Homework 5: Elementary linear logic CR13 course. P. Baillot

to be returned by nov 25, 2015

Notations: Here application in λ -calculus will be denoted as $(t \ u)$. We will also write $\lambda x_1 x_2 t$. pour $\lambda x_1 \cdot \lambda x_2 \cdot t$ (please indicate in case you use other notations).

We write <u>n</u> the Church (unary) integer $\lambda f x.(f(f \dots (f x) \dots))$ (with n occurrences of f).

We want to type the following λ -term in IELL:

$$t = \lambda n f x. (n f (n f (f x)))$$

1. Show that t is typable in simple types (or if you prefer in system F, or in LJ2) with the type:

$$[(\alpha \to \alpha) \to (\alpha \to \alpha)] \to (\alpha \to \alpha) \to (\alpha \to \alpha)$$

where α is a base type.

What does the term t compute when it is applied to the Church integer \underline{n} ?

2. We write \mathbf{N}_{α} the following IELL type for Church integers:

$$\mathbf{N}_{\alpha} = !(\alpha \multimap \alpha) \multimap !(\alpha \multimap \alpha).$$

In the following whenever we speak of an IELL derivation, we mean an IELL derivation decorated with terms. Give an IELL derivation for the following judgements:

$$y_1: !(\alpha \multimap \alpha), y_2: !(\alpha \multimap \alpha), f_3: !(\alpha \multimap \alpha) \vdash \lambda x.(y_1 (y_2 (f_3 x))): !(\alpha \multimap \alpha)$$
$$n_1: N_\alpha, n_2: N_\alpha \vdash \lambda f x.(n_1 f (n_2 f (f x))): \mathbf{N}_\alpha$$

Give an IELL derivation \mathcal{D} of $\vdash t : !N_{\alpha} \multimap !N_{\alpha}$, by using if necessary the previous derivations.

3. Translate the derivation \mathcal{D} into an ELL proof-net.

Denote as R the proof-net corresponding to the application $(t \ \underline{1})$. Perform the normalisation of R and explain if the normal proof-net obtained does correspond to the expected result.