearity constraints. Plotkin’s translations. Typically the same work could be
More precisely, theCLC calculus is defined to be regular achieved with the Hofmann-Streicher translation [11] which
lambda-calculus typed with usual types and linear types; is identified with Plotkin’s in the linear world.

this kind of calculus has already been used in work analyz- ] ) ) _

ing linearity in CPS translations, e.g. by Berdine et al. [2] Catégorical semantics. The paper begins with the con-

and Laird [15]. It allows us to give a clear factorization of Struction of a categorical model of classical logic, a con-
DJS translation: trol category as defined by Selinger [25], by a method very

similar to the construction of the co-Kleisli of a monoidal

LK —°P5, cLe closed category. This construction may be seen as a seman-
\l tical version of the linear analysis of classical logiclliyP.
l1A—B
1AetB L Logical systems used. We will take the Parigot’s call by
name lambda-mu-calculus [22] as source system for the
Linearity of continuations vs. continuation-passing. CPS-translations. This calculus is probably the most suit-

The linearity of CBN continuations should be opposed to able for our purpose since it naturally features the Curry-
the linearity ofcontinuation-passingvhich occurs in CPS  Howard correspondence for classical logic: from the logical
translations of the CBV lambda-calculus. This fact has been point of view it is a natural deduction system for classical
remarked and analysed from a syntactical viewpoint by the logic and from the computer science point of view it is an
above mentioned work of Berdine et al., and more recently, extension of lambda-calculus encodiogl | / cc like op-

by Laird who uses a semantical approach; both prove a full erators.

abstraction result for the translation. However as both au-  Our target language for CPS translations will be regu-
thors point, linearity of continuation-passing is only true in lar lambda-calculus. We however change the typing assign-

the intuitionistic setting (withoutal | / cc), whereas lin-  ment system to allow the expression of linearity constraints
earity of continuations remains true even when switching to on continuations, getting a system calletdC which, as
the classical and CBN world, as we do here. pointed above, is very similar to Berdine et al. and/or

Introducing polarities. An important remark is that the Lalrd’? éar%et liTgiaqglﬁEdlmay also be seen as a subsys-
target language of the translation depicted in the above dj- tem of Barber-Plotkin [1].

agram actually Ii_es insideL,,, th_e fragment of L CQnSiSt' The call by value case. For the sake of simplicity we

ing of well polarized formulas (in the sense of Girard). In gtick to CBN calculus and translations. Let us point
fact all the classical and intuitionistic types are translated by though that the call by value (CBV) case is symmetrical:
negative formulas. The first author has introduced a proof jnstead of Girard's translation, use the CBV translation
systemLLP (Polarized Linear Logic) for polarized formu- LK JA4=?B) 1 p which associategositiveformulas to

las, which relaxes the use of structural rules on negative for—cIaSSical and intuitionistic types; then one may show that

mula;_[16].l Th'.s s?/lste_m k|)s better Tc,twt”ed thztin(()jr LI."“" fo: Plotkin's CBV translation is associated with the same box
encoding classical logic because it allows to design atrans- - o001 1P into LL [16].

lation LK 2= LLP which is a straightforward extension

of Girard's translation. Simulation properties. The paper will define various
The main achievement of this paper is to give a pre- translations between logical systems. Let us claim once for
cise correspondence between CPS translationsaoito all that all of them areeduction preservinghat is for each

LJ and translations dfLP into LL (reallyLL,,). We study translatiort — |¢| the following diagram commutes:
Plotkin’s and Krivine’s translations and show for each of

them that we get the following diagram: t ——— [t
Lk —°, cLe l l
th——— |t = |t/|
!A—oBl l!A—oB

where the horizontal arrows are translations and the vertical
ones are reductions.

where the bottom horizontal arrow represents respectively
the so-calledbox and reversingtranslations. This shows
thatLLP stands in the same relation with respedttahan
classical logic with respect to intuitionistic logic, thus giv-
ing a notion of CPS translation internal to linear logic which We derive two proof systems from Linear Logic based
can be used to compare them as we do with Krivine’s and on the introduction opolaritiesin linear formulasnegative

LLP — LL

2. Polarized linear systems



(V) andpositive(P) formulas are defined by: The decoration of proofs just requires to add dereliction
and promotion rules corresponding to the exponential dec-

N u= XL | LINBN|T|N&N|[?P[|?N] oration of formulas. We show only the translation of the
Pu=X-|1| PP |0]|PoP |IN[]!P] tensor and contraction rules:
Formulas of the forn? N (resp.!P), that is the bracketed F b, pb AP QP
cases above, will be saigeaklynegative (resp. weakly pos- FTP AP P o QP
itive). i)
b AD b b

The systeniL,, is simply the restriction of linear logic _'__F_’ _A_’ '_(13 _®_Q_ )_

to polarized formulas (including weakly polarized ones); FTP AP (P Q)b

thus it is a fragment of Linear Logic in the natural sense.

As a side-effect of this restriction, one easily checks that all and

the rules preserve th_e fact that at most one positive formula - T, (N 3 M), (N 3 M)

may occur in a polarized sequent. TR BTN e by 97 e b
The second system, namedP, is further restricted to L0 TNT B M), (N B M)

strongly polarized formulas only but also adds structural F TP 2(NY 3 MY)
rules for any negative formula (whereas Linear Logic has FTY (N T M)
structural rules only fof formulas):

where the dashed lines indicate equality between sequents;
FLN,N kL M note that the promotion rule in the translation of ¢thés LL
FI,N FI,N FNIN correct becausd? and(@ being positive and A contain

where\ is a context of negative formulas; again one easily only negative formulas the translations of which begin with

sees that at most one positive formula occurs inldry se-

quent. The generalization ot structural rules, apparently  The reversing translation. The second translation, that
innocuous, has rather deep consequenced BRdnay be has been used by Tortora de Falco and Quatrini [24] to refine
considered as a new system related to, but independent fromhe DJS embedding &K into LL, uses a lighter decoration:
LL (see [16] for an extensive study bEP).

The study ofLLP has lead to two translations oLP XP=7x"
into LL,, that we are going to describe now. For the sake of (N® M) =N"% M*
simplicity, as these translations are meant to be related with (?P)? = 7P*
CPS translations of lambda-mu calculus, we will only con-
sider lambda-mu calculus without products dd with- and dually for the positive formulas. SequentE are trans-
out additives. The work presented is however easily ex- lated as- T'”. Note that, contrasting with the box transla-
tendible to the more general setting. tion, the reversing translation of a sequent is strongly polar-

ized.

We still have to transform any negative formula premisse
of a structural rule into & formula to be able to apply the
rule inLL,, but this time we will use a syntactical version of
the 7-algebra morphisms (see below), that is prqofsof -
IN*L N* forany negative formuld&’. One easily shows by
induction onN that such a proof exists (this fact was used
in particular by DJS who called this class of proofs thiix

The box translation. The first translation is based on a
decoration ofLLP derivations by exponential connectives
in the spirit of decorations of classical logic into linear logic
by Danos-Joinet-Schellinx [7]; it has been used to prove the
strong normalization of LP in [18]. Viewed from the pos-
itive side, this translation encapsulates every positive for-
mula of a proof into d-box, thus its name.

The goal is to makeL-correct each application of a gen- ; ;
eralized structural rule by decorating it with the adequate Pr00fS they were meant to achieve the so-caltedersing
exponential. To achieve this, as any negative formula may © Proofs). We show only the translation of a contraction
be the premisse of a structural rule, they are decorated withrule, the other rules being treated similarly:

a? in the following way:

Xb=17Xx :
, . FT?, N, N”
(NB M)"=2(N"% M°) FT7,7N? N
(?P)b =2p? FT?,?NP ?N° PN
P INP INeL e
and dually for the positive formulas. SequentF are trans- RPN - N'; NPT, N

lated ag- .



Note that contrarily to the box translation, this one intro- Given two Z¥-monoids M and N, a Z¥-morphismis a
duces cut rules. For this reason in order to plainly fulfill our monoidalC-morphismf : M — N, that is, f commutes
claim that it is reduction preserving one should really define with theZ¥-monoid structure. We denote By*Mon(C) the
the translation of a proof as the one obtained after reducing category off-monoids and¥-morphisms. Given twés-

these cuts.

3. A construction of a control category

In this section we will give a categorical counterpart of
the syntactical translation dfLP into LL,, by extracting
a control category (thus a model bEP, see [16]) from a
categorical model ofL,, (of full LL really).

3.1. Notations and terminology

We first briefly record known facts relative to the cate-
gorical semantics of linear logic and set up the notations
used throughout.

The =x-autonomous structure. Let C be a model of
MALL (multiplicative, additive linear logic), that is &-
autonomous category with finite products (and finite co-
products by duality). We follow the linear logic notations
and denotel the unit of the tensor| the dualizing object
(thus dual ofl), % the cotensor (by which we mean tiat

is defined as the dual @f but this shouldn’t hide the fact
that? really is also a tensor product) so thats the neutral

of %%, & the cartesian product; the sum (dual o&), 0 and

T the units of® and&:.

The terminology is slightly unfortunate as we will
mainly define our constructions with respect to the cotensor
% which therefore would be better named “tensor”. This
choice is reflecting the global choice of the paper to treat
CBN calculus which is naturally associated to tlegjative
fragment ofLLP.

If f: A— BisaC-morphismtherf! : B* — Alis
the dual morphism. Finally we denate 5 : (A ® B1) ®
B — A the evaluation morphism if}; it is natural inA and
also satisfies a kind of naturality iB.

Transposing a morphism. The x-autonomous structure
yields a bijection betweefy(4, B % C) andC(A®C*, B)
which associates to anfy: A®C+ — Bauniquef : A —
B % C called thetransposedf f such that

€ L
B,C B

3 4
f=Aect 25 BrO)0 Ct

%¥-monoids. A #%-monoid on C is a triple N
(N,cn,wy) whereN is anobjectof, ey : N N - N
andwy : L — N are morphisms of satisfying the stan-
dard neutral, associativity an commutativity equatiofds.
monoids are meant to interpret negative formulakld?.

A ®-comonoidP is the dual of a¥-monoid, that is, a
triple (P, cp, wp) wherecp : P — PP andwp : P — 1
are such thatP+, cp, wp=) is a2$-monoid.

monoidsM and N, and using the associativity éf, one
may build morphismg yzy : (M ® N) % (M B N) —
M ® Nandwyzy : L — M % NgivingM 3 N

a ¥-monoid structure. Clearlyy is a tensor product on
%-Mon(C). Interestingly it is also a coproduct. One may
also show tha&: is a cartesian product 6&-Mon(C).

Adjunction. LetU¢ : ®-Mon(C) — C be the forgetful
functor. In the sequel we will suppose tltahas the prop-
erty thatUc has a left adjoint’¢ 1. A typical example of
such a situation is given by the category of coherent spaces
with the multiset version of

We denote by the endofunctotc o7 onC (and by! its
dual). It is standard fact that it is a monad ©ifsee [19]).
Still in accordance with linear logic terminology we will
denoteder4 : A — 7A anddig, : 77A — ?7A the natural
transformations associatedtoTo keep notations light we
will also denotedery : !A — A anddig, : !4 — !lA the
dual natural transformations associated to the coménad

The property that/. has a left adjoint make&s a Lafont
category[14]. A detailed proof that Lafont’s categories are
sound models of linear logic has been produced by Bierman
(see [3, 4]). It uses some interesting consequences of the
existence of an adjunction among which:

e for any pair of objectsd andB we have?(A @ B) ~
?TA%?B.

e Any Z-monoidN is a?-algebra and an{f-morphism
is a?-algebra morphism, that is, there i&amorphism
algy : 7N — N, natural inN and satisfying:

N LN 0N BN N — 4y

— o< _ — _ ? _ _
77N BN oy BN N = o7y 2By oy 2N

such that®¥-morphisms commute with th&-algebra
structure.

Dually any®-comonoidP has a-coalgebra structure
coalgp : P — IP.

The monad’ is monoidal that is, for each pair of ob-
jects A and B there is a morphisnm s 5 : 7(A %

B) —» ?A % 7B which is a%¥-morphism. As before
we will use the same notation for the dual morphism:
map:lA®!B — (A® B).

IFollowing [20] one may weaken this condition and only suppose that
the restriction ofUz to a subcategory o%-Mon(C) closed by? and &
has a left adjoint.



3.2. Building a control category The Xk functor. Let N be a fixed%-monoid. We are
now able to define the functofy x N onK¢ by:

We will now construct fronC a control categoryK. as ) : o )
defined by Selinger [25]. It is defined by: * foreach-monoid4, A ¥ N =AF N,

« objects ofi. are¥-monoids: o if f:14 —¢ B (thatisf : A —x, B)we set

_ _ ¢71\7 _ _ N B _
e given two%-monoids)M andN, we setK¢ (M, N) = fBxk N=!{(ARN) =S 1A N Iy py N
C(IM,N). /3N

—Ax N A iz 2 gy w
Informally one may think oK as the co-Kleisli of the sub-
category ofC consisting in%-monoids. Just as for the co- sothatf ¥k N : A% N —x. B N as expected.
Kleisli of C one obtains thaK. is a CCC: composition is  Using the naturality ofiy, the functoriality of_ % ¢ N is
defined using thécomonad and digging as usual, the carte- consequence of the commutation of the following two dia-
sian product is thé& and the closeness is obtained by noting grams:
thatNM = 2.(M*) % N is a%¥-monoid.

der -

T o AN N) Y8, nAx N
The natural transformation ¢. For each pair ofC- NABN) — AR N (AT N) AR N)
objects A, B we define theC-morphism¢4p : (A & l’¢
B) — A ® 7B to be the transposed of " . " (1A% N)
der® N
(A% B)®!B- "+ (AR B)® BY) —=» 14 Y/ U ¥
A% N An N 2N iy N

Equivalentl have: . .
quivalently we have These diagrams may be proved by transposing them and us-

ing the properties of. It should be noted that they express

= (A% B) -2+ (A% B)® B) 3B ing . ; ©°
ap =A% B) (A% B)2B7) 3 invariance of the categorical semantics w.r.t. the dereliction

1e®?B

—— A% ?B and commutative cut eliminations in polarized
By construction we get that 4 g is natural inA. As a Control categories. We roughly recall the definition of
consequence of properties of transposition anehpft is control categories, see [25] for the detailed one: a control
also natural inB. category is a distributive, symmetric premonoidal category

. . ) with codiagonals which is also cartesian closed and such
Interpreting promotion. The natural transformation that the canonical morphisey p.c : BA 3 C — (B ¥
should be understood as a classical version of the trans—C)A is a natural isomorphisrﬁ mrl 'B and C satisfying

]tolrlmatl.o_r;m.. g IS u;e;g g) tlr?terpre:jtr;_e pro_n'wGotlon'zJI;; 35 some coherence conditions.
ollows: if f : G — enwe defing” : IG — ! We already have seen th&t is a CCC. The symmetric

D by: premonoidal structure is given by the definition?®f;. As
e M $an o for the co-Kleisli of C, we have a functor which embeds
f=ia (4% D) A ID. X-Mon(C) into K¢, which associates to arfy-morphism
Polarized promotion. Given a C-object A and a %- f: M — N the central morphism:
monoid N we define th&-morphismy 4 n : (A % N) — S e - f -
A% N as: M — M —— N
ban =A% N) fan 1A 2N A%y A N In particulqr codiagon_als K are giv<_en py the.imagesm‘
andc by this embedding. Also the distributivity &f. (es-
Itis worth noting that) 4, v is the transposed of: sentially the fact that %% x N preserves finite products) is
) ol ) B consequence of the distributivif§-Mon(C)-isomorphism:
!(A%’N)(}@]\”;g’“»!(A?S’N)@z)!]\fL AR (B&C)=2 (A B)& (AT (O).
mo N Selinger calls exponential strengththe morphism
— ((AFN)@!IN7) — 14 sapc. INKe, BAis?2cA+ X B so thatsa p,c is just
By constructiony is natural inA. built from the associativity isomorphism f&. More pre-
Just asp is used to interpret functorial promotiot, is cisely:
used to interprepolarizedpromotion: if f : P — A % N _ _ C der ~ ~ ~
whereP is a®-comonoid andV is aZ-monoid, we define sapc= A" B B)NC) — (PA" X B)FC

P 1A% Nby L 24N R (BRO)

g = !f ) -
PERP s (AR N) S AR N The coherence conditions are immediately checked.



Theorem 3.1 Let C be a Lafont category. TheH. is a
control category. In particulaikK; is a model ofLLP as
defined in [16].

In particular when applying this construction to Girard’s
coherent spaces, one gets back the so-caltedelation
spacesthat were used to define the semanticd_6f [9].
Actually the whole construction above is the categorical ab-
straction of this particular concrete case.

4. CPS-Translations

As explained in the introduction we use Parigot's
lambda-mu calculus for encoding classical logic. We

use lambda-calculus as the target language of the CPS-

translations. However, in the spirit of [2], we will design

a typing system (a la Curry) which allows to express some

linearity constraints; more precisely we add to ordinary in-

one wherea: has no type, may be understood as a shorthand
forw : L; we writeu : © where® may be an empty type
when we don'’t want to specify whetheris typed or not in

a judgment. The derivation rules are:

r:AkFz: A
F'tu:B,A
F'\{z:A}FXzu:A— BA
'kt:A— B,A IMEu: A A
O,T'F (tu: B, A A
Pkt AA
Lk ajt,a: A A\ {a: A}
k-t A
Ckpat: A ;A\ {a: A}

tuitionistic types a linear and a non linear negation that are 4 2. The continuation lambda-calculusCLC

used to type the (translations of) continuations. This typing

system may be viewed as a fragment of the linear lambda-

calculusDILL [1] where the negation A is a shorthand for
A — 1 whereas¢gAis A —o L.

Terms of CLC are the usual lambda-terms in which we
indifferently use lambda and mu-variables. Differences
arise with types which are augmented with: negation types

We use the standard notations for contexts of typed vari- (-A) and linear negation types§ A).

ables; in particulaF’, T denotes the union of two contexts
andl' \ z : A is the contexT from which the declaration
x : A has been removed if it was there.

4.1. The lambda-mu-calculus

Let be given two denumerable disjoint sets respectively

of \-variables (denoted:, v, etc.) andu-variables (de-
noteda, 8, etc.). Lambda-mu-terms are constructed by
the usual lambda-calculus operationsvariable, applica-
tion denotedu)v and abstraction) together with:

naming: [a]t;
mu abstraction: pat;

where theu-variablea is bound in the abstraction case. A
term of the form[a]t is called anamed term

The two reduction rules for CBN lambda-mu-calculus
are:

Az t)u —p t{u/z
(nat)u =, patfla](v)u/[alv]

We use the notatioh — #' if £ can be reduced it by one
step of3- or u-reduction.

Types are the atomic typeX( Y, ...) and the arrow
types @ — B). Typing judgments are sequents of the form
'kw: A /AorT F u,A wherel' (resp. A) contains
type declarations for (at least) all thevariables free in:
(resp. all theu-variables). The second case of judgment, the

The typing judgments are sequents of the f&@m ¢ : A
or = - t whereZ= is a context of the formry : Ay, ...,z :
Aporaxy @ Ay,...,x, + Ap |z @ Ap. The second case
of context will be said to contain Bnear partz : Ay. A
context in which it is not specified whether it contains or
not a linear part will be denoted | II.

We will further restrict types by asking that in a judg-
ment only the top-level formulas (that i$ and the A ;’s)
may have the shapey B, all the inner occurrences of,
in the sequent must be immediately lying undef.aThis
constraint which is satisfied by the (to be defined) Plotkin’s
and Krivine’s translations will be useful to faithfully embed
CLC into LL,,.

The typing rules are given in figure 1 where in all the
rules the variable possibly occurring Ih is distinct from
any variable iC andA and in the—¢-elim, at least one of
IT andIl’ is empty.

4.3. Plotkin’s CBN translation

This translation is definable on untyped lambda-mu
terms as follows:

z* = Ak (2)k
Az u)® = Ak (k) \xu®
((w)v)® = Ak (u®)Am ((m)v®)k
(nau)® = Aau®
([aJu)® = (u*)a



z:AFt:0

|z:AFz:A Fz:AkFt:0
T|lz:AFt T|TIFt:—pA AMl'Fu: A
LEXzt:—gA CLATTUI F (Hu
IR RN D|IFt:-A AFu:A
P\{z: A} |TIF dxt:-A CLA|TTE (H)u
FII+t¢:B rmnrt:A—-B AFu:A

F'\{z:A}|TIF)t:A—> B

CLA|ITE (H)u: B

Figure 1. Typing CLC

The idea is to encode continuations as lists of argumentswhere in the first formk is a variable not occurring ifr,
(as we are in CBN) using some list encoding in lambda- A. It is immediate to check that they-type restriction is

calculus; in particular the terfx)u; .. . u, is translated as:

satisfied. The translation is defined by induction on the type
derivation oft as follows:

(x4 A)* = (k7oA )zA”

up to some easy reductions (“easy” here may be understood Az 1B 2 A B)* = (koA =B )\ A" (Op) Ak 0B t*

as “linear”).

The translation may be extended to types; firstly we de-

fine the type translation:
X=X
(A — B). = ﬁ_|014. — _|ﬂ0B.

and finally typing judgments are translated as:
(F " t: @,A). == ﬁﬁor.,ﬁoA. " t. : ﬁ_|0@.

with the convention that i® is the empty type then so is
——9©°*. Note that, as we announced, our restriction-gn
types is satisfied by this translation.

It is straightforward to check that the type translation
rules are compatible with the term ones.

4 4. Krivine's translation

Krivine’s translation [12, 13] is essentially a slight ame-
lioration of the former Godel’s translation of classical into
intuitionistic logic; contrarily to Plotkin’s one it is type de-
pendent. ACLC type A* is associated to a lambda-mu type
A by the following rules:

X*=-X
(A—> B)*=A* - B*

The two kinds of typing judgments in lambda-mu are
translated as follows:

(TrHt: A A =T", =A™ k: mgA" "
(TFtA)" =T% A" - t*

((UA%B),UA . B)* _
(K8 )(Cas ) M0 (A" B %) (C ) M0 A
(patu: A)* = u* k™04 Jam0AT]
(fatfut)* = u*[amoA" [k

where theC' 4 are terms of type-—gA* — A* defined by
induction onA as follows:

Cx = g 7" XaX (ng)An X (ny)z
CA—>B =
An 7oA B A AT (CR)NETOET (M)A BT (k) (f)a

One easily shows by induction onthat if A = A; —
o= Ay = X (sothatd* = AT — -+ = A% — =X)
then

Cp = An" oA )\afT - apt X (MAfA (fag ... anx

4.5. Translations of CLC and lambda-mu into po-
larized LL

We first define the translation of types. Lambda-mu
types are translated &&P formulas andCLC types ad L,
formulas. We take advantage that lambda-mu types form a
subset ofCLC types and thatLP formulas form a subset
of LL,, formulas to factorize these two translations into the
following:

X~ X
(A5 B)~ = 14~ =B~ = ?2(4°) "% B~
(-4~ = At

(mod)~ = (4"



Note that the type ¢ A is translated as a positive formula;
due to our restriction ol€LC types all the other ones are
translated as negative formulas. Also the reason for allow-
ing weakly polarized formulas ibL ,, is that theCLC type
—-—9A is translated a8 A~ where by definitiond ~ is al-
ready negative.

Similarly we define in one shot the judgment transla-

tions: typing judgments are translated as linear sequents:

(T|TMFu:0,A)" =F2(T)", (IT7)",0~, A~ where
A is empty in theCLC case andl is empty in the lambda-
mu case.

CLC. The translations of type derivations into sequent
calculus proofs irLL,, are given in figure 2.

Lambda-mu-calculus. The lambda-calculus rules (vari-
able, abstraction, application) are translated as ifCth€
case (withlT always empty and adding a contekton each
right member of sequents) and the mu-rules are given by:

F ?(F*)L,A*,A*
20T AT AT\ {47)

(fa]t)~

(nat: A)~ u ?(F,.)L, A

F2(0) A A=\ {47}

4.6. Linear analysis of CPS-translations

The embedding of lambda-systems into polarized lin-

¢ Recall thatpy is the “canonical” proof of- IN+, N,
that is the syntactic version of tifealgebra structure
of N. For any lambda-mu typd we have(C 4)~
pa-—,UP to some axiom reductions.

5. Syntax and semantics

Selinger [25] has given a canonical construction of con-
trol categories a&¢ where(C, R) is a suitablecontinuation
category(see [11]). We denote bft] zc the call by name
interpretation of the lambda-mu-terfin the control cate-
gory R¢ (as defined by Selinger) and i (c,r) the inter-
pretation of the target termin (C, R). With these notations,
and using the fact that Hofmann-Streicher’s translation co-
incides, in our setting, with Plotkin’s one, we may refor-
mulate one of Selinger’s results (deduced from Hofmann-
Streicher’s work) as:

Theorem 5.1 (Hoffman-Streicher / Selinger)Let ¢t be a
lambda-mu-term, theft] re = [t*](c,r)-

This gives the relation between Plotkin's syntactical
translation and the?¢ construction of a control category.
We can do the same analysis for Krivine’s translation.
If [¢t]x. is Selingers call by name interpretation of the
lambda-mu-ternt in K¢ and[t]¢ is the natural interpre-
tation of theCLC-termt in the Lafont categor¢, we get:

Lemmab5.1 If u : =—gA* is a CLC-typed lambda-term,
then[(Ca)u]e = [u]c;alg 4-

Theorem 5.2 Let ¢ be a lambda-mu-term,[¢] k.
[(C)Nk t*]e.

Proof: By induction, we consider each typing rule for the
lambda-mu-calculus:

ear systems allows to also embed the CPS-translations.

Plotkin’s translation is shown to correspond to the box
translation(.)® of LLP into LL,,, and Krivine’s translation
to the reversing ong)”. We therefore get:

Theorem 4.1 Up to some axiom reductions and some
expansions the following diagrams commute:

()~ ()~

m—2 e a—Y
o) lo)” o) lw
cLc - L, cLc Y. 11,

The proof relies on the following facts:

e For any lambda-mu typd we haved —" = 24°*".

e For any lambda-mu judgmeiit - ¢ : ©, A we have
Trt:0,A)"=TFt:0,A)".

e For any lambda-mu typd we haved —” = A*~.

e for a contraction or weakening rule, we use the
monoidality ofalg , and lemma 5.1;

o for the logical rules, we apply the induction hypothe-
sis, lemma 5.1 ander 4;alg 4, = IdA. O

6. Conclusion

We have shown how to establish a correspondence be-
tween call by name CPS-translations and the translations
fromLLP toLL,,. This can be extended to the call by value
case, by a positive embedding (typepositive formula) of
the lambda-mu-calculus ibLP. In particular for Plotkin's
call by value translation [23], we obtain the following dia-
gram:

OM

LLP

E

LL,q

AR

]

+



Azt =A) =

Azt t:—pA)” =

((tA_)B)uA . B)— —

(") =

()™ =

FrC) (@) B

F2(07) T\ {2(A7) ), (M), 7(A7) T ¥ B

= ?(r*)i, )"

F2(0T) T\ {2(A7) ), (@), (A7)

Fo(r ), A
; Fo(r ) 1A - (B)", B~
F o0yt (o), 74Ty 3 B Fo( ) 1A” @ (BY)Y, BT

Fery ), @), B

For ), AT

L S S R M. SRS
L

o)t ) (o))

Figure 2. Translation of CLC into LL,,



A call by value analogue of Krivine’s translation is possible  [7] V. Danos, J.-B. Joinet, and H. Schellinx. A new decon-
to define but would require to repla€t.C by a system with structive logic: Linear logic. Journal of Symbolic Logic
at most one formula on the left which is less natural. 62(3):755-807, 1997. _ _

This approach maps the CPS translations (from classical [8] J.-Y. Girard. Linear logic. Theoretical Computer Science
to intuitionistic logic) to the two translations)® and(.)? 50:1-102, 1987.

in i logic. A | S heck whether thi [9] J.-Y. Girard. A new constructive logic: classical logic.
in linear logic. A natural question Is to check whether this Mathematical Structures in Computer Sciendg3):225—

holds for any CPS translation. If it is the case, which is our 206, 1991.

current opinion, then the whole set of CPS translations can [10] T. Griffin. A formulae-as-types notion of control. Rro-

be classified into only two classes showing that many vari- ceedings of the 1990 Principles of Programming Languages
ations in the definitions of CPS translations are innocuous; Conference pages 47-58. IEEE Computer Society Press,
e.g. there is no difference between Plotkin’s translation and 1990.

Hofmann-Streicher one when viewing them as translations [11] M. Hofmann and T. Streicher. Continuation models are uni-
of LLP into LL. It could also be that there are CPS trans- versal for lambda-mu-calculus. Proceedings of the 12
lations the image of which are neithej® nor (.)?, which Symposium on Logic in Computer Scienoages 387-397,

. . . Warsaw, 1997. IEEE Computer Society Press.
would yield some new translation &LP into LL,. Al- [12] J.-L. Krivine. Lambda-Calcul : Types et Modeldstudes et

though we doubt such a new translation exists, it would cer- Recherches en Informatique. Masson, 1990.
tainly be very interesting for the theory of polarized linear [13] j.-L. Krivine. A general storage theorem for integers in

systems if one eventually shows up. call-by-nameA-calculus. Theoretical Computer Science
An interesting remaining question is to study CPS trans- 129:79-94, 1994,

lations in the framework of game semantics, in particu- [14] Y. Lafont. The linear abstract machin@heoretical Com-

lar using the first author game model fokP [17]. This puter Science59:157-180, 1988.

J. Laird. A game semantics of linearly used continuations.

could yield some similar relation between game semantics [15]
y 9 In A. Gordon, editorFoundations of Software Science and

for classical logic and abstract machines as the ones stud- Computation Structures/olume 2620 ofl ecture Notes in

ied i.n [5] .for intuitionigtic Iogic. There is also the \_Nork Computer Scienceages 313-327. Springer-Verlag, 2003,
by Jim Laird [15] mentioned in the introduction, that intro-  16] O Laurent. Etude de la polarisation en logiqueThése de

duces a special kind of game models for CPS translations. doctorat, Université Aix-Marseille 2, 2002.
The question remains open whether this game model is re-[17] O. Laurent. Polarized games (extended abstract)Prin
lated to the first author’'s one fauLP. ceedings of the seventeenth annual IEEE symposium on

Logic In Computer Sciengcpages 265—-274. IEEE Computer
Society Press, July 2002.
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