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We give the ingredients of the correspondence between proof systems based on sequent
calculus on one side, and categories on the other side. These are basic blocks of categorical
logic. It is one of the components of the Curry-Howard-Lambek correspondence:

logics

λ-calculi categories

1 Categories

1.1 Identity Logic

Given a set X of propositional variables (whose elements are denoted X, Y , etc.), we start with
a very simple notion of formula:

A ::= X

Sequents are pairs of formulas denoted A ` B, and proofs are built using two rules:

ax
A ` A

A ` B B ` C
cut

A ` C

Proposition 1 (Cut Elimination)
Using the following proof transformations:

ax
A ` A

π
A ` B

cut
A ` B

7→ π
A ` B

π
A ` B ax

B ` B
cut

A ` B
7→ π

A ` B

any proof can be turned into a cut-free one.

Proof. By induction on the number of (cut) rules in the proof by selecting a top-most (cut)
rule.

1.2 Category

1.2.1 Definitions

Definition 1 (Category)
A category C is given by a class of objects obj(C) and, for each pair of objects A and B in
obj(C), a class of morphisms (or arrows) C(A,B) from A to B together with:
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• identities: idA ∈ C(A,A) for each object A:

A
idA // A

• composition: C(A,B)× C(B,C)→ C(A,C), denoted by (f, g) 7→ f ; g:

A
f //

f ;g ��

B

g

��
C

such that the following diagrams commute:

A
idA //

f ��

A

f
��
B

A
f //

f ��

B

idB
��
B

A
f //

f ;g
��

B

g;h
��

C
h
// D

We can “summarize” these four diagrams into:

A
f //

idA
��

f

��

B

idB
��

A
f
// B

A
f //

f ;g
��

B

g;h
��g~~

C
h
// D

1.2.2 Category Rel

The category Rel of relations have sets as objects and given two sets A and B, the morphisms
are Rel(A,B) := P(A× B). The identity is the diagonal relation: idA = {(a, a) | a ∈ A}. The
composition is the composition of relations: R ; S = {(a, c) | ∃b, (a, b) ∈ R ∧ (b, c) ∈ S}.

One can chech this is indeed a category since:

idA ;R = {(a, b) | ∃a′, (a, a′) ∈ idA ∧ (a′, b) ∈ R}
= {(a, b) | (a, a) ∈ idA ∧ (a, b) ∈ R}
= R

R ; idB = {(a, b) | ∃b′, (a, b′) ∈ R ∧ (b′, b) ∈ idB}
= R

R ; (S ; T ) = {(a, d) | ∃b, (a, b) ∈ R ∧ (b, d) ∈ S ; T}
= {(a, d) | ∃b,∃c, (a, b) ∈ R ∧ (b, c) ∈ S ∧ (c, d) ∈ T}
= {(a, d) | ∃c, (a, c) ∈ R ; S ∧ (c, d) ∈ T}
= (R ; S) ; T

1.3 Interpretation

Given a category C, and a function V from X to obj(C), we interpret:

• each formula A as an object JAK of C;

• each proof π of A ` B as a morphism JπK from JAK to JBK.
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This is given by:

• JXK = V(X);

• a proof π containing just an (ax) rule with conclusionA ` A is interpreted as JAK
idJAK // JAK ;

• a proof π with conclusion A ` C obtained by applying a (cut) rule to a proof π1 with con-

clusionA ` B and a proof π2 with conclusionB ` C is interpreted as JAK
Jπ1K // JBK

Jπ2K // JCK .

Theorem 1 (Soundness)
If π maps to π′ by cut elimination (Proposition 1) then JπK = Jπ′K.

Proof. The two rewriting steps are interpreted as equalities in C since idJAK ;f = f and f ;idJBK =
f .

2 Monoidal Categories

2.1 Non-Commutative Tensor Logic

We extend the grammar of formulas with a binary connective ⊗ and its unit 1:

A ::= X | A⊗A | 1

The shape of sequents is Γ ` A where Γ is a list of formulas and A is a formula. Proofs are
built using the following rules:

ax
A ` A

Γ ` A ∆, A,Σ ` B
cut

∆,Γ,Σ ` B

Γ ` A ∆ ` B ⊗R
Γ,∆ ` A⊗B

Γ, A,B,∆ ` C
⊗L

Γ, A⊗B,∆ ` C
1R` 1

Γ,∆ ` C
1L

Γ, 1,∆ ` C

Proposition 2 (Cut Elimination)
Using the following proof transformations:

ax
A ` A

π
Γ, A,∆ ` B

cut
Γ, A,∆ ` B

7→ π
Γ, A,∆ ` B

π
Γ ` B ax

B ` B
cut

Γ ` B
7→ π

Γ ` B

π1

Γ ` A
π2

∆ ` B ⊗R
Γ,∆ ` A⊗B

π3

Σ, A,B,Ξ ` C
⊗L

Σ, A⊗B,Ξ ` C
cut

Σ,Γ,∆,Ξ ` C

7→
π1

Γ ` A

π2

∆ ` B
π3

Σ, A,B,Ξ ` C
cut

Σ, A,∆,Ξ ` C
cut

Σ,Γ,∆,Ξ ` C

as well as various commutations of (cut) rules with other rules, any proof can be turned into a
cut-free one.
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2.2 Monoidal Category

2.2.1 Definitions

Definition 2 (Product Category)
The product C× D of two categories C and D is the category with:

• objects are pairs of objects of C and objects of D: obj(C× D) := obj(C)× obj(D);

• morphisms from (A,A′) to (B,B′) are pairs of morphisms of C from A to B and morphisms
of D from A′ to B′: C× D((A,A′), (B,B′)) = C(A,B)× D(A′, B′);

• identity on (A,A′) is the pair (idA, idA′);

• composition of (f, f ′) and (g, g′) is (f ; g, f ′ ; g′).

Definition 3 (Isomorphism)
An isomorphism f from the object A to the object B is a morphism from A to B such that
there exists a morphism g from B to A (called the inverse of f , and often denoted f−1) such
that the following diagrams commute:

A
f //

idA ��

B

g

��
A

B
g //

idB   

A

f
��
B

We can “summarize” these two diagrams into:

AidA 88

f

&&
B idB
ww

g

ff

Definition 4 (Functor)
A functor F between two categories C and D is:

• a function from the objects of C to the objects of D;

• and for each A and B, a function from C(A,B) to D(FA,FB)

such that the following diagrams in D commute:

FA

F idA
((

idFA

66 FA

FA
Ff //

F (f ;g) ""

FB

Fg
��

FC

The composition of two functors is a functor.

Definition 5 (Identity Functor)
If C is a category, the identity functor IdC from C to C is defined by:

• for each A ∈ obj(C), IdCA = A

• if A and B are in obj(C) and f ∈ C(A,B), IdCf = f
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Definition 6 (Bifunctor)
A bifunctor from two categories C and D to a category E is a functor from C× D to E.

More concretely, it is given by:

• a function from obj(C)× obj(D) to obj(E)

• for each A and B in obj(C) and A′ and B′ in obj(D), a function from C(A,B)×D(A′, B′)
to E(FAA′, FBB′)

such that the following diagrams in E commute:

FAA′

F idAidA′
**

idFAA′

55FAA
′

FAA′
Fff ′ //

F (f ;g)(f ′;g′) $$

FBB′

Fgg′

��
FCC ′

In particular, the following diagram commutes:

FAA′
Ff idA′//

F idAf
′

��

Fff ′

%%

FBA′

F idBf
′

��
FAB′

Ff idB′
// FBB′

If A is an object of C and F a bifunctor from C and D to E, FA is a functor from D to E
which maps B to FAB and f ′ to F idAf

′. As a consequence, one often uses the notations FAf ′

for F idAf
′ and FfB for Ff idB, if A is an object of C and B is an object of D.

All this can be generalized to notions of n-ary functors.

Definition 7 (Natural Transformation)
A natural transformation α between two functors F and G from a category C to a category D
is a family (αA)A∈obj(C) of morphisms from FA to GA such that the following diagram in D
commutes for all f ∈ C(A,B):

FA
Ff //

αA

��

FB

αB

��
GA

Gf
// GB

A natural isomorphism is a natural transformation α such that each element αA is an
isomorphism.

Definition 8 (Monoidal Category)
A monoidal category is a 6-tuple (C,⊗, 1 , α, λ, ρ) where:

• ⊗ is a bifunctor from C and C to C

• 1 is an object of C

• α is a natural isomorphism from ( ⊗ ′)⊗ ′′ to ⊗ ( ′ ⊗ ′′)

• λ is a natural isomorphism from 1⊗ to IdC

• ρ is a natural isomorphism from ⊗ 1 to IdC
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such that the following diagrams commute:

(A⊗B)⊗ (C ⊗D)

αA,B,C⊗D

**
((A⊗B)⊗ C)⊗D

αA⊗B,C,D

44

αA,B,C⊗idD
%%

A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D αA,B⊗C,D

// A⊗ ((B ⊗ C)⊗D)

idA⊗αB,C,D

99

(A⊗ 1)⊗B
αA,1,B //

ρA⊗idB &&

A⊗ (1⊗B)

idA⊗λBxx
A⊗B

2.2.2 Properties

Let us consider a fixed monoidal category (C,⊗, 1, α, λ, ρ).

Lemma 1 (Equality up to ⊗ id1 and id1 ⊗ )
Let A and B be two objects of C and f and g be two morphisms of C from A to B, f ⊗ id1 =
g ⊗ id1 ⇐⇒ f = g ⇐⇒ id1 ⊗ f = id1 ⊗ g.

Proof: We have f = g implies both f ⊗ id1 = g ⊗ id1 and id1 ⊗ f = id1 ⊗ g. Now assume
id1 ⊗ f = id1 ⊗ g, the following diagram commutes:

A

f

  

g

??1⊗AλAoo

id1⊗f
**

id1⊗g

551⊗B
λB // B

since the two squares commute by naturality of λ. We conclude f = λ−1
A ; id1 ⊗ f ; λB =

λ−1
A ; id1 ⊗ g ; λB = g since λA is an isomorphism. Similarly, we obtain the implication
f ⊗ id1 = g ⊗ id1 =⇒ f = g by naturality of ρ. 2

Lemma 2 (Unit of Unit)
Let A be an object of C, ρA⊗1 = ρA ⊗ id1 : (A⊗ 1)⊗ 1→ A⊗ 1.

Proof: By naturality of ρ, we have:

(A⊗ 1)⊗ 1
ρA⊗id1//

ρA⊗1

��

A⊗ 1

ρA
��

A⊗ 1 ρA
// A

thus, since ρA is an isomorphism, ρA⊗1 = ρA ⊗ id1. 2
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Lemma 3 (Associativity of Unit)
Let A and B be two objects of C, the following diagram commutes:

(A⊗B)⊗ 1
αA,B,1 //

ρA⊗B &&

A⊗ (B ⊗ 1)

idA⊗ρBxx
A⊗B

Proof: The following diagram commutes:

((A⊗B)⊗ 1)⊗ 1

ρA⊗B⊗id1

,,

αA,B,1⊗id1 //

αA⊗B,1,1

&&

(a)

(A⊗ (B ⊗ 1))⊗ 1

αA,B⊗1,1

xx

(idA⊗ρB)⊗id1

rr

(A⊗B)⊗ (1⊗ 1)

idA⊗B⊗λ1

��

αA,B,1⊗1 // A⊗ (B ⊗ (1⊗ 1))

idA⊗(idB⊗λ1)

��

(d)

A⊗ ((B ⊗ 1)⊗ 1)
idA⊗αB,1,1oo

idA⊗(ρB⊗id1)

xx
A⊗ (B ⊗ 1)

(b) (c)

(A⊗B)⊗ 1

αA,B,1

OO

(e)

by:

(a) pentagon of monoidal categories

(b) triangle of monoidal categories

(c) naturality of α

(d) triangle of monoidal categories

(e) naturality of α

And we conclude with Lemma 1 since αA,B,1 is an isomorphism. 2

Lemma 4 (Unit at Unit)
In any monoidal category, ρ1 = λ1.

Proof: The following diagram commutes:

(a)

(1⊗ 1)⊗ 1
α1,1,1

uu

α1,1,1

))
ρ1⊗id1

��

ρ1⊗1

��

(b) (c)1⊗ (1⊗ 1)

id1⊗λ1 ))

1⊗ (1⊗ 1)

id1⊗ρ1uu
1⊗ 1

by:

(a) triangle of monoidal categories

(b) Lemma 2

(c) Lemma 3

We thus have id1 ⊗ λ1 = id1 ⊗ ρ1 since α1,1,1 is an isomorphism, and finally λ1 = ρ1 by
Lemma 1. 2
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2.2.3 Category Rel

Lemma 5 (Bijective Relations)
Let A and B be two sets and R a relation between A and B, R is an isomorphisms if and only
if it is the graph of a bijection from A to B.

Proof: If R is the graph of a bijection f , we define S = {(b, a) | b = f(a)}. We have:

R ; S = {(a, a′) | ∃b, (a, b) ∈ R ∧ (b, a′) ∈ S}
= {(a, a′) | ∃b, f(a) = b ∧ b = f(a′)}
= {(a, a′) | f(a) = f(a′)}
= idA

and similarly S ;R = idB.

If R is an isomorphism, let S be its inverse. For each a ∈ A, since (a, a) ∈ idA = R ; S,
there exists b ∈ B such that (a, b) ∈ R and (b, a) ∈ S. For any a ∈ A and b′ ∈ B such
that (a, b′) ∈ R, we have (b, b′) ∈ S ;R = idB thus b = b′. This means that for any a ∈ A,
there is a unique b ∈ B such that (a, b) ∈ R. 2

The monoidal structure of the category Rel is given by:

• The tensor product of two sets A and B is the product A ⊗ B := A × B. It is not a
cartesian product (in the categorical sense) in the category Rel.

• Given two relations R between A and B, and S between A′ and B′, their tensor product
is R⊗ S := {((a, a′), (b, b′)) | (a, b) ∈ R ∧ (a′, b′) ∈ S} between A×A′ and B ×B′.

• The unit of ⊗ is 1 := {?} (a fixed singleton).

• Following Lemma 5, αA,B,C is obtained from the canonical bijection between (A×B)×C
and A× (B × C): ((a, b), c) 7→ (a, (b, c)).

• Following Lemma 5, λA is obtained from the canonical bijection between 1 × A and A:
(?, a) 7→ a.

• Following Lemma 5, ρA is obtained from the canonical bijection between A × 1 and A:
(a, ?) 7→ a.

⊗ defines a bifunctor, α, λ and ρ are natural isomorphisms and the two diagrams of monoidal
categories commute. For example:

((a, ?), b)
αA,1,B //

ρA⊗idB %%

(a, (?, b))

idA⊗λByy
(a, b)

2.3 Interpretation

We extend the approach of Section 1.3. Connectives are interpreted by using functors of the
appropriate arity. In particular units are interpreted as objects, and binary connectives by
using bifunctors. Rules operate on morphisms by means of the morphisms parts of functors and
associated natural transformations.

Given a monoidal category (C,⊗, 1 , α, λ, ρ), and a function V from X to obj(C), we interpret:

8



• each formula A as an object JAK of C;

• each proof π of A1, . . . , Ak ` B as a morphism JπK from 1 to JBK if k = 0, from JA1K to
JBK if k = 1, and from JA1K⊗ (JA2K⊗ · · · (JAk−1K⊗ JAkK)) to JBK if k ≥ 2.

It is important to notice that, thanks to the diagrams in the definition of monoidal categories
and properties like Lemmas 1, 2, 3 and 4, different ways of associating JA1K ⊗ · · · ⊗ JAkK, or
of introducing some 1s in such a big ⊗, are all related through a unique isormorphism built
from α, λ and ρ. As a consequence we will ignore such associativity/unit questions and write
JA1, . . . , AkK = JA1K⊗ · · · ⊗ JAkK.

The interpretation is given by:

• JXK = V(X), JA⊗BK = JAK⊗ JBK, and J1K = 1;

• a proof π containing just an (ax) rule with conclusionA ` A is interpreted as JAK
idJAK // JAK ;

• a proof π with conclusion ∆,Γ,Σ ` B obtained by applying a (cut) rule to a proof π1

with conclusion Γ ` A and a proof π2 with conclusion ∆, A,Σ ` B is interpreted as

J∆K⊗ JΓK⊗ JΣK
idJ∆K⊗Jπ1K⊗idJΣK // J∆K⊗ JAK⊗ JΣK

Jπ2K // JBK .

• a proof π with conclusion Γ,∆ ` A ⊗ B obtained by applying a (⊗R) rule to a proof
π1 with conclusion Γ ` A and a proof π2 with conclusion ∆ ` B is interpreted as

JΓK⊗ J∆K
Jπ1K⊗Jπ2K // JAK⊗ JBK .

• a proof π with conclusion Γ, A ⊗ B,∆ ` C obtained by applying a (⊗L) rule to a proof

π1 with conclusion Γ, A,B,∆ ` C is interpreted as JΓK⊗ (JAK⊗ JBK)⊗ J∆K
Jπ1K // JCK .

Note the use of α is hidden here, thanks to the remark above.

• a proof π with conclusion ` 1 containing just a (1R) rule is interpreted as 1
id1 // J1K .

• a proof π with conclusion Γ, 1,∆ ` C obtained by applying a (1L) rule to a proof π1 with

conclusion Γ,∆ ` C is interpreted as JΓK⊗ J1K⊗ J∆K
ρJΓK⊗idJ∆K // JΓK⊗ J∆K

Jπ1K // JCK .

Theorem 2 (Soundness)
If π maps to π′ by cut elimination (Proposition 2) then JπK = Jπ′K.

3 Symmetry

3.1 Tensor Logic

We simply extend non-commutative tensor logic with an exchange rule:

Γ, A,B,∆ ` C
ex

Γ, B,A,∆ ` C
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3.2 Symmetric Monoidal Category

3.2.1 Definition

Definition 9 (Symmetric Monoidal Category)
A symmetric monoidal category is a 7-tuple (C,⊗, 1, α, λ, ρ, γ) where:

• (C,⊗, 1, α, λ, ρ) is a monoidal category

• γ is a natural isomorphism from ⊗ ′ to ′ ⊗

such that the following diagrams commute:

A⊗B

idA⊗B %%

γA,B // B ⊗A
γB,A

��
A⊗B

(A⊗B)⊗ C

γA,B⊗idC
��

αA,B,C// A⊗ (B ⊗ C)
γA,B⊗C// (B ⊗ C)⊗A

αB,C,A

��
(B ⊗A)⊗ C αB,A,C

// B ⊗ (A⊗ C)
idB⊗γA,C

// B ⊗ (C ⊗A)

3.2.2 Properties

Lemma 6 (Symmetry of Unit)
In any symmetric monoidal category:

A⊗ 1
γA,1 //

ρA
""

1⊗A

λA||
A

Proof: Thanks to Lemma 1, it is sufficient to prove the commutation of the following diagram
(since γA,1 is an isomorphism):

(A⊗ 1)⊗ 1

ρA⊗id1

--

αA,1,1

$$

γA,1⊗id1 // (1⊗A)⊗ 1

α1,A,1

zz

λA⊗id1

qq

A⊗ (1⊗ 1)

idA⊗λ1

((

γA,1⊗1

$$

1⊗ (A⊗ 1)

id1⊗γA,1

zz

λA⊗1

vv

(1⊗ 1)⊗A α1,1,A

//

λ1⊗idA

""

(a)

1⊗ (1⊗A)

λ1⊗A

||
1⊗A

(b)

(c)

(d)

A⊗ 1

γA,1

OO

(e)

(f)

which commutes by:

(a) hexagon of symmetric monoidal categories

(b) Lemma 3
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(c) triangle of monoidal categories

(d) naturality of γ

(e) naturality of λ

(f) Lemma 3 2

3.2.3 Category Rel

Following Lemma 5, the symmetry γA,B is obtained from the canonical bijection between A×B
and B × A: (a, b) 7→ (b, a). It satisfies all the required conditions to make Rel a symmetric
monoidal category.

3.3 Intepretation

We extend Section 2.3:

• a proof π with conclusion Γ, B,A,∆ ` C obtained by applying an (ex) rule to a proof π1

with conclusion Γ, A,B,∆ ` C is interpreted as:

JΓK⊗ JBK⊗ JAK⊗ J∆K
idJΓK⊗γJBK,JAK⊗idJ∆K // JΓK⊗ JAK⊗ JBK⊗ J∆K

Jπ1K // JCK

4 Closure

4.1 Intuitionistic Multiplicative Linear Logic

We extend the grammar of formulas with a binary connective (:

A ::= X | A⊗A | 1 | A( A

We add the following two rules:

Γ, A ` B
( R

Γ ` A( B

Γ ` A ∆, B,Σ ` C
( L

∆, A( B,Γ,Σ ` C

Proposition 3 (Cut Elimination)
By adding the following proof transformations:

π1

Γ, A ` B
( R

Γ ` A( B

π2

∆ ` A
π3

Σ, B,Ξ ` C
( L

Σ, A( B,∆,Ξ ` C
cut

Σ,Γ,∆,Ξ ` C

7→

π2

∆ ` A
π1

Γ, A ` B
cut

Γ,∆ ` B
π3

Σ, B,Ξ ` C
cut

Σ,Γ,∆,Ξ ` C

and some commutations of (cut) rules with other rules, any proof can be turned into a cut-free
one.

4.2 Symmetric Monoidal Closed Category

4.2.1 Definitions

Definition 10 (Exponential Object)
If A and B are two objects of a symmetric monoidal category C, an exponential object of A
and B is a pair (BA, evA,B) where BA is an object of C and evA,B ∈ C(BA ⊗ A,B) such that,
for any morphism f ∈ C(C ⊗A,B), there exists a unique morphism λf ∈ C(C,BA) (called the
curryfication of f) such that f = (λf ⊗ idA) ; evA,B.
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This can be written:
C ⊗A

f

$$

λf

��

idA

��

⊗

BA ⊗A evA,B

// B

Definition 11 (Symmetric Monoidal Closed Category)
A symmetric monoidal closed category is a symmetric monoidal category such that each pair of
objects A and B as an associated exponential object (BA, evA,B).

4.2.2 Category Rel

If A and B are two sets, we define BA := A×B and evA,B := {(((a, b), a), b) | a ∈ A ∧ b ∈ B}.
Given a relation R between C × A and B, we define λR := {(c, (a, b)) | ((c, a), b) ∈ R}. We
have:

(λR⊗ idA) ; evA,B = {((c, a), b) | ∃(a′, b′), (c, (a′, b′)) ∈ λR ∧ (((a′, b′), a), b) ∈ evA,B}
= {((c, a), b) | ∃(a′, b′), ((c, a′), b′) ∈ R ∧ a′ = a ∧ b′ = b}
= R

We can check it defines an exponential object of A and B.

4.3 Intepretation

We extend Section 3.3:

• formulas are interpreted by using JA( BK := JBKJAK

• a proof π with conclusion Γ ` A( B obtained by applying a (( R) rule to a proof π1

with conclusion Γ, A ` B is interpreted as: JΓK
λJπ1K // JBKJAK

• a proof π with conclusion ∆, A ( B,Γ,Σ ` C obtained by applying a (( L) rule to a
proof π1 with conclusion Γ ` A and a proof π2 with conclusion ∆, B,Σ ` C is interpreted
as:

J∆K⊗ JBKJAK ⊗ JΓK⊗ JΣK
id

J∆K⊗JBKJAK⊗Jπ1K⊗idJΣK
// J∆K⊗ JBKJAK ⊗ JAK⊗ JΣK

idJ∆K⊗evJAK,JBK⊗idJΣK// J∆K⊗ JBK⊗ JΣK
Jπ2K // JCK

Theorem 3 (Soundness)
If π maps to π′ by cut elimination (Proposition 3) then JπK = Jπ′K.

5 Exponential Co-Monad

5.1 Intuitionistic Multiplicative Exponential Linear Logic

We extend the grammar of formulas with a unary connective !:

A ::= X | A⊗A | 1 | A( A | !A

We add the following rules:

!Γ ` A
!R

!Γ ` !A
Γ, A ` B

!L
Γ, !A ` B

Γ ` B
!w

Γ, !A ` B
Γ, !A, !A ` B

!c
Γ, !A ` B

12



5.2 Co-Monads and Co-Monoids

5.2.1 Definitions

Definition 12 (Co-Monoid)
A co-monoid in a monoidal category C is a triple (A, dA, eA) with A an object, dA a morphism
from A to A⊗A and eA a morphism from A to 1 such that:

A⊗A dA⊗idA // (A⊗A)⊗A

αA,A,A

��

A

dA
88

dA &&
A⊗A

idA⊗dA
// A⊗ (A⊗A)

A

dA

��
A⊗ 1

ρA

;;

A⊗A
idA⊗eA
oo

eA⊗idA
// 1⊗A

λA

cc

If C is symmetric monoidal, a co-monoid is symmetric if the following diagram commutes:

A
dA

{{

dA

##
A⊗A

γA,A // A⊗A

Definition 13 (Co-Monoidal Morphism)
A co-monoidal morphism f between two co-monoids (A, dA, eA) and (B, dB, eB) in a monoidal
category is a morphism from A to B such that the following diagrams commute:

A

dA
��

f // B

dB
��

A⊗A
f⊗f
// B ⊗B

A
f //

eA ��

B

eB��
1

Definition 14 (Co-Monad)
A co-monad on a category C is a triple (T, ε, δ) where:

• T is a functor from C to C

• ε is a natural transformation from T to IdC

• δ is a natural transformation from T to T 2 (the composition of T with itself)

such that the following diagrams commute:

TA

δA
��

δA // T 2A

TδA
��

T 2A
δTA

// T 3A

TA
δA

||

δA

""idTA��
T 2A εTA

// TA T 2A
TεA
oo

Definition 15 (Monoidal Functor)
A monoidal functor between two monoidal categories (C,⊗, 1) and (D,�, I) is a triple (F,m, n)
where:

• F is a functor from C to D

13



• m is a natural transformation from F � F ′ to F ( ⊗ ′)

• n is a morphism from I to F1

such that the following diagrams in D commute:

(FA� FB)� FC

mA,B�idFC

��

αFA,FB,FC // FA� (FB � FC)

idFA�mB,C

��
F (A⊗B)� FC

mA⊗B,C

��

FA� F (B ⊗ C)

mA,B⊗C

��
F ((A⊗B)⊗ C)

FαA,B,C

// F (A⊗ (B ⊗ C))

FA� I

idFA�n
��

λFA

��

FA� F1

mA,1

��
F (A⊗ 1)

FλA
// FA

I� FA

n�idFA

��
ρFA

��

F1� FA

m1,A

��
F (1⊗A)

FρA
// FA

If C and D are symmetric monoidal, a symmetric monoidal functor is a monoidal functor such
that the following diagram in D commutes:

FA� FB

mA,B

��

γFA,FB // FB � FA

mB,A

��
F (A⊗B)

FγA,B

// F (B ⊗A)

Definition 16 (Monoidal Natural Transformation)
A monoidal natural transformation α between two monoidal functors F and G between the
same two monoidal categories (C,⊗, 1) and (D,�, I) is a natural transformation such that the
following diagrams in D commute:

FA� FB

αA�αB

��

mF
A,B // F (A⊗B)

αA⊗B

��
GA�GB

mG
A,B

// G(A⊗B)

I

nG   

nF
// F1

α1

��
G1

Definition 17 (Monoidal Co-Monad)
A co-monad (T, ε, δ) on a monoidal category C is monoidal if T is a monoidal functor, and ε
and δ are monoidal natural transformations.

If C is symmetric monoidal, the co-monad is symmetric monoidal if, moreover, T is a
symmetric monoidal functor.

14



5.2.2 Category Rel

If A is a set, Mfin(A) is the set of finite multisets over A (or sets with repetition, or unordered
lists, or functions from A to N which only have a finite number of elements of A mapped to a
non-zero value). [a1, . . . , ak] denotes a finite multiset whose elements are a1, . . . , ak (thus the
order does not matter). The empty multiset is denoted [ ]. The concatenation of two finite
multisets µ and ν is denoted µ+ ν.

If R is a relation between A and B, we define:

Mfin(R) := {([a1, . . . , ak], [b1, . . . , bk]) | ∀1 ≤ i ≤ k, (ai, bi) ∈ R} ∈ Mfin(A)×Mfin(B)

This defines a functor from Rel to Rel, which comes with various interesting morphims and
natural transformations:

mA,B = {(([a1, . . . , ak], [b1, . . . , bk]), [(a1, b1), . . . , (ak, bk)]) | ∀1 ≤ i ≤ k, ai ∈ A ∧ bi ∈ B}
∈ Rel(Mfin(A)×Mfin(B),Mfin(A×B))

n = {(?, [?])} ∈ Rel({?},Mfin({?}))
εA = {([a], a) | a ∈ A} ∈ Rel(Mfin(A), A)

δA =

{(
k∑
i=1

µi, [µ1, . . . , µk]

)
| ∀1 ≤ i ≤ k, µi ∈Mfin(A)

}
∈ Rel(Mfin(A),Mfin(Mfin(A)))

dA = {(µ+ ν, (µ, ν)) | µ ∈Mfin(A) ∧ ν ∈Mfin(A)} ∈ Rel(Mfin(A),Mfin(A)×Mfin(A))

eA = {([ ], ?)} ∈ Rel(Mfin(A), {?})

These data satisfy all the properties required for interpreting intuitionistic multiplicative
exponential linear logic as in the next section.

5.3 Interpretation

We assume given a symmetric monoidal closed category (C,⊗, 1, α, λ, ρ, γ, ( ) , ev) equipped
with:

• a symmetric monoidal co-monad (T,m, n, ε, δ)

• for each object TA, a symmetric co-monoid (TA, dA, eA)

such that, for each morphism f from A to B, Tf is a co-monoidal morphism from (TA, dA, eA)
to (TB, dB, eB).

We extend Section 4.3:

• formulas are interpreted by using J!AK := T JAK.

• a proof π with conclusion Γ, !A ` B obtained by applying a (!L) rule to a proof π1 with

conclusion Γ, A ` B is interpreted as: JΓK⊗ T JAK
idJΓK⊗εA // JΓK⊗ JAK

Jπ1K // JBK .

• a proof π with conclusion Γ, !A ` B obtained by applying a (!w) rule to a proof π1 with

conclusion Γ ` B is interpreted as: JΓK⊗ T JAK
idJΓK⊗eA // JΓK⊗ 1

ρJΓK // JΓK
Jπ1K // JBK .

• a proof π with conclusion Γ, !A ` B obtained by applying a (!c) rule to a proof π1 with con-

clusion Γ, !A, !A ` B is interpreted as: JΓK⊗ T JAK
idJΓK⊗dA // JΓK⊗ T JAK⊗ T JAK

Jπ1K // JBK .
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• a proof π with conclusion !A1, . . . , !Ak ` !B obtained by applying a (!R) rule to a proof
π1 with conclusion !A1, . . . , !Ak ` B is interpreted as:

T JA1K⊗ · · · ⊗ T JAkK

δJA1K⊗···⊗δJAkK

��
TT JA1K⊗ · · · ⊗ TT JAkK

mT JA1K,T JA2K⊗idTT JA3K⊗···⊗TT JAkK // T (T JA1K⊗ T JA2K)⊗ TT JA3K⊗ · · · ⊗ TT JAkK

...

T (T JA1K⊗ · · · ⊗ T JAk−1K)⊗ TT JAkK
mT JA1K⊗···⊗T JAk−1K,T JAkK

// T (T JA1K⊗ · · · ⊗ T JAkK)

T Jπ1K
��

T JBK

(n is used if k = 0).

6 Duality

6.1 Classical Logics

We focus here on Multiplicative Linear Logic with its one-sided presentation. The move from
intuitionistic to classical logics as no particular impact on exponentials (simply define ?A as
(!A⊥)⊥).

Formulas are given by:

A ::= X | X⊥ | A⊗A | 1 | A`A | ⊥

Sequents are ` Γ where Γ is a list of formulas. Proofs are built using the following rules:

ax
` A⊥, A

` Γ, A ` ∆, A⊥
cut` Γ,∆

` Γ ex
` σ(Γ)

` Γ, A ` ∆, B ⊗` Γ,∆, A⊗B
` Γ, A,B `` Γ, A`B

1` 1
` Γ ⊥` Γ,⊥

6.2 ∗-Autonomous Category

6.2.1 Definition

Definition 18 (∗-Autonomous Category)
A symmetric monoidal closed category C is ∗-autonomous if it contains a dualizing object, that
is an object ⊥ such that, for each object A of C, the following morphism is an isomorphism
between A and (A( ⊥)( ⊥:

λ

(
A⊗ (A( ⊥)

γA,A(⊥// (A( ⊥)⊗A
evA,⊥ // ⊥

)
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6.2.2 Category Rel

We define ⊥ := {?} (a given singleton). We have:

(a, (a, ?))
γA,A(⊥// ((a, ?), a)

evA,⊥ // ?

Thus its curryfication is the isomorphism {(a, ((a, ?), ?)) | a ∈ A}.

6.3 Interpretation

Given a ∗-autonomous category (C,⊗, 1 , α, λ, ρ, γ, ( ) , ev,⊥), and a function V from X to
obj(C), we interpret:

• each formula A as an object JAK of C;

• each proof π of ` A1, . . . , Ak as a morphism JπK from 1 to ((JA1K( ⊥)⊗ · · · ⊗ (JAkK(
⊥))( ⊥.

The interpretation of formulas is given by:

• JXK = V(X) and JX⊥K = V(X)( ⊥;

• JA⊗BK = JAK⊗ JBK and JA`BK = ((JAK( ⊥)⊗ (JBK( ⊥))( ⊥;

• J1K = 1 and J⊥K = ⊥.

As a consequence JA⊥K is isomorphic to JAK( ⊥.
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