Subject 1: Classical Sequent Calculus

to be returned on Tuesday, September 19th

In the whole subject, exchange rules can be left implicit.

Logitext

http://logitext.mit.edu/

Go to the url above or directly to the tutorial http://logitext.mit.edu/tutorial and play with it (you may focus on the propositional part, and look at quantifiers only if you are really interested).

Question 1. In the Summary section, explain for each rule: which connective is introduced? is it a left or a right rule? is it an additive or multiplicative rule? what is its arity?

Two-sided LK

Formulas are given by:

$$
A::=X|\neg A| A \wedge A|A \vee A| \top \mid \perp
$$

where X ranges over the elements of a given countable set of variables. We consider the following rules for the two-sided classical sequent calculus LK:

$$
\begin{aligned}
& \overline{A \vdash A} \quad \frac{\Gamma \vdash \Delta, A \quad A, \Gamma^{\prime} \vdash \Delta^{\prime}}{\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}} \quad \frac{\Gamma \vdash \Delta}{\sigma(\Gamma) \vdash \tau(\Delta)} \\
& \frac{\Gamma \vdash \Delta, A, A}{\Gamma \vdash \Delta, A} \quad \frac{\Gamma, A, A \vdash \Delta}{\Gamma, A \vdash \Delta} \quad \frac{\Gamma \vdash \Delta}{\Gamma \vdash \Delta, A} \quad \frac{\Gamma \vdash \Delta}{\Gamma, A \vdash \Delta} \\
& \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \quad \frac{\Gamma \vdash \Delta, A}{\Gamma, \neg A \vdash \Delta} \quad \overline{\Gamma \vdash \Delta, \top} \quad \overline{\Gamma, \perp \vdash \Delta} \\
& \frac{\Gamma \vdash \Delta, A \quad \Gamma^{\prime} \vdash \Delta^{\prime}, B}{\Gamma, \Gamma^{\prime} \vdash \Delta, \Delta^{\prime}, A \wedge B} \quad \frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta} \\
& \frac{\Gamma \vdash \Delta, A \quad \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \wedge B} \quad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta} \quad \frac{\Gamma, B \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta} \\
& \frac{\Gamma, A \vdash \Delta \quad \Gamma^{\prime}, B \vdash \Delta^{\prime}}{\Gamma, \Gamma^{\prime}, A \vee B \vdash \Delta, \Delta^{\prime}} \quad \frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \vee B} \\
& \frac{\Gamma, A \vdash \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \vee B \vdash \Delta} \\
& \frac{\Gamma \vdash \Delta, A}{\Gamma \vdash \Delta, A \vee B} \quad \frac{\Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \vee B}
\end{aligned}
$$

Question 2. For each sequent below, if it is provable give a proof in two-sided LK, and if it is not provable try to give a short justification.
a. $X \vee X \vdash X$
b. $X \vdash X \vee X$
c. $X \wedge Y \vdash Y \wedge X$
d. $\perp \wedge X \vdash Y$
e. $Y \vdash \perp \wedge X$
f. $(\neg X \wedge Y) \vee X \vdash Y$
g. $Y \vdash(\neg X \wedge Y) \vee X$
h. $X \wedge \neg X \vdash Y$
i. $X \vee(Y \vee Z) \vdash(X \vee Y) \vee Z$
j. $X \wedge(Y \vee Z) \vdash(X \wedge Y) \vee Z$
k. $(X \wedge Y) \vee Z \vdash X \wedge(Y \vee Z)$
l. $(X \wedge Y) \vee(Z \wedge T) \vdash(X \vee Z) \wedge(Y \vee T)$
m. $(X \vee Z) \wedge(Y \vee T) \vdash(X \wedge Y) \vee(Z \wedge T)$
n. $X \wedge(Y \vee Z) \vdash(X \wedge Y) \vee(X \wedge Z)$
o. $(X \wedge Y) \vee(X \wedge Z) \vdash X \wedge(Y \vee Z)$
p. $\neg(X \vee \neg X) \vdash \neg(\neg X \wedge X)$
q. $\vdash(\neg(X \vee X) \vee Y) \vee X$
r. $X \vee \neg(Y \wedge Z) \vdash \neg(\neg X \wedge Y) \vee \neg Z$

One-sided LK

We consider the following rules for the one-sided classical sequent calculus LK:

$$
\begin{array}{ccc}
\frac{\vdash \Gamma, \neg A}{\vdash A, \neg A} & \frac{\vdash \Gamma, A}{\vdash \Gamma, \Delta} & \frac{\vdash \Gamma}{\vdash \sigma(\Gamma)} \\
\frac{\vdash \Gamma, A, A}{\vdash \Gamma, A} & \frac{\vdash \Gamma}{\vdash \Gamma, A} & \frac{\vdash \Gamma, \top}{\vdash} \\
\frac{\vdash \Gamma, A}{\vdash \Gamma, \Delta, A \wedge B} & \frac{\vdash \Gamma, A}{\vdash \Gamma, A \wedge B} \\
\frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \vee B} & \frac{\vdash \Gamma, A}{\vdash \Gamma, A \vee B} & \frac{\vdash \Gamma, B}{\vdash \Gamma, A \vee B}
\end{array}
$$

Question 3. For every sequent of Question 2, if it is provable in two-sided LK, give its one-sided translation and prove it in one-sided LK.

Question 4. If $\vdash \Gamma$ is provable in one-sided $L K$, prove that $\vdash \Gamma\left[{ }^{A} / X\right]$ is provable as well for any formula A.

