Subject 2: The Category of Proof Nets

In the whole subject, we will restrict ax nodes in proof nets to have atomic formulas on conclusions (that is pairs X, X^{\perp}). These are called *axiom-expanded* proof nets.

The Category \mathbb{PN}

Formulas of multiplicative exponential linear logic with units are given by:

$$A ::= X \mid X^{\perp} \mid A \otimes A \mid 1 \mid A \ \mathfrak{F} A \mid \perp \mid !A \mid ?A$$

The notion of proof structure for multiplicative exponential linear logic is extended to the multiplicative units 1 and \perp by considering two new kinds of nodes: 1 and \perp of the same shape as the ?w nodes (no premise and one conclusion), with respectively one conclusion with label 1 and one conclusion with label \perp . Concerning the correctness criterion, we still consider only the acyclicity constraint on correctness graphs (no difference between the 1 and \perp nodes and the ?w nodes for that).

Question 1. Give, for each formula A, a cut-free (axiom-expanded) proof net with conclusions A and A^{\perp} .

Question 2. Define the cut elimination step involving a *cut* node with premisses labelled 1 and \perp .

Question 3. Prove that cut elimination of proof nets preserves the fact that axioms have atomic conclusions.

We define objects of \mathbb{PN} to be formulas of multiplicative exponential linear logic with units. Morphisms $\mathbb{PN}(A, B)$ from A to B are cut-free (axiom-expanded) proof nets with two conclusions A^{\perp} and B.

Question 4. Prove \mathbb{PN} defines a category if we consider the composition \mathcal{R}_1 ; \mathcal{R}_2 of a cut-free proof net \mathcal{R}_1 (with conclusions A^{\perp} and B) with a cut-free proof net \mathcal{R}_2 (with conclusions B^{\perp} and C) to be the unique normal from of the proof net obtained by introducing a *cut* node between the conclusions B and B^{\perp} of \mathcal{R}_1 and \mathcal{R}_2 .

Multiplicative Structure of \mathbb{PN}

Question 5. Define an operation \otimes on proof nets which extends the connective \otimes into a bi-functor on \mathbb{PN} (and prove one obtains a bi-functor).

Question 6.

- **a.** For any formulas A and B, define a proof net $s_{A,B}$ with conclusions $A^{\perp} \mathfrak{B} B^{\perp}$ and $B \otimes A$.
- **b.** For any formulas A and B, prove $s_{A,B}$; $s_{B,A}$ is the identity from $A \otimes B$ to $A \otimes B$.

Question 7.

- **a.** For any formulas A, B and C, define a proof net with conclusions $(A^{\perp} \mathfrak{P} B^{\perp}) \mathfrak{P} C^{\perp}$ and $A \otimes (B \otimes C)$.
- **b.** Prove this family of proof nets defines a natural isomorphism from $(_\otimes_)\otimes_$ to $_\otimes(_\otimes_)$.

Question 8. Prove $(\mathbb{PN}, \otimes, 1)$ has a structure of symmetric monoidal category.

Question 9.

- **a.** For any formulas A and B, define a proof net with conclusions $(A \otimes B^{\perp}) \ \mathfrak{A} A^{\perp}$ and B.
- **b.** For any formulas A and B, prove $A^{\perp} \mathfrak{B} B$ defines an exponential object of A and B in \mathbb{PN} .

We can conclude that \mathbb{PN} is a symmetric monoidal closed category.

Exponential Structure of \mathbb{PN}

Question 10. Define an operation ! on proof nets which extends the connective ! into a functor on \mathbb{PN} (and prove one obtains a functor).

Question 11. Extend ! into a co-monad on \mathbb{PN} .

Question 12.

- **a.** For any formula A, define a proof net w_A with conclusions A^{\perp} and 1.
- **b.** For any formula A, define a proof net c_A with conclusions A^{\perp} and $A \otimes A$.
- c. Is $(!A, c_A, w_A)$ a co-monoid in \mathbb{PN} ?
- **d.** Compare c_A ; $s_{!A,!A}$ and c_A (where $s_{A,B}$ is the proof net defined in Question 6).