Subject 2: Linear Sequent Calculus

to be returned on Tuesday, September 26th

In the whole subject, exchange rules can be left implicit.

MLL

Formulas are given by:

$$
A::=X\left|X^{\perp}\right| A \otimes A|A \curvearrowright A| 1 \mid \perp
$$

where X ranges over the elements of a given countable set \mathcal{V} of variables.
We consider the following rules for the one-sided multiplicative linear sequent calculus MLL:

$$
\begin{array}{ccc}
\frac{\vdash \Gamma, A \vdash \Delta, A^{\perp}}{\vdash A, A^{\perp}} \text { cut } & \frac{\vdash \Gamma}{\vdash \sigma(\Gamma)} e x \\
\frac{\vdash \Gamma, A}{\vdash \Gamma, \Delta, A \otimes B} \otimes & \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \ngtr B} \gg 1 & \frac{\vdash \Gamma}{\vdash 1} \perp
\end{array}
$$

Question 1. For each sequent below, if it is provable give a proof in one-sided MLL, and if it is not provable try to give a short justification.
a. $\vdash \perp, X^{\perp} 8 X$
b. $\vdash X \otimes Y, Y^{\perp} \mathcal{\gamma}\left(1 \otimes X^{\perp}\right)$
c. $\vdash X \otimes X, X^{\perp} \otimes X^{\perp}$
d. $\vdash X^{\perp}, X \otimes\left(X^{\perp} \ngtr X\right)$
e. $\vdash Y \not X^{\perp}, \perp \otimes \perp, X, Y^{\perp}$
f. $\vdash X \otimes\left(Y \ngtr X^{\perp}\right), X^{\perp}, X$
g. $\vdash X^{\perp} \ngtr\left(Y^{\perp} \otimes Z^{\perp}\right),(X \otimes Y) \mathcal{P} Z$
h. $\vdash X^{\perp} \otimes X,\left(X^{\gamma} X^{\perp}\right) \otimes\left(X^{\prime} \not 又 X^{\perp}\right)$
i. $\vdash X \not \mathcal{P}^{\perp} X^{\perp},\left(X^{\perp} \otimes X\right) \not \mathcal{P}^{(}\left(X^{\perp} \otimes X\right)$

Question 2. Prove the following facts about MLL:
a. $\vdash A \otimes B$ is provable if and only if both $\vdash A$ and $\vdash B$ are provable.
b. If $\vdash 1, A \otimes B$ is provable then either $\vdash A$ or $\vdash B$ is provable.
c. If $\vdash A \otimes B, C \otimes D$ is provable then $\vdash A$ or $\vdash B$ or $\vdash C$ or $\vdash D$ is provable.
d. Let $\sharp_{1}(\Gamma)$ be the number of occurrences of 1 in $\Gamma, \sharp \otimes(\Gamma)$ be the number of occurrences of \otimes in $\Gamma, \sharp \mathcal{V}(\Gamma)$ be the number of occurrences of elements of \mathcal{V} not below a ${ }_{-}^{\perp}$ in Γ, prove that $\sharp_{1}(\Gamma)+\sharp \mathcal{V}(\Gamma)=1+\sharp \otimes(\Gamma)$ for all Γ such that $\vdash \Gamma$ is provable.
e. Assuming that $\vdash A$ is provable, show $\vdash A, A$ is not provable.

Question 3. Define the formulas and rules of two-sided MLL (do not forget to be careful with negation).

MALL

Formulas are given by:

$$
A::=X\left|X^{\perp}\right| A \otimes A|A \ngtr A| 1|\perp| A \& A|A \oplus A| \top \mid 0
$$

where X ranges over the elements of a given countable set \mathcal{V} of variables.
We consider the following rules for the one-sided multiplicative-additive linear sequent calculus MALL:

$$
\begin{array}{rccc}
\frac{\vdash P, A^{\perp}}{\vdash} a x & \frac{\vdash \Gamma, A \vdash \Delta, A^{\perp}}{\vdash \Gamma, \Delta} \text { cut } & \frac{\vdash \Gamma}{\vdash \sigma(\Gamma)} e x \\
\frac{\vdash \Gamma, A \vdash \Delta, B}{\vdash \Gamma, \Delta, A \otimes B} \otimes & \frac{\vdash \Gamma, A, B}{\vdash \Gamma, A \ngtr B} \ngtr & \frac{\vdash 1}{\vdash 1} & \frac{\vdash \Gamma}{\vdash \Gamma, \perp} \perp \\
\frac{\vdash \Gamma, A}{\vdash \Gamma, A \& B} \& & \frac{\vdash \Gamma, A}{\vdash \Gamma, A \oplus B} \oplus_{1} & \frac{\vdash \Gamma, B}{\vdash \Gamma, A \oplus B} \oplus_{2} & \stackrel{\vdash \Gamma}{\vdash \Gamma, \top} \top
\end{array}
$$

Question 4. For each sequent below, if it is provable give a proof in one-sided MALL, and if it is not provable try to give a short justification.
a. $\vdash X, X \oplus X^{\perp}$
b. $\vdash X^{\perp}, X \oplus X$
c. $\vdash X^{\perp}, X \& X$
d. $\vdash X^{\perp}, X \& X^{\perp}$
e. $\vdash X^{\perp}, X \&(X \oplus Y)$
f. $\vdash X, X^{\perp} \oplus\left(X^{\perp} \& Y^{\perp}\right)$
g. $\vdash 0, \top \gg X$
h. $\vdash X^{\perp} \&\left(Y^{\perp} \oplus Z^{\perp}\right),(X \oplus Y) \&(X \oplus Z)$
i. $\vdash X^{\perp} \ngtr\left(Y^{\perp} \oplus Z^{\perp}\right),(X \otimes Y) \&(X \otimes Z)$
j. $\vdash X^{\perp} \not 8\left(Y^{\perp} \& Z^{\perp}\right),(X \otimes Y) \oplus(X \otimes Z)$
k. $\vdash\left(X^{\perp} \gg Y^{\perp}\right) \oplus\left(X^{\perp} \ngtr Z^{\perp}\right), X \otimes(Y \& Z)$

1. $\vdash\left(X^{\perp} \ngtr Y^{\perp}\right) \&\left(X^{\perp} \ngtr Z^{\perp}\right), X \otimes(Y \oplus Z)$
