
1

∈

× ×

1

0

0

concur

ccs

trans-
ducers i.e.

Q, X, Y, q , δ

Q q Q X Y

δ Q X ⇀ Y Q

Retracing some paths in Process Algebra

1 Introduction

2 The semantic universe: transducers

Similar ideas appeared independently in the work of Hans Bekić [Bek71].

Samson Abramsky
Laboratory for the Foundations of Computer Science

University of Edinburgh

The very existence of the conference bears witness to the fact that
“concurrency theory” has developed into a subject unto itself, with substan-
tially different emphases and techniques to those prominent elsewhere in the
semantics of computation.

Whatever the past merits of this separate development, it seems timely
to look for some convergence and unification. In addressing these issues, I
have found it instructive to trace some of the received ideas in concurrency
back to their origins in the early 1970’s. In particular, I want to focus on
a seminal paper by Robin Milner [Mil75] , which led in a fairly direct line
to his enormously influential work on [Mil80, Mil89]. I will take (to the
extreme) the liberty of of applying hindsight, and show how some different
paths could have been taken, which, it can be argued, lead to a more unified
approach to the semantics of computation, and moreover one which may
be better suited to modelling today’s concurrent, object-oriented languages,
and the type systems and logics required to support such languages.

Milner’s starting point was the classical automata-theoretic notion of
, structures

()

where is a set of states, the initial state, the set of inputs,
the set of outputs, and

:

1

k

∼

0 1 2

Set

Set Set

0

0 0 1 1 2 +1

+1

=

processes

behaviours

k

x x x x
k k

i i i i

X,Y

X,Y

X,Y

−→ −→ −→ · · · −→

≤ ≤

× −→ P ×

×

−→

×

−→ ∼

x , . . . , x

q y , q y , q y , q

δ q , x y , q i k

δ Q X Y Q

R X ⇀ Y R.

T

T S X ⇀ Y S

R T R

is the transition function (here a partial function). If we supply a sequence
of inputs to such a transducer, we obtain the orbit

if () = , 0 . This generalizes to non-deterministic
transducers with transition function

: ()

in an evident fashion.
The key idea in [Mil75] is to give a denotational semantics for concur-

rent programs as , which were taken to be extensional versions of
transducers. There are two ingredients to this idea:

1. Instead of modelling programs by functions or relations, to model them
by entities with more complex behaviours, taking account of the pos-
sible interactions between a program and its environment during the
course of a computation.

“The meaning of a program should express its history of
access to resources which are not local to it.” [Mil75]

2. Instead of modelling concurrent programs by automata, with all the
intensionality this entails, to look for a more extensional description
of the of transducers.

To obtain this extensional view of transducers, consider the recursive defi-
nition

=

This defines a mathematical space of “resumptions” in which the states of
transducers are “unfolded” into their observable behaviours. Milner solved
equations such as this over a category of domains in [Mil75], but in fact it
can be solved in a canonical fashion over —in modern terminology, the
functor

:

() =

has a final coalgebra (). Indeed, Milner defined a notion
of behavioural equivalence between transducers, and for any transducer

′

Set

′ ′ ′ ′

0

0 0 0 0

δ

X,Y

δ δ

<κ

vs.

vs.

vs.

category

−→

−→

∼ ⇐⇒

−→ P ×

−→ P ×

•

•

•

2.1 Typed vs. type-free

Q, X, Y, q , δ h Q R

δ Q T Q

R δ δ

Q, X, Y, q , δ Q , X, Y, q , δ h q h q .

R X Y R

κ

R X Y R

() a map : which is in fact the final coalgebra
homomorphism from the coalgebra

ˆ : ()

to (where ˆ is the exponential transpose of), and proved that

() () () = ()

From a modern perspective, we can also make light of a technical problem
which figured prominently in [Mil75], namely how to model non-determinism.
Historically, this called forth Plotkin’s work on powerdomains [Plo76], but
for the specific application at hand, the equation

= ()

has a final coalgebra in the category of classes in Peter Aczel’s non-well-
founded set theory [Acz88], and if we are content to bound the cardinality
of subsets by an inaccessible cardinable , then the equation

= ()

has a final coalgebra in [Bar93b]. Moreover, the equivalence induced by
this model coincides with strong bisimulation [Acz88].

However, this is not central to our concerns here. Rather, we want to
focus on three important choices in the path followed by Milner from this
starting point:

Type-free typed

Extrinsic intrinsic interaction

Names information paths.

We want to examine the consequences of making different choices on these
issues.

Rather than looking at a single type-free space of resumptions as above,
and trying to invent some plausible operations on this space, we will focus
instead on the of resumptions, and try to identify the structure
naturally present in this category.

{

{

{

i.e.

X

X X

U
X,Y

′ ′ ′ ′

′ ′ ′ ′

′ ′

′
′ ′ ′ ′ ′

′
′

id

id id

inl
inl

inr
inr

Tr

R

R × R

∈ R ∈ R

∈ R

R

⊗

∈ R ∈ R ⊗ ∈ R ⊗ ⊗

⊗ ⊗

⊗ ⊗

R

R ⊗ ⊗ −→ R

X, Y X ⇀ Y X, Y

X
Y f X, Y g Y, Z

f g x
z, f g f x y, f , g y z, g

X, X

x x, .

X Y X Y

f X, Y g X , Y f g X X , Y Y

f g x
y , f g , f x y, f

f g x
y , f g , g x y , g

X f
Y X g

Y

X Y U

X U, Y U X, Y

The category of resumptions (we will for simplicity confine ourselves
to the deterministic resumptions) has as objects sets, and as morphisms

() = ()

the space of resumptions parameterized by the sets of “inputs” and
“outputs” . The composition of resumptions () and ()
is defined (coinductively [Acz88]) by:

; () = (;) () = () () = ()
undefined otherwise.

The identity resumption () is defined by

() = ()

We can picture this composition as sequential (or “series”) composition of
transducers.

We can define a monoidal structure on by

= + (disjoint union of sets)

and if (), (), () is defined
by:

(()) = (()) () = ()
undefined otherwise

(()) = (()) () = ()
undefined otherwise.

This is (asynchronous) parallel composition of transducers: at each stage, we
respond to an input on the “wire” according to , with output appearing
on the wire, and to an input on the wire according to , with output
appearing on the wire.

The remaining definitions to make this into a symmetric monoidal struc-
ture on are straightforward, and left to the reader. Note that the associa-
tivity and symmetry isomorphisms, like the identities, have just one state;
they are “history-free”.

Finally, there is a feedback operator: for each , , a function

: () ()

′

′

′

0 0

0 0 1 1

i.e. strict

′

′

′ ′

′ ′

′ ′

⊗
⊗ ⊗

⊗ ⊗






∃

R

⊗

⊗ −→ ⊗ −→

⊗

⊗ −→ ⊗ −→

⊗ ⊗

⊗ −→ ⊗ −→

−→

⊗ ⊗ −→ ⊗ ⊗

⊗ ⊗ ⊗ ⊗

⊗ −→ ⊗ −→

Tr

Tr id Tr

Tr id Tr

Tr id Tr id

Tr

Tr Tr Tr

Tr id sym id sym Tr

Naturality in

Naturality in

Naturality in

Vanishing

Superposing

U
X,Y

k k

U
X,Y U

U
X ,Y

U
X,Y U

U
X,Y

U
X,Y Y

U
X,Y X

I
X,Y

U V
X,Y

U
X,Y

V
X U,Y U

U
X Z,Y W X Z,U Y U,W

U
X,Y

f x

y, f , k. f x u , f ,
f u u , f ,

f u y, f

X k
U Y

X

g f g f

f X U Y U g X X

Y

f g f g

f X U Y U g Y Y

U

f g g f

f X U Y U g U U

f f

f X Y

f f

f X U V Y U V

f g f g

f X U Y U g Z W

defined by

()() =

() () = ()
() = ()

...
() = ()

undefined otherwise.

One should picture a token entering at the wire, circulating times
around the feedback loop at the wire, and exiting at .

This feedback operator satisfies a number of algebraic properties (to sim-
plify the statement of these properties, we elide associativity isomorphisms,

we pretend that is monoidal):

(();) = ; ()

where : , : .

(; ()) = ();

where : , : .

(; ()) = (();)

where : , : .

() =

where : , and

() = (())

where : .

((); (); ()) = ()

where : , : .

ccs

R

× ×

•

Yanking

Tr sym idX
X,X X,X X .

R X, Y X ⇀ Y L R X, Y

L

α, β, γ π

2.2 Intrinsic vs. extrinsic interaction:
paths vs. names

traced (symmetric) monoidal category
cf.

interaction
between processes

binding

() =

This says that is a in the sense of
[JSV95] (also [Has96] for the symmetric and cartesian cases, and [BE93]
for related axioms).

Why this apparent digression into the structure of the category of resump-
tions? Our aim is to address the question of how to model

, which is surely the key notion in concurrency theory, and
arguably in the semantics of computation as a whole. Resumptions as they
stand model a single process in terms of its potential interactions with its
environment. To quote Robin Milner again:

“A crucial feature is the ability to define the operation of
together two processes (which may represent two coop-

erating programs, or a program and a memory, or a computer
an an input/output device) to yield another process representing
the composite of the two computing agents, with their mutual
communications internalized.” [Mil75]

The route Milner followed to define this binding was in terms of the use of
“names” or “labels”: in terms of resumptions, one modifies their defining
equation to

() = ()

where is a set of labels, so that output is tagged with a label, which
can then be used by some “routing combinator” to dispatch the output to
its destination process. This led in a fairly direct line of descent to the
action names of [Mil80, Mil89], and the names of the -calculus
[MPW92] and action structures [MMP95]. Clearly a great deal has been
achieved with this approach. Nevertheless, we wish to lodge some criticisms
of it.

interaction becomes extrinsic: we must add some additional structure,
typically a “synchronization algebra” on the labels [Win83], which
implicitly refers to some external agency for matching up labels and
generating communication events, rather than finding the meaning of
interaction in the structure we already have.

π

π

λ

C

C C

C

i.e.

•

•

G

•

• G

•

interaction becomes ad hoc: because it is an “invented” additional
structure, many possibilities arise, and it is hard to identify any as
canonical.

interaction becomes global: using names to match up communications
implies some large space in which potential communications “swim”,
just as the use of references in imperative languages implies some
global heap. Although the scope of names may be delimited, as in
the -calculus, the local character of particular interactions is not im-
mediately apparent, and must be laboriously verified. This appears to
account for many of the complications encountered in reasoning about
concurrent object-oriented languages modelled in the -calculus, as
reported in [Jon93, Jon96].

We will now describe a construction which appears in [JSV95], and which can
be seen as a general form of the “Geometry of Interaction” [Gir88], and also
as a general but basic form of game semantics [Abr96b]. This construction
applies to any traced monoidal category , to any calculus of boxes and
wires closed under series and parallel composition and feedback, and builds
a compact closed category (), into which fully and faithfully embeds.
(It is in fact the unit of a (bi)adjunction between the categories of traced
monoidal and compact closed categories.) Its significance in the present
context is that it gives a general way of introducing a symmetric notion of
interaction which addresses the issues raised above:

interaction is intrinsic: it is found from the basic idea that processes
are modelled in terms of their interactions with their environment.
Building in the distinction between “process” and “environment” at
a fundamental level makes interaction inherent in the model, rather
than something that needs to be added.

interaction is modelled as composition in the category (). Thus in-
teraction is aligned with the computation-as-cut-elimination paradigm,
and hence a unification of concurrency with other work in denotational
semantics, type theory, categorical logic etc. becomes possible. See
[AGN96a, Abr93, Abr95b] for a detailed discussion of this point.

interaction is local. The dynamics of composition traces out “infor-
mation paths”, which are closely related to the types of the processes
which interact. There is no appeal to a global mechanism for match-
ing names. As we will see, this is general enough to model -calculus,

G

Tr
+

+ +
−

− −

cf.

C C

C C

C

C

B B
A C ,A C

3 The construction

+

+

+ +

+ +

+

+

+

+

+ + + +

+ +

+ + = + +

−
−

− −

− −

−

−

−

−

− − − −
− −

⊗
⊗ ⊗

− − ∼ − −

G

• G

• −→ G

⊗ −→ ⊗

•

−→ −→
−→

⊗

⊗ ⊗ ⊗ −→ ⊗ ⊗ ⊗

!"

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##$

$
$
$
$
$
$
$
$
$
$
$
$
$
$
$$ %

%

%

%

%%

%%

A , A
A A

f A , A B , B

f A B A B

C

C

B

B

B

B

A

A

f A , A B , B g B , B C , C
f g A , A C , C

f g α f g γ

α A C B B A B B C

state and concurrency, but, we believe, carries much more structure
than the use of names to mediate interactions.

Given a traced monoidal category , we define a new category () as
follows:

The objects of () are pairs () of objects of . The idea is
that is the type of “moves by Player (the System)”, while is
the type of “moves by Opponent (the Environment)”.

A morphism : () () in () is a morphism

:

in .

Composition is defined by symmetric feedback ([AJ94b, AJ94a]):

gf

If : () () and : () () then
; : () () is defined by

; = (; ;)

where

:

C

C

− −+ +

!
! !

id sym

4 Examples

A ,A A ,A

k k k k k k

i j i k

strategy
plays

i.e.

4.1 From resumptions to strategies

− − ∼ − −

− ∼ −

− ∗ −

− − − −

− − − −

−
−

−

−

− − −

∗

− − ∗

+ + = + +

()
+ = +

+ +

+ + + +

+ + + +

+

+

+

1 1 1 1 1 1

+ + +

1 2 3 1 2 3 +1

+ +

⊗ ⊗ ⊗ −→ ⊗ ⊗ ⊗

•

⊗ −→ ⊗

⊗ ⊗ ⊗
G

−◦ ⊗ ⊗

G R

−→

{ · · · | }
G R

{ | ∈ || }
|| { ∈ L | ∈ ∧ ∈ }

L { ∈ | ∈ ∧ ∈ ⇒ | − | ≤ }

G R

γ A B B C A C B B

A A A A .

A , A A , A .

A , A B , B A B , A B .

A , A B , B A B , A B .

X , X
X X

f X X

P f x y x y f x y , f , . . . , f x y , f .

P f g s X, Z s P f P g

S T s X, Y, Z s X, Y S s Y, Z T

X X X Y Y Y Z Z Z

S , S , S s S S S s S s S j k .

X , X X X

and
:

are the canonical isomorphisms defined using the symmetric monoidal
structure. (Again, we have elided associativity isomorphisms.)

The identities are given by the symmetry isomorphisms in :

= :

There is an evident involutive duality on this category, given by

() = ()

There is also a tensor structure, given by

() () = ()

() is a compact-closed category [KL80], with internal homs given by

() () = ()

To interpret the category (), think of an object () as a rudimen-
tary two-person game, in which is the set of moves for Player, and
the set of moves for Opponent. A resumption : is then a

for Player. Note that we can represent such a strategy by its set of
:

() = () = () () = ()

One can then show that composition in () is given by “parallel composi-
tion plus hiding” [Abr94, AJ94a, Abr96b]:

(;) = () ()

= ()
where = + , = + , = + , and

() = (+ +) = 1

The identities are the “copycat” strategies as in [AJ94a, Abr96b]. We can
then obtain the simple category of games described in [Abr96b] by applying
a specification structure in the sense of [AGN96b] to (), in which the
properties over () are the prefix-closed subsets of () , the
“safety properties” [AP93], which in this context are the game trees.

∨

2

∈
Tr

inl inr id

U
X,Y

k ω

k

k

k X,U X,U
k

Y

x

R
R

R G

G

G

{ | ∈ }

G

M
M −→

× M −→

cf.

stochastic kernels

Pfn

Pfn
PInj

PInj

PInj

Rel

Rel

f X U ⇀ Y U

f f ,

f x y x
k U
y

f f , f ,

X
l X a x X

X, X
X σ X f X Y

f X Y ,

4.2 Some geometries of interaction

4.3 Stochastic interaction

Suppose we begin with the simpler category of sets and partial functions
(which is a lluf sub-category of). This is easily seen to be a sub-traced-
monoidal category of , with tensor as disjoint union, and the trace given
by a sum-of-paths formula ([AM82]). That is, if

: + +

is a partial function, then

() =

where () is defined and equal to iff starting from we perform exactly
iterations of the feedback loop around before exiting at Y with result

:
= ; (; [0]) ; ; [0]

where 0 is the everywhere undefined partial function. We can think of this
sub-category of as the “one-state resumptions”, so that, applying the
construction to we get a category of history-free strategies [AJ94a].

As a minor variation, we could start with the category of sets and
partial injective maps. Then () is essentially the original Geometry
of Interaction construction of Girard, as explained in [AJ94a, AJM96]. In
particular, the composition in () corresponds exactly to the Execution
Formula. This category can be lifted to the setting of Hilbert spaces by
applying the free construction described in [Bar93a], which sends a set to
the Hilbert space () of square summable families .

As a final variation, we could start with , the category of sets and
relations. This yields a non-deterministic version of the Geometry of In-
teraction, which can be generalized via non-deterministic resumptions to a
category of non-deterministic strategies. () is the example mentioned
at the end of [JSV95].

As a more substantial variation of the above, consider the following category
of [Law62, Gir81]. Objects are structures (()),
where () is a -algebra of subsets of . A morphism : is a
function

: () [0 1]

∈

∅

∅

∅

∅

i.e.

∫

{

∫

∫

0

+1

0

+1

Y

X

k

k
U

k

k
U

k

U
X,Y k ω k

id

inl

inr

inl

inr

Tr

∈ · M −→
∈ M · −→

·

→ →

· ·

∈
-∈

M ∼ M ×
M

⊗ −→
⊗ ∈ ∈ M

·

∈ M

·

4.4 From particles to waves: the “New Foundations” version
of Geometry of Interaction

x X f x, Y ,
M Y f , M X ,

f x, f x, Y

f X Y g Y Z

f g x,M g ,M df x, .

x, M
, x M
, x M.

X Y X
Y

f X U
Y U x X k ω µ U

M x
k

µ M f x , , M

µ M f , , M dµ .

M Y x
k

f x, M f x , M,

f x, M f , M, dµ .

f x, M f x, M .

such that for each () : () [0 1] is a measure, and for each
(), () : [0 1] is a measurable function. One can think

of stochastic kernels as “probabilistic transition functions”. Note that we do
not require that each () is a probability measure, that () = 1,
since we wish to allow for “partial” transition functions.

Composition is by integration: if : and : , then

; () = () ()

Identities are given by point measures:

() = 1
0

Tensor product is given by disjoint union; note that (+) = ()
().
Feedback is given by a sum-over-paths formula. Given :

, and , we define for each a measure on () which
gives the probability that we will end up in starting from after exactly

traversals of the feedback loop:

() = (() ())

() = (() ())

The probability that we will end up in () starting from after
exactly iterations of the feedback loop is given by:

() = (() ())

() = (() ())

Finally, the trace is defined by summing over all paths:

()() = Σ ()

All the above models can be thought of as dynamical systems in which an
information “token” or “particle” traces some path around a network. This

C

C
C

C

A
D,ETr snd fst

inter alia

Cpo

Y

Cpo

Cpo

5 Consequences

× −→ ×

·

G GI

G

G

G

→ →
→

f D A E A

f λd D. f d, f d, .

f A B g B C

f g A C

4.5 The continuous case?

5.1 Correctness issues

particulate interpretation of diagrams of boxes and wires is supported by the
“additive” (disjoint union) interpretation of the tensor. It is also possible to
give an interpretation in which an information “wave” travels through the
network; formally, this will be supported by a “multiplicative” (cartesian
product) interpretation of the tensor.

Specifically, we can define a traced monoidal structure on the category
of cpo’s and continuous functions, in which the tensor is given by the

cartesian product, and feedback by the least fixpoint operator: that is, if
: , then

() = : ((();));

The category () is then exactly the category () described in [AJ94b].
A sub-category of this category will consist of dataflow networks, built

up from objects which are domains of streams. The symmetric feedback
operator giving the composition in () has been used in this con-
text [SDW96, GS96], in developing assumption/commitment style
proof rules for dataflow networks.

One final “example” should be mentioned, although we have not as yet
succeeded in working out the details. The operations of series and parallel
composition and feedback are standard in continuous-time control systems,
electronic circuits and analogue computation. In particular, feedback is
interpreted by solving a differential equation. There should then presumably
be a traced monoidal category of manifolds and smooth maps, for which
() would give an “infinitesimal” model of interaction. Such a category

might be relevant to the study of hybrid systems [PS95].

We shall, very briefly, sketch some further developments from this point.

We can associate correctness properties with the rudimentary types of (),
in the setting of specification structures [AGN96b]. Types can then carry
strong correctness information, and the type inference rule for composition

: :
; :

Resumptions

Geometry of Interaction

5.2 Modelling types and functions

5.3 State and concurrency

becomes a compositional proof rule for process interaction. See [Abr93,
Abr95b, AGN96a, AGN96b] for further discussion and applications.

We shall mention some particular cases for the examples described above.

In this case, we can get the structure of games as safety
properties, and of winning strategies as liveness properties, as described in
[AJ94a, Abr96b]. In particular, the fact that winning strategies are closed
under composition corresponds to a guarantee that there is no “infinite
chattering” [Hoa85] in interaction.

In this case, we can focus on nilpotency as a
semantic analogue of normalization, as in [Gir88], or instead proceed as in
the previous example, as in [AJ94a], where a Full Completeness Theorem
for Multiplicative Linear Logic is obtained.

The divide between concurrency theory and denotational semantics, type
theory and categorical logic is bridged in our approach, since the categories
we construct, or derivatives thereof, have the right structure to model typed,
higher-order programming languages. The key point is that we are now mod-
elling functions as processes, and function application as a particular form
of process interaction, as advocated in [Mil92], but in a highly structured,
syntax-free and compositional fashion.

Moreover, the quality of these process models of functional computation
is high: the models based on games yielded the first syntax-independent
constructions of fully abstract models for PCF [AJM96, HO96], and this
has been followed by a number of further results [AM95, McC96b, McC96a].
The degree of mathematical structure in these models is also witnessed by
the axiomatic treatment of full abstraction it has been possible to extract
from them [Abr96a].

It has also proved possible to give a game semantics for Idealized Algol
[Abr95a], which is a clean integration of higher-order functional program-
ming with imperative features and block structure [Rey81, Ten94]. Again,
this has led to the first syntax-independent construction of a fully abstract
model [AM96]. The treatment of local variables is process-based, following
the line of [Mil75, Mil80, Red96]; but with the the right mathematical tools

References

The-
ory and Formal Methods ‘93

Theoretical Computer Science

A Classical Mind: Essays
in Honour of C. A. R. Hoare

Proceedings of 1995
CLiCS Summer School, Isaac Newton Institute

Non-well-founded sets

De-
ductive program design: Proceedings of the 1994 Marktoberdorf
International Summer School

Logics for Con-
currency: Structure vs. Automata

now available, a more definitive treatment can be given, as confirmed by the
results on full abstraction.

This model of Idealized Algol extends smoothly to incorporate concur-
rency [Abr95a]. It remains to be seen how accurate the model of the concur-
rent language is, but the situation looks quite promising: moreover, Idealized
Parallel Algol is rich enough to represent rather directly many of the features
of today’s concurrent object-oriented languages.

[Abr93] S. Abramsky. Interaction categories (extended abstract). In
, Workshops in Computer Science,

pages 57–70. Springer-Verlag, 1993.

[Abr94] S. Abramsky. Proofs as processes. ,
135:5–9, 1994.

[Abr95a] S. Abramsky. A game semantics for Idealized Parallel Algol.
Unpublished lecture, 1995.

[Abr95b] S. Abramsky. Interaction categories and communicating sequen-
tial processes. In A. W. Roscoe, editor,

, pages 1–15. Prentice Hall Interna-
tional, 1995.

[Abr96a] S. Abramsky. Axioms for full abstraction and full completeness.
Submitted for publication, 1996.

[Abr96b] S. Abramsky. Semantics of interaction. In
. Cambridge Uni-

versity Press, 1996. To appear.

[Acz88] P. Aczel. . CSLI, 1988.

[AGN96a] S. Abramsky, S. Gay, and R. Nagarajan. Interaction categories
and the foundations of typed concurrent programming. In

. Springer-Verlag, 1996. To appear.

[AGN96b] S. Abramsky, S. Gay, and R. Nagarajan. Specification structures
and propositions-as-types for concurrency. In

, Lecture Notes in Computer
Science. Springer-Verlag, 1996.

λ

Journal of Symbolic Logic

Information and Computation

Journal of the
ACM

Tenth Annual Symposium on Logic in
Computer Science

Theoretical Computer Science

Iteration Theories

Cate-
gorical Aspects of Topology and Analysis Lecture
Notes in Mathematics

Logic Colloquium ‘88

[AJ94a] S. Abramsky and R. Jagadeesan. Games and full complete-
ness for multiplicative linear logic. ,
59(2):543–574, 1994.

[AJ94b] S. Abramsky and R. Jagadeesan. New foundations for the geome-
try of interaction. , 111(1):53–119,
1994. Conference version appeared in LiCS ‘92.

[AJM96] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction
for PCF. Submitted for publication, 1996.

[AM82] M. A. Arbib and E. G. Manes. The pattern-of-calls expansion
is the canonical fixpoint for recursive definitions.

, 29(2):577–602, 1982.

[AM95] S. Abramsky and G. McCusker. Games and full abstraction for
the lazy -calculus. In

, pages 234–243, 1995.

[AM96] S. Abramsky and G. McCusker. Full abstraction for Idealized
Algol. To appear, 1996.

[AP93] M. Abadi and G. Plotkin. A logical view of composition and
refinement. , 114(1):3–30, 1993.

[Bar93a] M. Barr. Algebraically compact functors. Technical report, 1993.

[Bar93b] M. Barr. Terminal coalgebras for endofunctors on sets. Technical
Report, 1993.

[BE93] S. Bloom and Z. Esik. . Springer-Verlag, 1993.

[Bek71] H. Bekić. Towards a mathematical theory of processes. Technical
Report TR25.125, IBM Laboratory, Vienna, 1971.

[Gir81] M. Giry. A categorical approach to probability theory. In
, volume 915 of

. Springer-Verlag, 1981.

[Gir88] J.-Y. Girard. Geometry of interaction I: interpretation of System
F. In R. Ferro, editor, , pages 221–260.
North Holland, 1988.

Communicating Sequential Processes

Programming Languages
and Systems—ESOP ‘96 Lecture Notes in Com-
puter Science

Journal of Pure and Applied Algebra

Games and Full Abstraction for a functional met-
alanguage with recursive types

Interna-
tional Symposium on Logic in Computer Science

Logic Colloquium ‘73

A Calculus of Communicating Systems

[GS96] R. Grosu and K. Stølen. A model for mobile point-to-point
dataflow networks without channel sharing. Technical report,
1996.

[Has96] M. Hasegawa. Traced computational models. Technical report,
1996.

[HO96] M. Hyland and C.H. L. Ong. On full abstraction for PCF. Sub-
mitted for publication, 1996.

[Hoa85] C. A. R. Hoare. . Prentice
Hall International, 1985.

[Jon93] C. B. Jones. Process-algebraic foundations for an object-based
design notation. Technical Report UMCS-93-10-1, University of
Manchester, 1993.

[Jon96] C. B. Jones. Some practical problems and their influence on se-
mantics. In Hanne Riis Nielson, editor,

, volume 1058 of
, pages 1–17. Springer-Verlag, 1996.

[JSV95] A. Joyal, R. Street, and D. Verity. Traced monoidal categories.
Technical report, 1995.

[KL80] G. M. Kelly and M. Laplaza. Coherence for compact closed cat-
egories. , 19:193–213, 1980.

[Law62] F. W. Lawvere. The category of probabilistic mappings. Unpub-
lished manuscript, 1962.

[McC96a] G. McCusker.
. PhD thesis, Imperial College,

University of London, 1996. to appear.

[McC96b] G. McCusker. Games and full abstraction for FPC. In
, 1996.

[Mil75] R. Milner. Processes: a mathematical model of computing
agents. In , pages 157–173. North Holland,
1975.

[Mil80] R. Milner. . Springer-
Verlag, 1980.

Communication and Concurrency

Mathematical Structures in
Computer Science

Tenth Annual Symposium on Logic in Computer Science

Information and Computation

SIAM Journal on
Computing

Special issue on hybrid systems

Lisp and Functional Programming

Algorithmic Languages

Formal Aspects of Computing

Handbook of Logic in
Computer Science

Automata, Languages
and Programming: 10th International Colloquium

[Mil89] R. Milner. . Prentice Hall In-
ternational, 1989.

[Mil92] R. Milner. Functions as processes.
, 2(2):119–142, 1992.

[MMP95] A. Mifsud, R. Milner, and J. Power. Control structures. In
, pages

188–198, 1995.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile pro-
cesses. , 100(1):1–77, 1992.

[Plo76] G. Plotkin. A powerdomain construction.
, 5(3):452–487, 1976.

[PS95] A. Pnueli and J. Sifakis, editors. ,
1995. Theoretical Computer Science vol. 138 no. 1.

[Red96] U. Reddy. Global state considered unncessary: an object-based
semantics for Algol. , 1996.

[Rey81] J. C. Reynolds. The essence of Algol. In J. W. de Bakker and
J. C. van Vliet, editors, , pages 345–372.
North Holland, 1981.

[SDW96] K. Stølen, F. Dederichs, and R. Weber. Assump-
tion/commitment rules for networks of asynchronously commu-
nicating agents. , 1996.

[Ten94] R. D. Tennent. Denotational semantics. In S. Abramsky, D. M.
Gabbay, and T. S. E. Maibaum, editors,

, volume 3, pages 169–322. Oxford University
Press, 1994.

[Win83] G. Winskel. Synchronization trees. In
, pages 695–

711. Springer-Verlag, 1983.

