Subject 3: Multiplicative Proof-Nets

to be returned on Tuesday, October 10th

Formulas are given by:

$$A ::= X \mid X^{\perp} \mid A \otimes A \mid A \Re A$$

where X ranges over the elements of a given countable set $\mathcal V$ of variables.

We consider the following rules for the one-sided multiplicative linear sequent calculus MLL:

$$\frac{-\Gamma, A - \Delta, A^{\perp}}{\Gamma, A} = \frac{\Gamma, A - \Delta, A^{\perp}}{\Gamma, \Delta} cut \qquad \frac{\Gamma}{\Gamma, A - \Delta, B} ex$$

$$\frac{\Gamma, A - \Delta, B}{\Gamma, \Delta, A \otimes B} \otimes \frac{\Gamma, A, B}{\Gamma, A, B}$$

We only use the terminology *proof-net* for a proof-structure which satisfies the Danos-Regnier correctness criterion. A proof-structure is *atomic* if the conclusions of all its axiom nodes are labelled with atomic formulas (that is of the shape X or X^{\perp}).

Proof Nets

Question 1. For each sequent below, give a proof in MLL and the associated proof-net.

$$\mathbf{a} \cdot \vdash X^{\perp}, X \otimes (X^{\perp} \Im X)$$

b.
$$\vdash X^{\perp} \Re (Y^{\perp} \otimes Z^{\perp}), (X \otimes Y) \Re Z$$

$$\mathbf{c.} \vdash X^{\perp} \otimes X, (X \Im X^{\perp}) \otimes (X \Im X^{\perp})$$

$$\mathbf{d.} \; \vdash X \; \mathfrak{P} \; X^{\perp}, (X^{\perp} \otimes X) \; \mathfrak{P} \; (X^{\perp} \otimes X)$$

Question 2. For each formula below, give all possible atomic cut-free proof-structures with this formula as unique conclusion. For all the obtained proof-structures, check whether they satisfy the Danos-Regnier criterion or not. For each obtained proof-structure which satisfies the criterion, give a sequentialization in MLL.

a.
$$X \Re X^{\perp}$$

b.
$$(X \otimes X^{\perp}) \Im (X \Im X^{\perp})$$

c.
$$(X \otimes X^{\perp}) \otimes (X \Im X^{\perp})$$

d.
$$(X \otimes X^{\perp}) \Re (X \otimes X^{\perp})$$

e.
$$(X \, {}^{\mathfrak{P}} X^{\perp}) \, {}^{\mathfrak{P}} (X \, {}^{\mathfrak{P}} X^{\perp})$$

f.
$$(X \stackrel{\mathcal{P}}{\mathcal{P}} X^{\perp}) \otimes (X \stackrel{\mathcal{P}}{\mathcal{P}} X^{\perp})$$

$$\mathbf{g}. ((X \otimes X^{\perp}) ? (X \otimes X^{\perp})) ? (X ? X^{\perp})$$

h.
$$(X \otimes (Z \stackrel{\mathfrak{R}}{Y} Y)) \stackrel{\mathfrak{R}}{Y} (((Y^{\perp} \stackrel{\mathfrak{R}}{Y} X^{\perp}) \otimes (U^{\perp} \stackrel{\mathfrak{R}}{Y} V^{\perp})) \stackrel{\mathfrak{R}}{Y} ((V \stackrel{\mathfrak{R}}{Y} Z^{\perp}) \otimes U))$$

Boolean Computation

We consider the formula $\mathbf{B} = (X^{\perp} \, \mathfrak{P} \, X^{\perp}) \, \mathfrak{P} \, (X \otimes X).$

Question 3. Give all the cut-free proof-nets with a unique conclusion labelled B.

Among the two atomic proof-nets of Question 3, only one can be obtained by axiom expansion. We call it TRUE. The other atomic one is called FALSE. The set of Booleans is $\mathbb{B} = \{\text{true}, \text{false}\}$ and we define a translation of Booleans into proof-nets: $\overline{\text{true}} = \text{TRUE}$ and $\overline{\text{false}} = \text{FALSE}$. A function f from \mathbb{B} to \mathbb{B} is said to be represented by the proof-net \mathcal{R} with two conclusions \mathbf{B}^{\perp} and \mathbf{B} if the normal form of the proof-net \mathcal{R}_b (obtained by putting a cut node between the conclusion \mathbf{B} of \overline{b} and the conclusion \mathbf{B}^{\perp} of \mathcal{R}) is $\overline{f(b)}$, for any $b \in \mathbb{B}$.

Question 4. Give a proof-net representing the negation function $\mathbb{B} \to \mathbb{B}$:

$$\mathsf{true} \mapsto \mathsf{false}$$

$$\mathsf{false} \mapsto \mathsf{true}$$

Question 5. Give all the atomic cut-free proof-nets with two conclusions: \mathbf{B}^{\perp} and \mathbf{B} .

Question 6. Give a function from \mathbb{B} to \mathbb{B} which cannot be represented by a proof-net.