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We give the ingredients of the correspondence between proof systems based on sequent
calculus on one side, and categories on the other side. These are basic blocks of categorical
logic. It is one of the components of the Curry-Howard-Lambek correspondence:

logics

N

A-calculi categories

1 Categories

1.1 Identity Logic

Given a set X’ of propositional variables (whose elements are denoted X, Y, etc.), we start with

a very simple notion of formula:
A:=X

Sequents are pairs of formulas denoted A + B, and proofs are built using two rules:

azx AFB BEC

AFA AFC cut
Proposition 1 (Cut Elimination)
Using the following proof transformations:
T
—azx T
A}—AAl_BAI—B cut > AL B
d —aw T
Al_BAl—BBI_B cul — A+ B

any proof can be turned into a cut-free one.

Proof. By induction on the number of (cut) rules in the proof by selecting a top-most (cut)
rule. O
1.2 Category

1.2.1 Definitions

Definition 1 (Category)
A category C is given by a class of objects 0obj(C) and, for each pair of objects A and B in
0bj(C), a class of morphisms (or arrows) C(A, B) from A to B together with:



o identities: idg € C(A, A) for each object A:
ida

A——=A

e composition: C(A, B) x C(B,C) — C(A,C), denoted by (f,g9) — f;¢:

A N B
g
AN
C
such that the following diagrams commute:
Ay A—1.B A-1.p
X f f\\\ iidB f;gl ig;h

B B C — D

We can “summarize” these four diagrams into:

A*f>B A*f>B
idAl N\ lids f;gl / J{g;h
A——2B C——=D
f h

1.2.2 Category Rel

The category Rel of relations have sets as objects and given two sets A and B, the morphisms
are Rel(A, B) := P(A x B). The identity is the diagonal relation: idq = {(a,a) | a € A}. The
composition is the composition of relations: R ;S = {(a,c¢) | 3b, (a,b) € RA (b,c) € S}.

One can chech this is indeed a category since:

ida; R ={(a,b) | 3d’, (a,ad’) € ida A (d’,b) € R}
= {(a,b) | (a,a) € idg A (a,b) € R}
=R

R:idg = {(a,b) | 3V, (a,0)) € RA (V) € idy)
=R

R;(S;T)={(a,d) | 3b,(a,b) € RA(b,d) € S;T}

={(a,d) | 3b,3c, (a,b) € RA (b,c) € SA(c,d) € T}
={(a,d) | 3¢, (a,c) € R; S A (c,d) € T}
= (R;8);T

1.3 Interpretation
Given a category C, and a function V from X to 0bj(C), we interpret:
e each formula A as an object [A] of C;

e cach proof m of A+ B as a morphism [r] from [A] to [B].



This is given by:
o [X]=V(X);

e a proof m containing just an (az) rule with conclusion A F A is interpreted as [A] A [A] 5

e a proof m with conclusion A F C obtained by applying a (cut) rule to a proof 7m; with con-

clusion A F B and a proof w9 with conclusion B + C'is interpreted as [A] M [B] M) [C] -

Theorem 1 (Soundness)
If T maps to @' by cut elimination (Proposition 1) then [r] = [#'].

Proof. The two rewriting steps are interpreted as equalities in C since id4y; f = f and f;idp) =
I
2 Monoidal Categories

2.1 Non-Commutative Tensor Logic

We extend the grammar of formulas with a binary connective ® and its unit 1:
A:=X|A®A|1

The shape of sequents is I' = A where I' is a list of formulas and A is a formula. Proofs are
built using the following rules:

oz r-A AAYEB .
AFA AT.SFB cu
'A AFB I''A,B,AFC —— 1R LAFC
T AFAwB °F T AoB Arc OF -1 T LAFC
Proposition 2 (Cut Elimination)
Using the following proof transformations:
—azx T T
AFA I'NA,AFB
AL B cut I, A,A+B
g ——azx T
FI-BFl_BBI—B cut — ' B
T ) 3 2 3
THA AFB >, A, B,=+C m AFB X, A,B,=+C
TAFAwB °F Z,A@B,EI—C®Lt A S S AANZFC tC“t
S T,AZFC cu S T,AZFC e

as well as various commutations of (cut) rules with other rules, any proof can be turned into a
cut-free one.



2.2 Monoidal Category
2.2.1 Definitions

Definition 2 (Product Category)
The product C x D of two categories C and D is the category with:

e objects are pairs of objects of C and objects of D: 0bj(C x D) := 0bj(C) x obj(D);

e morphisms from (A, A’) to (B, B’) are pairs of morphisms of C from A to B and morphisms
of D from A’ to B": CxD((A,A"),(B,B")) =C(A,B) x D(A', B');

e identity on (A, A’) is the pair (idya, idas);
e composition of (f, f) and (g,9") is (f;9,f"; 9)-

Definition 3 (Isomorphism)

An isomorphism f from the object A to the object B is a morphism from A to B such that
there exists a morphism g from B to A (called the inverse of f, and often denoted f~1) such
that the following diagrams commute:

A-t.p B-2-4
N N
A B

We can “summarize” these two diagrams into:

w(CAa_ B

Definition 4 (Functor)
A functor F between two categories C and D is:

e a function from the objects of C to the objects of D;
e and for each A and B, a function from C(A4, B) to D(F A, FB)

such that the following diagrams in D commute:

Fida FA —>Ff FB
T
FA FA l Py
~— F(f;9)
idpa FC

The composition of two functors is a functor.

Definition 5 (Identity Functor)
If C is a category, the identity functor Idc from C to C is defined by:

o for each A € 0bj(C), IdcA = A
e if A and B are in 0bj(C) and f € C(A,B), Idcf = f



Definition 6 (Bifunctor)
A bifunctor from two categories C and D to a category E is a functor from C x D to E.
More concretely, it is given by:

e a function from 0bj(C) x 0bj(D) to obj(E)

e for each A and B in 0bj(C) and A" and B’ in 0bj(D), a function from C(A, B) x D(A’, B)
to E(FAA', FBB')

such that the following diagrams in E commute:

| Pidaidy rad 1 ppp
FAA FAA \ ngg,
¥'d/ F(f;9)(f59")
idp g a7 FCC'

In particular, the following diagram commutes:

Ffid 4/
pan ™ ppar

FidAf’l WL le‘dBf’

FAB' —— FBB’
Ffidg:

If A is an object of C and F' a bifunctor from C and D to E, FFA_ is a functor from D to E
which maps B to FAB and f' to Fidaf'. As a consequence, one often uses the notations F'Af’
for Fidaf' and F fB for F fidg, if A is an object of C and B is an object of D.

All this can be generalized to notions of n-ary functors.

Definition 7 (Natural Transformation)

A natural transformation o between two functors F' and G from a category C to a category I
is a family (a4) Acobjc) of morphisms from FA to GA such that the following diagram in D
commutes for all f € C(A, B):

rA- " pp

A natural isomorphism is a natural transformation o« such that each element o4 is an
isomorphism.

Definition 8 (Monoidal Category)
A monoidal category is a 6-tuple (C,®, 1, a, A, p) where:

e ® is a bifunctor from C and C to C

1 is an object of C
e « is a natural isomorphism from (-® /) ® " to _® (/' ® ")
e )\ is a natural isomorphism from 1 ® _ to Id¢

e p is a natural isomorphism from - ® 1 to Idc



such that the following diagrams commute:

(A® B) ®

(C® D)
% m

(A®B)®C)& ® (B (C @ D))

QAM %cz)

(A (Be(C) @D ———=AR(B®C)® D)

QA BRC,D

QA 1B

(A®1)® B = A® (1@ B)

PM %}3

A®B

2.2.2 Properties
Let us consider a fixed monoidal category (C,®,1,a, A, p).

Lemma 1 (Equality up to - ® id; and id; ® _)

Let A and B be two objects of C and f and g be two morphisms of C from A to B, f ® id; =

gRId < f=g < i1 Qf=id1 ®g.

ProOOF: We have f = ¢ implies both f ® id; = ¢ ® id; and id; ® f = id; ® g. Now assume
id] ® f = id; ® g, the following diagram commutes:

f
idi1®f
— T
A<M 154 1o B B
\_/
1d1 ®g

g

since the two squares commute by naturality of A\. We conclude f = /\;11 1l @ fi A =
)\;1 ;1d1 ® g3 Agp = g since A4 is an isomorphism. Similarly, we obtain the implication
f®idy = g ®idy = f = g by naturality of p. O

Lemma 2 (Unit of Unit)
Let A be an object of C, pag1 = pa®id1: (A1) ®1 > A® 1.

PROOF: By naturality of p, we have:

Ao 1% 451

pA®1l ip,q

A1 A

thus, since p4 is an isomorphism, pag1 = pa ® id;.



Lemma 3 (Associativity of Unit)
Let A and B be two objects of C, the following diagram commutes:

®A,B,1

(A B)®1 : A®(B®1)
M %3
A®B
Proor: The following diagram commutes:
(AeB)®1)®1 45181k (AR (B®1)®1
AARB,1,1 (@) A,B®1,1
@A,B,191 ida®ap 1,1

(ApB)e(1®1) AR(BR(1®1)=—""A®((Be1)®1)

(d)

ida®(idp®A1) A®(pp®idy)
B
© (e)

A®(B®1)

idag B

pPAgB®idy (idA®pp)@idy

QA,B,1

(A B)®1

pentagon of monoidal categories

(a)
(b) triangle of monoidal categories
) naturality of «

)

triangle of monoidal categories
(e) naturality of «
And we conclude with Lemma 1 since a4 g 1 is an isomorphism. O

Lemma 4 (Unit at Unit)
In any monoidal category, p1 = A1.

PrOOF: The following diagram commutes:

@1,1,1 a1,1,1
1® (1 X 1 (a) p1®1d1 pe1  (c) 1® 1)
Zd1®>\1 2d1®p1

(a) triangle of monoidal categories
(b) Lemma 2
(¢) Lemma 3

by:

We thus have id; ® A1 = id; ® p1 since o 1,1 is an isomorphism, and finally A\ = p; by

Lemma 1. O



2.2.3 Category Rel

Lemma 5 (Bijective Relations)
Let A and B be two sets and R a relation between A and B, R is an isomorphisms if and only
if it is the graph of a bijection from A to B.

PrOOF: If R is the graph of a bijection f, we define S = {(b,a) | b= f(a)}. We have:

R;S ={(a,d")|3b,(a,b) € RA(b,d') € S}
={(a,a) | 3b, f(a) =bAb= f(a)}
={(a,a’) | f(a) = f(d')}

= idy

and similarly S'; R = idp.

If R is an isomorphism, let S be its inverse. For each a € A, since (a,a) € idgy = R ; S,
there exists b € B such that (a,b) € R and (b,a) € S. For any a € A and b € B such
that (a,b') € R, we have (b,b') € S; R = idg thus b = b'. This means that for any a € A,
there is a unique b € B such that (a,b) € R. a

The monoidal structure of the category Rel is given by:

e The tensor product of two sets A and B is the product A® B := A x B. It is not a
cartesian product (in the categorical sense) in the category Rel.

e Given two relations R between A and B, and S between A’ and B’, their tensor product
is RS :={((a,d), (b)) | (a,b) € RA(d',V) € S} between A x A" and B x B'.

e The unit of ® is 1 := {x} (a fixed singleton).

e Following Lemma 5, a4 p ¢ is obtained from the canonical bijection between (A x B) x C
and A x (B x C): ((a,b),c) — (a,(b,c)).

e Following Lemma 5, A4 is obtained from the canonical bijection between 1 x A and A:
(%,a) — a.

e Following Lemma 5, p4 is obtained from the canonical bijection between A x 1 and A:
(a,%) — a.

® defines a bifunctor, a, A and p are natural isomorphisms and the two diagrams of monoidal
categories commute. For example:

®A1,B

((a,%),) (a, (x,))

pA% %@AB

(a,b)

2.3 Interpretation

We extend the approach of Section 1.3. Connectives are interpreted by using functors of the
appropriate arity. In particular units are interpreted as objects, and binary connectives by
using bifunctors. Rules operate on morphisms by means of the morphisms parts of functors and
associated natural transformations.

Given a monoidal category (C,®, 1, a, A, p), and a function V from X to 0bj(C), we interpret:



e cach formula A as an object [A] of C;

e each proof 7 of Ay,..., Ax F B as a morphism [r] from 1 to [B] if £ = 0, from [A;] to
[B] if k =1, and from [A1] ® ([A2] @ - - - ([Ak—1] ® [Ak])) to [B] if k > 2.

It is important to notice that, thanks to the diagrams in the definition of monoidal categories
and properties like Lemmas 1, 2, 3 and 4, different ways of associating [A;] ® --- ® [Ag], or
of introducing some 1s in such a big ®, are all related through a unique isormorphism built
from «, X\ and p. As a consequence we will ignore such associativity /unit questions and write
[A1, ..., A] = [A1] @ - - @ [Ag].

The interpretation is given by:

o [X]=V(X), [A® B] = [A] ® [B], and [1] = 1;
e a proof 7 containing just an (az) rule with conclusion A - A is interpreted as [A] M [A] 5

e a proof m with conclusion A, T',¥ B obtained by applying a (cut) rule to a proof m;
with conclusion I' + A and a proof my with conclusion A, A,Y - B is interpreted as

[A] @[] & [5] 2 iAo (4] @ 57 2L 18] -

e a proof m with conclusion I'; A = A ® B obtained by applying a (®R) rule to a proof
m with conclusion I' + A and a proof my with conclusion A F B is interpreted as

[r] & [A] L 4) 0 18] -

e a proof m with conclusion I'; A ® B, A + C obtained by applying a (®L) rule to a proof
m1 with conclusion T', A, B, A = C' is interpreted as [I']  ([A] ® [B]) @ [A] ml [c] -

Note the use of « is hidden here, thanks to the remark above.

e a proof 7 with conclusion F 1 containing just a (1R) rule is interpreted as 1 ‘%, [1] -

e a proof 7 with conclusion I', 1, A F C obtained by applying a (1L) rule to a proof m; with

[m1]

PN r) e [a] 2L o -

conclusion I'y A F C is interpreted as [T] ® [1] ® [A]

Theorem 2 (Soundness)
If T maps to @' by cut elimination (Proposition 2) then [r]] = ['].

3 Symmetry

3.1 Tensor Logic

We simply extend non-commutative tensor logic with an exchange rule:

T,A B,AFC
T,B,A,AFC

€T



3.2 Symmetric Monoidal Category
3.2.1 Definition

Definition 9 (Symmetric Monoidal Category)
A symmetric monoidal category is a 7T-tuple (C,®, 1, a, A, p,y) where:

e (C,®,1,a, A, p) is a monoidal category
e 7 is a natural isomorphism from - ® to / ® _

such that the following diagrams commute:

AoB 22 Bo A (A9B) @ C 22 A (Bo )22 B 0) o A
. VB,A YA, BRidc aB,C,A
l@ \L ’ \L i

A®B (BeA)@Cam=Bo (AR C) —>B® (C®A)

3.2.2 Properties

Lemma 6 (Symmetry of Unit)
In any symmetric monoidal category:

YA 1

A1 1® A

R

A

ProOOF: Thanks to Lemma 1, it is sufficient to prove the commutation of the following diagram
(since v4,1 is an isomorphism):

Y id.
(A®1)®] YA,1®1idy

1®A4)e1

1,41

(@) 18 (A®1)

1,1,4

()

®id;
PAXLAY 1®A

VA1

A®1
which commutes by:

(a) hexagon of symmetric monoidal categories
(b) Lemma 3

10



(c) triangle of monoidal categories

(d) naturality of ~

(
(

)
)

e) naturality of A
)

f) Lemma 3 O

3.2.3 Category Rel

Following Lemma 5, the symmetry 4 g is obtained from the canonical bijection between A x B
and B x A: (a,b) — (b,a). It satisfies all the required conditions to make Rel a symmetric
monoidal category.

3.3 Intepretation

We extend Section 2.3:

e a proof 7 with conclusion I', B, A, A I C obtained by applying an (ezx) rule to a proof 7
with conclusion I', A, B, A | C' is interpreted as:

id[r)®718],[4] ®4d[A]

[T © [B] © [4] © [A] '] & [A]  [B] @ [A] % [¢]

4 Closure

4.1 Intuitionistic Multiplicative Linear Logic

We extend the grammar of formulas with a binary connective —o:
Ai=X|A®A|1|A—A
We add the following two rules:

T AFB 4 A,B,XFC

’FA—-B ° AA—-BIL,xFC °

Proposition 3 (Cut Elimination)
By adding the following proof transformations:

1 2 3 2 1
T AF B AFA N BEFC AFA T,AFB 5
I'r4a-5 °% saA-BAzrc L 7 T[AF B cut  $ BEFC
ST.AZFC cut ST.ASFC cut

and some commutations of (cut) rules with other rules, any proof can be turned into a cut-free
one.

4.2 Symmetric Monoidal Closed Category
4.2.1 Definitions

Definition 10 (Exponential Object)

If A and B are two objects of a symmetric monoidal category C, an exponential object of A
and B is a pair (B4, eva p) where B4 is an object of C and evs 5 € C(BA ® A, B) such that,
for any morphism f € C(C' ® A, B), there exists a unique morphism Af € C(C, B4) (called the
curryfication of f) such that f = (A\f ® ida) ; eva, B.

11



This can be written:
C®A

AP ® |ida !

Y
BA®A——>B

evA,B

Definition 11 (Symmetric Monoidal Closed Category)
A symmetric monoidal closed category is a symmetric monoidal category such that each pair of
objects A and B as an associated exponential object (B4, eva p).

4.2.2 Category Rel

If A and B are two sets, we define B4 := A x B and eva p := {(((a,0),a),b) |a € ANb € B}.
Given a relation R between C' x A and B, we define AR := {(c, (a,b)) | ((c,a),b) € R}. We
have:

(AR® ida) ; eva g = {((c,a),b) | (', V), (c, (d',b)) € ARA (((d,V),a),b) € evap}
={((¢,a),b) | 3(d,b),((c,d'),b)) € RANd =a NV = b}
=R

We can check it defines an exponential object of A and B.

4.3 Intepretation
We extend Section 3.3:
e formulas are interpreted by using [A — B] := [B][4]

e a proof m with conclusion I' - A — B obtained by applying a (— R) rule to a proof m;

with conclusion I', A - B is interpreted as: [ Alml [B]Al

e a proof m with conclusion A, A — B, T, ¥  C obtained by applying a (— L) rule to a

proof mp with conclusion I' = A and a proof 7y with conclusion A, B, ¥ + C' is interpreted
as:

id ®@[m]®@idps id ev) id
[a1e[B]1A] =1 tdpa]®evpa], [B]®d]s] [2]
[Al ® [B] @ [E] —[CT]

[A] @ [B]¥ @ [I] @ [£] [A] @ [B]M @ [4] ® [2]

Theorem 3 (Soundness)
If T maps to @' by cut elimination (Proposition 3) then [r]] = ['].

5 Exponential Co-Monad

5.1 Intuitionistic Multiplicative Exponential Linear Logic

We extend the grammar of formulas with a unary connective !:
A:=X[|A®A|1|A—-A|lA

We add the following rules:

TFA I A B TFB IJAAF B

o 'L TIAF B

TEIA - TIAFB TAFB le

12



5.2 Co-Monads and Co-Monoids
5.2.1 Definitions
Definition 12 (Co-Monoid)

A co-monoid in a monoidal category C is a triple (A, d4,e4) with A an object, d4 a morphism
from A to A® A and e4 a morphism from A to 1 such that:

AgA- MBI (Ao Ay A A

dA
PA >\4
dA

A QA A A

X A®1 I AR A i 1®A

If C is symmetric monoidal, a co-monoid is symmetric if the following diagram commutes:

208

Ao A YA, A

Definition 13 (Co-Monoidal Morphism)
A co-monoidal morphism f between two co-monoids (A, d4,e4) and (B, dp,ep) in a monoidal
category is a morphism from A to B such that the following diagrams commute:

f f

A B A B
o] i N S
ARA—B®B 1

® fef ®

Definition 14 (Co-Monad)
A co-monad on a category C is a triple (T, e, d) where:

e T is a functor from C to C

e ¢ is a natural transformation from T to Idc

e § is a natural transformation from T to T2 (the composition of T with itself)
such that the following diagrams commute:

da

TA—=T?A TA
4 1)
5Al iT&A / lim
2 3 2 2
T AWT A T A HeTA TA %T&‘A T A

Definition 15 (Monoidal Functor)
A monoidal functor between two monoidal categories (C,®,1) and (D, X, I) is a triple (F,m,n)
where:

e M is a functor from C to D

13



e m is a natural transformation from F_X F_/ to F(_® )
e 1 is a morphism from I to F1
such that the following diagrams in D commute:

QFA FB,FC

(FAR FB)X FC FAX (FBX FC)

mA,Bgidpcl lidFAgmB,C
F(A® BYRFC FARF(B®C)
mA@B’C\L lmA,B@)C
F(A® B)® () Faing FA® (B®())
FAX1I IXFA
idpa &nl nXidp 4 J{
FAR F1\F4 F1K FA\F4
mA,ll ml,Al

If C and D are symmetric monoidal, a symmetric monoidal functor is a monoidal functor such
that the following diagram in D commutes:

FARFB " pBRFA
F(A® B) F(B® A)

Fya B

Definition 16 (Monoidal Natural Transformation)

A monoidal natural transformation o between two monoidal functors F' and G between the
same two monoidal categories (C,®,1) and (D, X, I) is a natural transformation such that the
following diagrams in D commute:

mi 5 F
FAX FB — F(A® B) I-—2sF1
asMap iaA@)B x J/O‘l
GARGB G(A® B) Gl
MA B

Definition 17 (Monoidal Co-Monad)
A co-monad (T, e,0) on a monoidal category C is monoidal if T is a monoidal functor, and &
and § are monoidal natural transformations.

If C is symmetric monoidal, the co-monad is symmetric monoidal if, moreover, T is a
symmetric monoidal functor.

14



5.2.2 Category Rel

If A is a set, Mg, (A) is the set of finite multisets over A (or sets with repetition, or unordered
lists, or functions from A to N which only have a finite number of elements of A mapped to a
non-zero value). [ai,...,ax| denotes a finite multiset whose elements are ay, ..., a (thus the
order does not matter). The empty multiset is denoted | ]. The concatenation of two finite
multisets p and v is denoted p + v.

If R is a relation between A and B, we define:

Mien(R) == {([a1, ..., ag],[br, ..., b]) | VI < i <k, (a;,b) € R} € Mgn(A) X Mn(B)

This defines a functor from Rel to Rel, which comes with various interesting morphims and
natural transformations:

mAB = {(([al, - ,ak], [bl, .. .,bk]), [(al,bl), R (ak,bk)]) | Vi<i<k,a; € ANb; € B}
€ Rel(Mgn(A) x Mgn(B), Man(A x B))

n= {0 [*])} € Rel({x}, Msn({x}))
ea={(lal;a) | a € A} € Rel(Mjn(A), A)

k
04 = { (Z Wiy (115 - - -aMk]) | V1 <i<kpu € Mﬁn(A)} € Rel(Mgin(A), Mgn(Min(A)))
i=1

da={(p+v,(n,v)) | ne Man(A) Av e Mgy(A)} € Rel( Mgy (A), Man(A) x Mgn(A))
ea ={([],%)} € Rel(Mgn(A), {x})

These data satisfy all the properties required for interpreting intuitionistic multiplicative
exponential linear logic as in the next section.
5.3 Interpretation

We assume given a symmetric monoidal closed category (C,®,1,a, X, p,7,(-)-, ev) equipped
with:

e a symmetric monoidal co-monad (T, m,n,e,d)
e for each object T'A, a symmetric co-monoid (T'A, d4,e4)

such that, for each morphism f from A to B, T'f is a co-monoidal morphism from (T'A,d 4, e4)
to (T'B,dp,ep).
We extend Section 4.3:

e formulas are interpreted by using [!A] := TA].

e a proof m with conclusion I',!A + B obtained by applying a (!L) rule to a proof m; with
conclusion I'y A - B is interpreted as: [T] ® T[A] m [T] ® [4] ml [B] -

e a proof m with conclusion I',!A - B obtained by applying a (lw) rule to a proof m; with

idry®ea PIr] [m1]
_—

conclusion I' - B is interpreted as: [T] ® T[A] [[]®1—[I]—[B]-

e a proof 7 with conclusion I', ! A F B obtained by applying a (!¢) rule to a proof 7; with con-

clusion I', |4, 1A = B is interpreted as: [I'] @ T[A] Hry®da [I] ® T[A] ® T[A] [, [B] -
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e a proof m with conclusion !A;,...,!A; - !B obtained by applying a (!R) rule to a proof
w1 with conclusion !A4,...,!A; F B is interpreted as:
T[A] ® - @ T[Ag]
5HA1]]®"'®‘5[[A1¢]]\L

TT[A] ® - @ TT[Ax]

My ], T[A2] QUTT[A5]®- @TT[AL]

T(T[A1] ® T[As]) ® TT[As] ® - -- @ TT[A]

MT[A]@ QT [Ak_1].T[Ag]

T(T[A] ® - @ T[Ag-1]) @ TT[A] T(T[A] @ - @ T[Ag])
iT[[ﬂl]]
T[B]

(n is used if k = 0).

6 Duality

6.1 Classical Logics

We focus here on Multiplicative Linear Logic with its one-sided presentation. The move from
intuitionistic to classical logics as no particular impact on exponentials (simply define ?7A as

(1AH)5).
Formulas are given by:

A:=X | Xt |AQA|1|ABA| L

Sequents are - I' where I is a list of formulas. Proofs are built using the following rules:

———az FT,A A, At . il N

HA- A FT,A cu Fo(T)
FT,A  FAB -T,A,B 9 T
FT.AA0B  ° FT,ANB 1 FT, 1 -

6.2 x-Autonomous Category
6.2.1 Definition

Definition 18 (x-Autonomous Category)

A symmetric monoidal closed category C is *-autonomous if it contains a dualizing object, that
is an object L such that, for each object A of C, the following morphism is an isomorphism
between A and (A — 1) —o L:

YA, A— L

A(A@(A—oL)H(A—oL)ﬁgALA’iJ_)
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6.2.2 Category Rel

We define L := {x} (a given singleton). We have:

YA, A— L VA, |
(CL, (av *)) - ((CL, *)7 a) — %

Thus its curryfication is the isomorphism {(a, ((a,*),*)) | a € A}.

6.3 Interpretation

Given a s-autonomous category (C,®,1,a,\, p,7,(.)-,ev, L), and a function V from X to
0bj(C), we interpret:

e each formula A as an object [A] of C;

e cach proof 7w of F Ay,..., A; as a morphism [r] from 1 to ((JA1] — L) ® - @ ([Ax] —
1)) — L.

The interpretation of formulas is given by:
e [X]=V(X)and [X1] = V(X) —o L;
e [A® B] = [4] ® [B] and [A% B] = ([A] — 1) ® ([B] — 1)) — L;
e [1]=1and [L] = L.

As a consequence [A1] is isomorphic to [A] —o L.
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