Subject 1: Classical Sequent Calculus

to be returned on Friday, September 25th

In the whole subject, exchange rules can be left implicit.

Formulas are given by:

$$A ::= X \mid \neg A \mid A \land A \mid A \lor A \mid \top \mid \bot$$

where X ranges over the elements of a given countable set of variables.

Two-sided LK

We consider the following rules for two-sided classical sequent calculus LK:

Question 1. For each sequent below, if it is provable give a proof in two-sided LK, and if it is not provable try to give a short justification.

a.
$$X \vee X \vdash X$$

b.
$$X \vdash X \lor X$$

c.
$$X \wedge Y \vdash Y \wedge X$$

d.
$$\bot \land X \vdash Y$$

e.
$$Y \vdash \bot \land X$$

f.
$$(\neg X \land Y) \lor X \vdash Y$$

g.
$$Y \vdash (\neg X \land Y) \lor X$$

h.
$$X \wedge \neg X \vdash Y$$

i.
$$X \vee (Y \vee Z) \vdash (X \vee Y) \vee Z$$

j.
$$X \wedge (Y \vee Z) \vdash (X \wedge Y) \vee Z$$

k.
$$(X \wedge Y) \vee Z \vdash X \wedge (Y \vee Z)$$

1.
$$(X \wedge Y) \vee (Z \wedge T) \vdash (X \vee Z) \wedge (Y \vee T)$$

m.
$$(X \lor Z) \land (Y \lor T) \vdash (X \land Y) \lor (Z \land T)$$

n.
$$X \wedge (Y \vee Z) \vdash (X \wedge Y) \vee (X \wedge Z)$$

o.
$$(X \wedge Y) \vee (X \wedge Z) \vdash X \wedge (Y \vee Z)$$

$$\mathbf{p} \cdot \neg (X \vee \neg X) \vdash \neg (\neg X \wedge X)$$

$$\mathbf{q} \cdot \vdash (\neg(X \lor X) \lor Y) \lor X$$

$$\mathbf{r}.\ X \vee \neg (Y \wedge Z) \vdash \neg (\neg X \wedge Y) \vee \neg Z$$

One-sided LK

We consider the following rules for one-sided classical sequent calculus LK:

$$\begin{array}{c|c} \hline + A, \neg A & \frac{\vdash \Gamma, A & \vdash \Delta, \neg A}{\vdash \Gamma, \Delta} & \frac{\vdash \Gamma}{\vdash \sigma(\Gamma)} \\ \\ \frac{\vdash \Gamma, A, A}{\vdash \Gamma, A} & \frac{\vdash \Gamma}{\vdash \Gamma, A} & \overline{\vdash \Gamma, \top} \\ \\ \frac{\vdash \Gamma, A & \vdash \Delta, B}{\vdash \Gamma, \Delta, A \land B} & \frac{\vdash \Gamma, A}{\vdash \Gamma, A \land B} \\ \\ \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \lor B} & \frac{\vdash \Gamma, A}{\vdash \Gamma, A \lor B} & \frac{\vdash \Gamma, B}{\vdash \Gamma, A \lor B} \\ \hline \end{array}$$

Question 2. For every sequent of Question 1, if it is provable in two-sided LK, give its one-sided translation and prove it in one-sided LK.

Question 3. If $\vdash \Gamma$ is provable in one-sided LK, prove that $\vdash \Gamma[^A/_X]$ is provable as well for any formula A.