Proof Systems and n-ary Functors

CR15 CTCS — Homework 5 — return date: October 24, 2024

Olivier. Laurent @ens-lyon.fr

Exercise 1: Natural Deduction and Sequent Calculus

We consider propositional intuitionistic logic with two connectives \rightarrow and \wedge . Given a set of atoms denoted *X*, *Y*, etc, its formulas are:

$$A ::= X \mid A \to A \mid A \land A$$

Sequents have the shape $\Gamma \vdash A$ where Γ is a list of formulas. The rules of natural deduction NJ are:

$$\frac{\Gamma, A \vdash A}{\Gamma \vdash A \to B} \xrightarrow{\Gamma \vdash A} I \qquad \frac{\Gamma \vdash A \to B}{\Gamma \vdash B} \xrightarrow{\Gamma \vdash A} F \xrightarrow{\Gamma} E$$

$$\frac{\Gamma \vdash A}{\Gamma \vdash B} \wedge I \qquad \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash A} \wedge_1 E \qquad \frac{\Gamma \vdash A \wedge B}{\Gamma \vdash B} \wedge_2 E$$

- 1. Prove that if Γ , A, B, $\Delta \vdash C$ is provable in NJ, then Γ , B, A, $\Delta \vdash C$ as well.
- 2. Prove that if $\Gamma, \Delta \vdash C$ is provable in NJ, then $\Gamma, A, \Delta \vdash C$ as well.
- 3. Prove that if Γ , A, A, $\Delta \vdash C$ is provable in NJ, then Γ , A, $\Delta \vdash C$ as well.

The sequent calculus LJ is another deduction system for propositional intuitionistic logic using the same formulas and the same sequents but not the same rules:

$$\frac{\overline{A \vdash A} \ ax_m}{\overline{\Gamma, \Delta, \Sigma \vdash C}} \ cut \qquad \frac{\overline{\Gamma, A, B, \Delta \vdash C}}{\overline{\Gamma, B, A, \Delta \vdash C}} \ ex \qquad \frac{\overline{\Gamma, \Delta \vdash C}}{\overline{\Gamma, A, \Delta \vdash C}} \ wk \qquad \frac{\overline{\Gamma, A, A, \Delta \vdash C}}{\overline{\Gamma, A, \Delta \vdash C}} \ co$$

$$\frac{\overline{\Gamma, A \vdash B}}{\overline{\Gamma \vdash A \to B}} \rightarrow R \qquad \frac{\overline{\Delta \vdash A} \ \overline{\Gamma, B, \Sigma \vdash C}}{\overline{\Gamma, A \to B, \Delta, \Sigma \vdash C}} \rightarrow L$$

$$\frac{\overline{\Gamma \vdash A} \ \Delta \vdash B}{\overline{\Gamma, \Delta \vdash A \land B}} \ \wedge R \qquad \frac{\overline{\Gamma, A, B, \Delta \vdash C}}{\overline{\Gamma, A \land B, \Delta \vdash C}} \ \wedge L$$

- 4. Prove that if $\Gamma \vdash A$ is provable in LJ then $\Gamma \vdash A$ is provable in NJ.
- 5. Prove that if $\Gamma \vdash A$ is provable in NJ then $\Gamma \vdash A$ is provable in LJ.

Exercise 2: 0-ary Functors

Let \mathscr{C} be an arbitrary category. Let \mathbb{T} be the terminal category (one object, one morphism), and $\tau_{\mathscr{C}}$ the unique functor from \mathscr{C} to \mathbb{T} .

- 1. Describe what is a functor from \mathbb{T} to \mathscr{C} .
- 2. Given an object *C* of *C*, prove that mapping any object of *C* to *C* and any morphism to the identity on *C*, one gets a functor (called a *constant functor*).
- 3. Prove that constant functors from \mathscr{C} to \mathscr{C} are exactly compositions of $\tau_{\mathscr{C}}$ with a functor from \mathbb{T} to \mathscr{C} (and moreover this decomposition is unique).

Exercise 3: 2-ary Functors

Let \mathscr{C} be an arbitrary category. A *binoidal functor* on \mathscr{C} is a triple (o, φ, ψ) where:

- *o* is a function from pairs of objects of *C* to objects of *C*;
- φ is a family, indexed by objects *C* of \mathscr{C} , of functions $\varphi_C : \mathscr{C}(A, B) \to \mathscr{C}(o(A, C), o(B, C));$
- ψ is a family, indexed by objects *C* of \mathcal{C} , of functions $\psi_C : \mathcal{C}(A, B) \to \mathcal{C}(o(C, A), o(C, B))$.

such that:

- for each object *C* of \mathscr{C} , Φ_C which maps object *A* to o(A, C) and morphism $f \in \mathscr{C}(A, B)$ to $\varphi_C(f) \in \mathscr{C}(o(A, C), o(B, C))$ defines a functor from \mathscr{C} to \mathscr{C} ;
- for each object *C* of \mathscr{C} , Ψ_C which maps object *A* to o(C, A) and morphism $f \in \mathscr{C}(A, B)$ to $\psi_C(f) \in \mathscr{C}(o(C, A), o(C, B))$ defines a functor from \mathscr{C} to \mathscr{C} .
- 1. Prove that any bifunctor *F* on \mathscr{C} (*i.e.* functor from $\mathscr{C} \times \mathscr{C}$ to \mathscr{C}) defines a binoidal functor on \mathscr{C} with:

$$o(A, B) := F(A, B)$$

$$\varphi_C(f) := F(f, id_C)$$

$$\psi_C(f) := F(id_C, f)$$

Given a binoidal functor $H = (o, \varphi, \psi)$, we say that $f \in \mathcal{C}(A_1, B_1)$ is *central for* H if the following two diagrams commute for all $g \in \mathcal{C}(A_2, B_2)$:

- 2. Prove that central morphisms of *H* constitute a wide (*i.e.* with all objects) subcategory of *C*, called the *center* of *H*.
- 3. Prove that, in the construction of Question 1, all morphisms are central for the defined binoidal functor.
- 4. Prove that a binoidal functor on \mathscr{C} whose center is \mathscr{C} induces a bifunctor on \mathscr{C} .