Subject 2: Zoology of Linear Formulas

to be returned on Monday, October 6th

In the whole subject, we work in multiplicative exponential linear logic (MELL), and exchange rules can be left implicit.

1 Synchrony and Polarity

Synchronous Formulas

A formula S of linear logic is called *synchronous* if S is linearly equivalent to !S (denoted $S \sim !S$), which means that both $\vdash S^{\perp}, !S$ and $\vdash ?(S^{\perp}), S$ are provable.

Question 1. Prove 1 is synchronous.

Question 2. Prove \perp is not synchronous.

Question 3. Prove !A is synchronous for any A.

Question 4. Prove $S_1 \otimes S_2$ is synchronous if S_1 and S_2 are both synchronous.

Question 5. If S_1 and S_2 are two synchronous formulas, show that $\vdash S_1, S_2$ cannot be provable.

Asynchronous Formulas

A formula L of linear logic is called *asynchronous* if L is linearly equivalent to ?L (*i.e.* both $\vdash L^{\perp}$, ?L and $\vdash !(L^{\perp})$, L are provable).

Question 6. Prove L is asynchronous if and only if L^{\perp} is synchronous.

Question 7. Find an asynchronous formula L and two synchronous formulas S_1 and S_2 such that $\vdash L, S_1, S_2$ is provable.

Question 8. Prove no formula can be both synchronous and asynchronous.

Question 9. Give a formula which is neither synchronous nor asynchronous.

Question 10. Prove the following generalized weakening rule is derivable for any asynchronous formula L:

$$\vdash \Gamma$$

 $\vdash \Gamma, L$

Question 11. Prove the following generalized contraction rule is derivable for any asynchronous formula *L*:

$$\stackrel{\vdash \Gamma, L, L}{\vdash \Gamma, \bar{L}}$$

Question 12. Prove the following generalized promotion rule is derivable for any Λ which is a list of asynchronous formulas:

$$\vdash \stackrel{}{\Lambda}, \stackrel{}{\underline{A}}$$

Regular Formulas

A formula R of linear logic is called *regular* if R is linearly equivalent to ?!R.

Question 13. Prove \perp is regular.

Question 14. Prove ?S is regular for any synchronous formula S.

Question 15. Prove ?!A is regular for any formula A.

Question 16. Prove $R_1 \ \Re R_2$ is regular if R_1 and R_2 are both regular.

Polarized Formulas

Positive (P) and negative (N) formulas are defined through the following grammar:

Question 17. Prove any positive formula is synchronous.

Question 18. Prove any negative formula is asynchronous.

Question 19. Prove, if P and Q are two positive formulas, there is no polarized context Γ (*i.e.* containing only positive and negative formulas) such that $\vdash \Gamma, P, Q$ is provable in MELL.

2 Exponential Modalities

An exponential modality μ is an arbitrary (possibly empty) sequence built with the two exponential connectives ! and ? (*i.e.* an element of $\mathcal{M} = \{!, ?\}^*$). It can be considered itself as a unary connective. This leads to the notation μA for applying an exponential modality μ to a formula A.

An exponential modality μ is *smaller* than an exponential modality ν (denoted $\mu \leq \nu$) if, for any formula A of MELL, $\vdash (\mu A)^{\perp}, \nu A$ is provable (*i.e.* $\mu A \multimap \nu A$). Two exponential modalities μ and ν are *equivalent* (denoted $\mu \sim \nu$) if $\mu \leq \nu$ and $\nu \leq \mu$.

Question. Characterize the relation induced by \leq on the quotient set \mathcal{M}/\sim .