Notes on categories
 incomplete and never to be finished

Russ Harmer
CNRS \& ENS Lyon

Chapter 1

Category theory I

Categories, functors and natural transformations.

1.1 Categories

A category \mathbf{C} consists of a class $\mathcal{O}_{\mathbf{C}}$ of unstructured objects and a class $\mathcal{A}_{\mathbf{C}}$ of arrows of the form $f: c \rightarrow c^{\prime}$ where f is our name for the arrow and c and c^{\prime} are objects; we write $\operatorname{dom} f$ for c and codom f for c^{\prime}. We require there to be, for every object c, an identity arrow $1_{c}: c \rightarrow c$ and, for all composable arrows $f: c \rightarrow c^{\prime}$ and $f^{\prime}: c^{\prime} \rightarrow c^{\prime \prime}$, i.e. where $\operatorname{codom} f=\operatorname{dom} f^{\prime}$, a composite arrow $f^{\prime} \circ f: c \rightarrow c^{\prime \prime}$ satisfying $f \circ 1_{c}=f=1_{c^{\prime}} \circ f$ and, for all arrows $f^{\prime \prime}: c^{\prime \prime} \rightarrow c^{\prime \prime \prime}$, $\left(f^{\prime \prime} \circ f^{\prime}\right) \circ f=f^{\prime \prime} \circ\left(f^{\prime} \circ f\right)$. The operation \circ is the composition law of \mathbf{C}; the two requirements are the identity and the associativity properties.

An arrow $f: c \rightarrow c^{\prime}$ is an isomorphism iff, for some $f^{\prime}: c^{\prime} \rightarrow c, f^{\prime} \circ f=1_{c}$ and $f \circ f^{\prime}=1_{c^{\prime}}$. If f^{\prime} exists, it is unique since, for any other candidate $f^{\prime \prime}: c^{\prime} \rightarrow c, f^{\prime \prime}=f^{\prime \prime} \circ f \circ f^{\prime}=f^{\prime}$. We then say that f is invertible, or is an isomorphism, and define the operation $f^{-1}:=f^{\prime}$; we also say that the objects c and c^{\prime} are isomorphic [in the category \mathbf{C}], written $c \cong c^{\prime}\left[\right.$ or $f: c \cong c^{\prime}$ if we wish to stress the specific witness f].

A subcategory \mathbf{C}^{\prime} of \mathbf{C} consists of a subclass $\mathcal{O}_{\mathbf{C}^{\prime}}$ of $\mathcal{O}_{\mathbf{C}}$ and a subclass $\mathcal{A}_{\mathbf{C}^{\prime}}$ of $\mathcal{A}_{\mathbf{C}}$ such that, for all arrows f in $\mathcal{A}_{\mathbf{C}^{\prime}}, \operatorname{dom} f$ and codom f are both in $\mathcal{O}_{\mathbf{C}^{\prime}}$, for all objects c in $\mathcal{O}_{\mathbf{C}^{\prime}}, \mathcal{A}_{\mathbf{C}^{\prime}}$ contains 1_{c} and, for all arrows $f: c \rightarrow c^{\prime}$ and $f^{\prime}: c^{\prime} \rightarrow c^{\prime \prime}$ in $\mathcal{A}_{\mathbf{C}^{\prime}}$, their composite $f^{\prime} \circ f$ is also in $\mathcal{A}_{\mathbf{C}^{\prime}}$. The identities and composition law of \mathbf{C}^{\prime} are inherited from \mathbf{C}, i.e. $1_{c}^{\prime}:=1_{c}$, for all c in $\mathcal{O}_{\mathbf{C}^{\prime}}$, and $f^{\prime} \circ^{\prime} f:=f^{\prime} \circ f$, for all $f: c \rightarrow c^{\prime}$ and $f^{\prime}: c^{\prime} \rightarrow c^{\prime \prime}$ in $\mathcal{A}_{\mathbf{C}^{\prime}}$.

The isomorphisms of \mathbf{C} form a subcategory: if $f: c \cong c^{\prime}$ and $f^{\prime}: c^{\prime} \cong c^{\prime \prime}$ then $f^{\prime} \circ f: c \cong c^{\prime \prime}$ since, setting $\left(f^{\prime} \circ f\right)^{-1}:=f^{-1} \circ f^{\prime-1}$, we have $\left(f^{-1} \circ f^{\prime-1}\right) \circ$ $\left(f^{\prime} \circ f\right)=f^{-1} \circ\left(f^{\prime-1} \circ f^{\prime}\right) \circ f=1_{c}$ and, similarly, $\left(f^{\prime} \circ f\right) \circ\left(f^{-1} \circ f^{\prime-1}\right)=1_{c^{\prime \prime}}$.
'The' category generally known as Set has all sets as objects and all total functions between them as arrows [where 'all' depends on your choice of set theory].

An arrow $f: c \rightarrow c^{\prime}$ of Set is an isomorphism if, and only if, f [viewed as a set-theoretic function] is a bijection; so, in particular, c and c^{\prime} [viewed as sets] are isomorphic.

The category C is small iff its class of arrows is a set; its collection of objects is then necessarily also a set. A category where all the arrows are identity arrows is called discrete. A small discrete category is a set.

The category \mathbf{C} is locally small iff, for all pairs of objects c and c^{\prime}, the class hom $\left(c, c^{\prime}\right)$ of all arrows $f: c \rightarrow c^{\prime}$ is an object of Set, i.e. actually a set, not a class.

A small category with one object, i.e. where all arrows are composable, is a monoid. A monoid where all arrows are invertible is a group. A small category where all arrows are invertible is a groupoid.

More generally, if \mathbf{C} is a locally small category containing objects c and c^{\prime}, we define $\operatorname{Iso}\left(c, c^{\prime}\right)$ to be the set of all isomorphisms $f: c \cong c^{\prime}$ and write $\operatorname{Aut}(c)$ for $\operatorname{Iso}(c, c)$. Given $f \in \operatorname{Iso}\left(c, c^{\prime}\right)$, define a total function from $g \in \operatorname{Aut}(c)$ to Iso $\left(c, c^{\prime}\right)$ by $g \mapsto f \circ g$. This is an isomorphism in Set witnessed by the total function from $f^{\prime} \in \operatorname{Iso}\left(c, c^{\prime}\right)$ to $\operatorname{Aut}(c)$ defined as $f^{\prime} \mapsto f^{-1} \circ f^{\prime}$: clearly $g \mapsto f^{-1} \circ(f \circ g)=g$ and $f^{\prime} \mapsto f \circ\left(f^{-1} \circ f^{\prime}\right)=f^{\prime}$. So, provided that $c \cong c^{\prime}$, there are always exactly as many automorphisms of c (or indeed c^{\prime}) as there are witnesses of the isomorphism of c and c^{\prime}.

The category of groups and group homomorphisms is called Grp; that of graphs and graph homomorphisms is called Grph.

The opposite category $\mathbf{C}^{o p}$ of the category \mathbf{C} is defined to have the same objects as \mathbf{C} and the 'same' arrows as \mathbf{C} but going in the other direction: $f^{o p}: c \rightarrow c^{\prime}$ is an arrow of $\mathbf{C}^{o p}$ iff $f: c^{\prime} \rightarrow c$ is an arrow of \mathbf{C}. Concomitantly, $f^{\prime o p} \circ^{o p} f^{o p}:=\left(f \circ f^{\prime}\right)^{o p}$ and $1_{c}^{o p}:=1_{c}$.

The product category $\mathbf{C}_{\mathbf{1}} \times \mathbf{C}_{\mathbf{2}}$ of the categories $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$ has as objects all pairs $\left\langle c_{1}, c_{2}\right\rangle$, where c_{1} is an object of $\mathbf{C}_{\mathbf{1}}$ and c_{2} is an object of $\mathbf{C}_{\mathbf{2}}$, and as arrows all pairs $\left\langle f_{1}, f_{2}\right\rangle:\left\langle c_{1}, c_{2}\right\rangle \rightarrow\left\langle c_{1}^{\prime}, c_{2}^{\prime}\right\rangle$, where $f_{1}: c_{1} \rightarrow c_{1}^{\prime}$ is an arrow of $\mathbf{C}_{\mathbf{1}}$ and $f_{2}: c_{2} \rightarrow c_{2}^{\prime}$ is an arrow of $\mathbf{C}_{\mathbf{2}}$. Concomitantly, composable arrows $\left\langle f_{1}, f_{2}\right\rangle$ and $\left\langle f_{1}^{\prime}, f_{2}^{\prime}\right\rangle$ are composed component-wise, i.e. $\left\langle f_{1}^{\prime}, f_{2}^{\prime}\right\rangle \circ_{1 \times 2}\left\langle f_{1}, f_{2}\right\rangle:=\left\langle f_{1}^{\prime} \circ_{1} f_{1}, f_{2}^{\prime} \circ_{2} f_{2}\right\rangle$, and $1_{\left\langle c_{1}, c_{2}\right\rangle}^{1 \times 2}:=\left\langle 1_{c_{1}}^{1}, 1_{c_{2}}^{2}\right\rangle$.

1.2 Functors

A functor F from the category \mathbf{C} to the category \mathbf{C}^{\prime} consists of two mappings [one sending c in $\mathcal{O}_{\mathbf{C}}$ to $F c$ in $\mathcal{O}_{\mathbf{C}^{\prime}}$ and the other sending $f: c \rightarrow c^{\prime}$ in $\mathcal{A}_{\mathbf{C}}$ to $F f: F c \rightarrow F c^{\prime}$ in $\left.\mathcal{A}_{\mathbf{C}^{\prime}}\right]$ satisfying, for all objects c of $\mathbf{C}, F 1_{c}=1_{F c}^{\prime}$ and, for all arrows $f: c \rightarrow c^{\prime}$ and $f^{\prime}: c^{\prime} \rightarrow c^{\prime \prime}$ of $\mathbf{C}, F\left(f^{\prime} \circ f\right)=F f^{\prime} \circ^{\prime} F f$.

A functor from a monoid [viewed as the category \mathbf{C}] to a second monoid [viewed as the category \mathbf{C}^{\prime}] is a standard monoid homomorphism. Likewise for groups and groupoids.

If the arrow $f: c \rightarrow c^{\prime}$ of \mathbf{C} is invertible then $(F f)^{-1}:=F f^{-1}$ inverts $F f: F c \rightarrow F c^{\prime}$ in \mathbf{C}^{\prime} since $F f^{-1} \circ^{\prime} F f=F\left(f^{-1} \circ f\right)=F 1_{c}=1_{F c}^{\prime}$ and $F f \circ^{\prime} F f^{-1}=F\left(f \circ f^{-1}\right)=F 1_{c^{\prime}}=1_{F c^{\prime}}^{\prime}$.

An alternative possible definition of functor would specify only the arrow mapping: any mapping F from the arrows of \mathbf{C} to the arrows of \mathbf{C}^{\prime} such that, for all arrows $f_{1}: c_{1} \rightarrow c_{1}^{\prime}$ and $f_{2}: c_{2} \rightarrow c_{2}^{\prime}$ of \mathbf{C}, $\operatorname{dom} F f_{1}=\operatorname{dom} F f_{2}$ if $\operatorname{dom} f_{1}=\operatorname{dom} f_{2}$ and codom $F f_{1}=\operatorname{codom} F f_{2}$ if $\operatorname{codom} f_{1}=\operatorname{codom} f_{2}$ immediately induces a functor; the induced object mapping can be defined as $F c:=c^{\prime}$ iff $F 1_{c}=1_{c^{\prime}}^{\prime}$.

A third (and final) possible definition of functor is as a family of functions, $F_{c, c^{\prime}}: \operatorname{hom}\left(c, c^{\prime}\right) \rightarrow \operatorname{hom}\left(F c, F c^{\prime}\right)$, indexed by all pairs of objects of \mathbf{C}.

The functor $F: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ is (i) faithful iff, for every pair c, c^{\prime} of objects of $\mathbf{C}, F_{c, c^{\prime}}$ is injective; (ii) full iff, for every pair c, c^{\prime} of objects of $\mathbf{C}, F_{c, c^{\prime}}$ is surjective; and (iii) essentially surjective iff, for every object c^{\prime} of \mathbf{C}^{\prime}, there is some object c of \mathbf{C} such that $F c \cong c^{\prime}$. A full and faithful functor is sometimes called fully faithful.

If \mathbf{C}^{\prime} is a subcategory of \mathbf{C}, the inclusion functor $I: \mathbf{C}^{\prime} \rightarrow \mathbf{C}$ sends each object and arrow of \mathbf{C}^{\prime} to 'itself' in \mathbf{C}. This functor is always faithful. If it is full, we say that \mathbf{C}^{\prime} is a full subcategory of \mathbf{C}; a full subcategory is therefore uniquely determined by its subclass $\mathcal{O}_{\mathrm{C}^{\prime}}$ of objects.

A category \mathbf{C} is concrete iff there is a faithful functor $U: \mathbf{C} \rightarrow$ Set.
A locally small category \mathbf{C} induces a hom functor hom $_{\mathbf{C}}: \mathbf{C}^{o p} \times \mathbf{C} \rightarrow$ Set where $\left\langle c, c^{\prime}\right\rangle \mapsto \operatorname{hom}\left(c, c^{\prime}\right)$ and $\left\langle f_{1}^{o p}, f_{2}\right\rangle:\left\langle c_{1}, c_{2}\right\rangle \rightarrow\left\langle c_{1}^{\prime}, c_{2}^{\prime}\right\rangle \mapsto\left(f: c_{1} \rightarrow c_{2} \mapsto\right.$ $\left.f_{2} \circ f \circ f_{1}\right): \operatorname{hom}\left(c_{1}, c_{2}\right) \rightarrow \operatorname{hom}\left(c_{1}^{\prime}, c_{2}^{\prime}\right):$

- Clearly, $\operatorname{hom}_{\mathbf{C}} 1_{\left\langle c_{1}, c_{2}\right\rangle}=\left(f: c_{1} \rightarrow c_{2} \mapsto 1_{c_{2}} \circ f \circ 1_{c_{1}}\right)=1_{\text {hom }\left(c_{1}, c_{2}\right)}$.
- Moreover, given additionally $\left\langle f_{1}^{\prime o p}, f_{2}^{\prime}\right\rangle:\left\langle c_{1}^{\prime}, c_{2}^{\prime}\right\rangle \rightarrow\left\langle c_{1}^{\prime \prime}, c_{2}^{\prime \prime}\right\rangle$, we have that $\operatorname{hom}_{\mathbf{C}}\left(\left\langle f_{1}^{\prime o p}, f_{2}^{\prime}\right\rangle \circ\left\langle f_{1}^{o p}, f_{2}\right\rangle\right)=\left(f: c_{1} \rightarrow c_{2} \mapsto\left(f_{2}^{\prime} \circ f_{2}\right) \circ f \circ\left(f_{1} \circ f_{1}^{\prime}\right)\right)=$ $\left(f: c_{1} \rightarrow c_{2} \mapsto f_{2}^{\prime} \circ\left(f_{2} \circ f \circ f_{1}\right) \circ f_{1}^{\prime}\right)=\operatorname{hom}_{\mathbf{C}}\left\langle f_{1}^{\prime o p}, f_{2}^{\prime}\right\rangle \circ \operatorname{hom}_{\mathbf{C}}\left\langle f_{1}^{o p}, f_{2}\right\rangle$.

The functors $F: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ and $F^{\prime}: \mathbf{C}^{\prime} \rightarrow \mathbf{C}^{\prime \prime}$ can be composed by defining $c \mapsto F^{\prime}(F c)$, for all objects c of \mathbf{C}, and $f \mapsto F^{\prime}(F f)$, for all arrows $f: c \rightarrow c^{\prime}$ of \mathbf{C}. This yields a functor $F^{\prime} \circ F: \mathbf{C} \rightarrow \mathbf{C}^{\prime \prime}$ since (i) $\left(F^{\prime} \circ F\right) 1_{c}=F^{\prime} 1_{F c}^{\prime}=$ $1_{\left(F^{\prime} F\right) c}^{\prime \prime}$; and, given $f^{\prime}: c^{\prime} \rightarrow c^{\prime \prime}$ of \mathbf{C}, (ii) $\left(F^{\prime} \circ F\right)\left(f^{\prime} \circ f\right)=F^{\prime}\left(F\left(f^{\prime} \circ f\right)\right)=$ $F^{\prime}\left(F f^{\prime} \circ^{\prime} F f\right)=F^{\prime}\left(F f^{\prime}\right) \circ^{\prime \prime} F^{\prime}(F f)=\left(F^{\prime} \circ F\right) f^{\prime} \circ^{\prime \prime}\left(F^{\prime} \circ F\right) f$.

The identity functor $1_{\mathbf{C}}: \mathbf{C} \rightarrow \mathbf{C}$ sends every object and arrow to itself; clearly $F 1_{\mathbf{C}}=F=1_{\mathbf{C}^{\prime}}^{\prime} F$. Moreover, given a third functor $F^{\prime \prime}: \mathbf{C}^{\prime \prime} \rightarrow \mathbf{C}^{\prime \prime \prime}$, clearly $\left(\left(F^{\prime \prime} \circ F^{\prime}\right) \circ F\right)=\left(F^{\prime \prime} \circ\left(F^{\prime} \circ F\right)\right)$. So we have a category, known as Cat, with objects all small categories and arrows all functors between them; two small categories are isomorphic iff they are isomorphic in Cat.

1.3 Natural transformations

A natural transformation $\alpha: F \rightarrow F^{\prime}$ from the functor $F: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ to the functor $F^{\prime}: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ is a family of arrows $\alpha_{c}: F c \rightarrow F^{\prime} c$ of \mathbf{C}^{\prime}, indexed by the objects of \mathbf{C}, such that

commutes for all arrows $f: c \rightarrow c^{\prime}$ of \mathbf{C}.
The natural transformation $\alpha: F \rightarrow F^{\prime}$ is a natural isomorphism iff, for every object c of \mathbf{C}, the arrow $\alpha_{c}: F c \rightarrow F^{\prime} c$ is an isomorphism. This is equivalent to saying that there is a natural transformation $\alpha^{-1}: F^{\prime} \rightarrow F$ satisfying, for all objects c of $\mathbf{C}, \alpha_{c}^{-1} \circ^{\prime} \alpha_{c}=1_{F c}^{\prime}$ and $\alpha_{c} \circ^{\prime} \alpha_{c}^{\prime}=1_{F^{\prime} c}^{\prime}$.

Given a further natural transformation $\alpha^{\prime}: F^{\prime} \rightarrow F^{\prime \prime}$, where $F^{\prime \prime}: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ is a third functor, the vertical composite of α and α^{\prime}, defined component-wise as $\left(\alpha^{\prime} \bullet \alpha\right)_{c}:=\alpha_{c}^{\prime} \circ^{\prime} \alpha_{c}$, is clearly a natural transformation $\alpha^{\prime} \bullet \alpha: F \rightarrow F^{\prime \prime}$. The identity natural transformation $1_{F}: F \rightarrow F$, defined as $\left(1_{F}\right)_{c}:=1_{F c}^{\prime}$, satisfies $\alpha \bullet 1_{F}=\alpha=1_{F^{\prime}} \bullet \alpha$ and, given a fourth functor $F^{\prime \prime \prime}$ and a third natural transformation $\alpha^{\prime \prime}: F^{\prime \prime} \rightarrow F^{\prime \prime \prime}$, we have $\left(\alpha^{\prime \prime} \bullet \alpha^{\prime}\right) \bullet \alpha=\alpha^{\prime \prime} \bullet\left(\alpha^{\prime} \bullet \alpha\right)$. Provided no 'problems of size' arise, we thus obtain a functor category $\mathbf{C}^{\prime \mathbf{C}}$ with objects all functors from \mathbf{C} to \mathbf{C}^{\prime} and arrows all natural transformations between these functors; it is sufficient that \mathbf{C} be a small category.

Let $\mathbf{1}$ and $\mathbf{2}$ be the (small) discrete categories with one and two objects respectively. Clearly $\mathbf{C}^{\mathbf{1}} \cong \mathbf{C}$ and $\mathbf{C}^{2} \cong \mathbf{C} \times \mathbf{C}$ in Cat.

The categories \mathbf{C} and \mathbf{C}^{\prime} are equivalent iff there exist functors $F: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ and $G: \mathbf{C}^{\prime} \rightarrow \mathbf{C}$ and natural isomorphisms $\varepsilon: F G \cong 1_{\mathbf{C}^{\prime}}$ and $\eta: 1_{\mathbf{C}} \cong G F$.

Since $\varepsilon_{c^{\prime}}: F\left(G c^{\prime}\right) \cong c^{\prime}$, for all c^{\prime} in $\mathcal{O}_{\mathbf{C}^{\prime}}$, the functor F is essentially surjective. Moreover, for any arrow $f: c_{1} \rightarrow c_{2}$ of $\mathbf{C}, f=\eta_{c_{2}} \circ G F f \circ \eta_{c_{1}}^{-1}$ and $G F f=\eta_{c_{2}}^{-1} \circ f \circ \eta_{c_{1}}$, so that $\operatorname{hom}\left(c_{1}, c_{2}\right)$ is in bijection with $\operatorname{hom}\left(G F c_{1}, G F c_{2}\right)$. [If \mathbf{C} is locally small, there is therefore an isomorphism in Set witnessing $\operatorname{hom}\left(c_{1}, c_{2}\right) \cong \operatorname{hom}\left(G F c_{1}, G F c_{2}\right)$.] So $F_{c_{1}, c_{2}}$ must be injective and $G_{F c_{1}, F c_{2}}$ must be surjective, for all pairs of objects c_{1}, c_{2}, i.e. F is faithful and G is full. The symmetric argument establishes that G is essentially surjective and faithful and that F is full.

The functor $F: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ is a weak equivalence iff, for some $G: \mathbf{C}^{\prime} \rightarrow \mathbf{C}$, there exist natural isomorphisms $\epsilon: F G \cong 1_{\mathrm{C}^{\prime}}$ and $\eta: 1_{\mathrm{C}} \cong G F$. If F is a weak equivalence then, from the above, we know that it is fully faithful and essentially surjective; the converse is also true - with the caveat that it depends on the axiom of choice:

Suppose that the functor $F: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ is fully faithful and essentially surjective. By essential surjectivity, for any c^{\prime} in $\mathcal{O}_{\mathbf{C}^{\prime}}$, there is at least one c in $\mathcal{O}_{\mathbf{C}}$ such that $F c \cong c^{\prime}$; an application of the axiom of choice then picks out a choice of c, for each c^{\prime} in $\mathcal{O}_{\mathbf{C}^{\prime}}$, allowing us to define $G c^{\prime}:=c$.

1.4 Cat as a 2-category

Given functors $F_{1}^{\prime}, F_{2}^{\prime}: \mathbf{C}^{\prime} \rightarrow \mathbf{C}^{\prime \prime}$, a natural transformation $\alpha^{\prime}: F_{1}^{\prime} \rightarrow F_{2}^{\prime}$ and functors $F: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ and $F^{\prime \prime}: \mathbf{C}^{\prime \prime} \rightarrow \mathbf{C}^{\prime \prime \prime}$, we define, for each object c of \mathbf{C}, an arrow $\left(F^{\prime \prime} \circ \alpha^{\prime} \circ F\right)_{c}:=F^{\prime \prime}\left(\alpha_{F c}^{\prime}\right)$ of $\mathbf{C}^{\prime \prime \prime}$. This defines a natural transformation $F^{\prime \prime} \circ \alpha^{\prime} \circ F: F^{\prime \prime} \circ F_{1}^{\prime} \circ F \rightarrow F^{\prime \prime} \circ F_{2}^{\prime} \circ F$ since, for any $f: c \rightarrow c^{\prime}$ in \mathbf{C},

commutes (because α^{\prime} is a natural transformation and $F^{\prime \prime}$ is a functor).
This hybrid composition of two functors and a natural transformation is usually called whiskering. It is a special case of the horizontal composition of natural transformations if we replace the functors F and $F^{\prime \prime}$ by the identity natural transformations $1_{F}: F \rightarrow F$ and $1_{F^{\prime \prime}}: F^{\prime \prime} \rightarrow F^{\prime \prime}$ respectively:

Given functors $F_{1}, F_{2}: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ and $F_{1}^{\prime}, F_{2}^{\prime}: \mathbf{C}^{\prime} \rightarrow \mathbf{C}^{\prime \prime}$ together with natural transformations $\alpha: F_{1} \rightarrow F_{2}$ and $\alpha^{\prime}: F_{1}^{\prime} \rightarrow F_{2}^{\prime}$, the horizontal composite $\alpha^{\prime} \circ \alpha: F_{1}^{\prime} \circ F_{1} \rightarrow F_{2}^{\prime} \circ F_{2}$ of α and α^{\prime} is defined, for each object c of \mathbf{C}, to be the diagonal of

$$
\begin{aligned}
& F_{1}^{\prime}\left(F_{1} c\right) \xrightarrow{\alpha_{F_{1} c}^{\prime}} F_{2}^{\prime}\left(F_{1} c\right) \\
& F_{1}^{\prime} \alpha_{c} \downarrow \underset{\left(\alpha^{\prime} \circ \alpha\right)_{c}}{\|}{ }^{\prime}{ }_{2}^{\prime} \alpha_{c} \\
& F_{1}^{\prime}\left(F_{2} c\right) \underset{\alpha_{F_{2} c}^{\prime}}{\longrightarrow} F_{2}^{\prime}\left(F_{2} c\right)
\end{aligned}
$$

(this square necessarily commutes because α^{\prime} is a natural transformation). This defines a natural transformation since, for any arrow $f: c \rightarrow c^{\prime}$ in \mathbf{C}, the two internal squares of

commute (because α^{\prime} and α are natural transformations and F_{2}^{\prime} is a functor) and so the outer square commutes as required.

Horizontal composition has identities, specifically the identity natural transformations $1_{1_{\mathbf{C}^{\prime}}}$ and $1_{1_{\mathrm{C}^{\prime \prime}}}$ for the identity functors $1_{\mathbf{C}^{\prime}}$ and $1_{\mathrm{C}^{\prime \prime}}$. (Note that this differs from the identities for vertical composition.) It is also (strictly) associative as all the faces of the cube below commute.

A 2-category \mathbf{C} consists of a class $\mathcal{O}_{\mathbf{C}}$ of objects, also called 0 -cells, where (i) for each ordered pair c, c^{\prime} of 0 -cells, there is a category $\operatorname{hom}_{\mathbf{C}}\left(c, c^{\prime}\right)$ whose objects and arrows are called 1 -cells and 2-cells respectively; the composition of 2 -cells $\alpha_{1}: f_{1} \rightarrow f_{2}$ and $\alpha_{2}: f_{2} \rightarrow f_{3}$ is called vertical composition and is denoted by $\alpha_{2} \bullet \alpha_{1}$; (ii) for each 0-cell c, there is a functor $I_{c}: \mathbf{1} \rightarrow \operatorname{hom}_{\mathbf{C}}(c, c)$; and (iii) for each ordered triple $c, c^{\prime}, c^{\prime \prime}$ of 0-cells, there is a functor $C_{c, c^{\prime}, c^{\prime \prime}}$: $\operatorname{hom}_{\mathbf{C}}\left(c^{\prime}, c^{\prime \prime}\right) \times \operatorname{hom}_{\mathbf{C}}\left(c, c^{\prime}\right) \rightarrow \operatorname{hom}_{\mathbf{C}}\left(c, c^{\prime \prime}\right)$.

These data will be required to satisfy further conditions but let us first unpack what they mean: (i) the 1-cells of $\operatorname{hom}_{\mathbf{C}}\left(c, c^{\prime}\right)$ are the 'arrows' of \mathbf{C} from c to c^{\prime}; the 2-cells of $\operatorname{hom}_{\mathbf{C}}\left(c, c^{\prime}\right)$ are 'arrows between arrows'; (ii) I_{c} picks out a 1 -cell 1_{c} and its identity arrow $1_{1_{c}}$ in $\operatorname{hom}_{\mathbf{C}}(c, c)$; this 1 -cell will be the 'identity arrow' for c in \mathbf{C}; (iii) $C_{c, c^{\prime}, c^{\prime \prime}}$ defines the horizontal composition of 1- and 2-cells; its object part takes 'composable arrows' $f: c \rightarrow c^{\prime}$ and $f^{\prime}: c^{\prime} \rightarrow c^{\prime \prime}$ to $f^{\prime} \circ f:=C_{c, c^{\prime}, c^{\prime \prime}}\left(f^{\prime}, f\right): c \rightarrow c^{\prime \prime}$; and its arrow part takes 2-cells $\alpha: f_{1} \rightarrow f_{2}$ and $\alpha^{\prime}: f_{1}^{\prime} \rightarrow f_{2}^{\prime}$ between 'composable arrows' $f_{1}, f_{2}: c \rightarrow c^{\prime}$ and $f_{1}^{\prime}, f_{2}^{\prime}: c^{\prime} \rightarrow c^{\prime \prime}$ to $\alpha^{\prime} \circ \alpha:=C_{c, c^{\prime}, c^{\prime \prime}}\left(\alpha^{\prime}, \alpha\right): f_{1}^{\prime} \circ f_{1} \rightarrow f_{2}^{\prime} \circ f_{2}$; and (iv) finally, functoriality of $C_{c, c^{\prime}, c^{\prime \prime}}$ imposes the interchange law relating the vertical and horizontal compositions of 2-cells $\alpha_{1}: f_{1} \rightarrow f_{2}, \alpha_{2}: f_{2} \rightarrow f_{3}, \alpha_{1}^{\prime}: f_{1}^{\prime} \rightarrow f_{2}^{\prime}$ and $\alpha_{2}^{\prime}: f_{2}^{\prime} \rightarrow f_{3}^{\prime}$ between the 1-cells $f_{1}, f_{2}, f_{3}: c \rightarrow c^{\prime}$ and $f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}: c^{\prime} \rightarrow c^{\prime \prime}$:

$$
\left(\alpha_{2}^{\prime} \bullet \alpha_{1}^{\prime}\right) \circ\left(\alpha_{2} \bullet \alpha_{1}\right)=\left(\alpha_{2}^{\prime} \circ \alpha_{2}\right) \bullet\left(\alpha_{1}^{\prime} \circ \alpha_{1}\right)
$$

We complete the definition of 2-category by asking that (i) for any ordered quadruple of 0-cells $c, c^{\prime}, c^{\prime \prime}, c^{\prime \prime \prime}$ together with 1-cells $f_{1}, f_{2}: c \rightarrow c^{\prime}, f_{1}^{\prime}, f_{2}^{\prime}:$ $c^{\prime} \rightarrow c^{\prime \prime}$ and $f_{1}^{\prime \prime}, f_{2}^{\prime \prime}: c^{\prime \prime} \rightarrow c^{\prime \prime \prime}$ and 2-cells $\alpha: f_{1} \rightarrow f_{2}, \alpha^{\prime}: f_{1}^{\prime} \rightarrow f_{2}^{\prime}$ and $\alpha^{\prime \prime}: c^{\prime \prime} \rightarrow c^{\prime \prime \prime}$, we have $f_{1}^{\prime \prime} \circ\left(f_{1}^{\prime} \circ f_{1}\right)=\left(f_{1}^{\prime \prime} \circ f_{1}^{\prime}\right) \circ f_{1}$ (and likewise for f_{2}, f_{2}^{\prime} and $\left.f_{2}^{\prime \prime}\right)$ and $\alpha^{\prime \prime} \circ\left(\alpha^{\prime} \circ \alpha\right)=\left(\alpha^{\prime \prime} \circ \alpha^{\prime}\right) \circ \alpha$; and (ii) for any 0-cells c and c^{\prime} together with 1-cells $f_{1}, f_{2}: c \rightarrow c^{\prime}$ and a 2 -cell $\alpha: f_{1} \rightarrow f_{2}$, we have $f_{1} \circ 1_{c}=f_{1}=1_{c^{\prime}} \circ f_{1}$ (and likewise for f_{2}) and $\alpha \circ 1_{1_{c}}=\alpha=1_{1_{c^{\prime}}} \circ \alpha$.

These conditions guarantee that, in accordance with the above intuition, the 0-cells and 1-cells of \mathbf{C} are indeed the objects and the arrows of a category.

The category Cat can be given the structure of a 2 -category by setting $\mathcal{O}_{\text {Cat }}$ to be the class of small categories; then (i) $\operatorname{hom}_{\text {Cat }}\left(c, c^{\prime}\right):=c^{\prime c}$, the functor category from c to c^{\prime}; (ii) I_{c} selects the identity functor 1_{c} on c and its identity natural transformation $1_{1_{c}}$; and (iii) $C_{c, c^{\prime}, c^{\prime \prime}}\left(F^{\prime}, F\right):=F^{\prime} \circ F$ and $C_{c, c^{\prime}, c^{\prime \prime}}\left(\alpha^{\prime}, \alpha\right):=\alpha^{\prime} \circ \alpha$, the horizontal composition of natural transformations.

We have already proved above that these data satisfy all the conditions required of a 2-category. Clearly, the induced category of 0-cells and 1-cells is just Cat.

1.5 Equivalences in a 2-category

In a category, we have a notion of isomorphism of objects but not of arrows. In a 2-category, we say that a 2 -cell $\alpha: f_{1} \rightarrow f_{2}$ is a 2-isomorphism [or just an isomorphism when we can get away with it] of the 1-cells $f_{1}, f_{2}: c \rightarrow c^{\prime}$ iff there exists a 2-cell $\alpha^{\prime}: f_{2} \rightarrow f_{1}$ such that $\alpha^{\prime} \bullet \alpha=1_{f_{1}}$ and $\alpha \bullet \alpha^{\prime}=1_{f_{2}}$. As α and α^{\prime} are just isomorphisms in a category, i.e. $\operatorname{hom}\left(c, c^{\prime}\right), \alpha^{\prime}$ is unique and we define $\alpha^{-1}:=\alpha^{\prime}$.

If $\alpha_{1}: f_{1} \rightarrow f_{2}$ and $\alpha_{2}: f_{2} \rightarrow f_{3}$ are 2-isomorphisms for $f_{1}, f_{2}, f_{3}: c \rightarrow c^{\prime}$ then $\left(\alpha_{2} \bullet \alpha_{1}\right)^{-1}:=\alpha_{1}^{-1} \bullet \alpha_{2}^{-1}$.

If $\alpha: f_{1} \rightarrow f_{2}$ and $\alpha^{\prime}: f_{1}^{\prime} \rightarrow f_{2}^{\prime}$ are 2-isomorphisms for $f_{1}, f_{2}: c \rightarrow c^{\prime}$ and $f_{1}^{\prime}, f_{2}^{\prime}: c^{\prime} \rightarrow c^{\prime \prime}$ then $\left(\alpha^{\prime-1} \circ \alpha^{-1}\right) \bullet\left(\alpha^{\prime} \circ \alpha\right)=\left(\alpha^{\prime-1} \bullet \alpha^{\prime}\right) \circ\left(\alpha^{-1} \bullet \alpha\right)=1_{f_{1}^{\prime}} \circ 1_{f_{1}}=$ $1_{f_{1}^{\prime} \circ f_{1}}$ and $\left(\alpha^{\prime} \circ \alpha\right) \bullet\left(\alpha^{\prime-1} \circ \alpha^{-1}\right)=\left(\alpha^{\prime} \bullet \alpha^{\prime-1}\right) \circ\left(\alpha \bullet \alpha^{-1}\right)=1_{f_{2}^{\prime}} \circ 1_{f_{2}}=1_{f_{2}^{\prime} \circ f_{2}} ;$ so we can define $\left(\alpha^{\prime} \circ \alpha\right)^{-1}:=\alpha^{\prime-1} \circ \alpha^{-1}$ [beware the subtle trap].

The 2-isomorphisms of Cat are precisely natural isomorphisms: clearly, any 2 -isomorphism defines a natural isomorphism; conversely, each α_{c} : $F_{1} c \rightarrow F_{2} c$ of a natural isomorphism $\alpha: F_{1} \rightarrow F_{2}$ [of functors $F_{1}, F_{2}: \mathbf{C} \rightarrow$ $\left.\mathbf{C}^{\prime}\right]$ is invertible, so $\alpha_{c}^{-1} \circ^{\prime} \alpha_{c}=1_{F_{1} c}^{\prime}$ and $\alpha_{c} \circ^{\prime} \alpha_{c}^{-1}=1_{F_{2} c}^{\prime}$, i.e. $\alpha^{\prime} \bullet \alpha=1_{F_{1}}$ and $\alpha \bullet \alpha^{\prime}=1_{F_{2}}$ as required.

An equivalence in a 2-category consists of 1-cells $f: c \rightarrow c^{\prime}$ and $f^{\prime}: c^{\prime} \rightarrow c$ and 2-isomorphisms $\eta: 1_{c} \rightarrow f^{\prime} \circ f$ and $\varepsilon: f \circ f^{\prime} \rightarrow 1_{c^{\prime}}$. An equivalence in Cat is precisely an equivalence of categories as defined previously.

An equivalence is adjoint iff the so-called 'triangle identities' hold:

If $\left(f, f^{\prime}, \eta, \varepsilon\right)$ is an adjoint equivalence then so is $\left(f^{\prime}, f, \varepsilon^{-1}, \eta^{-1}\right): 1_{f^{\prime}}=$ $1_{f^{\prime}}^{-1}=\left(\left(\eta \circ 1_{f^{\prime}}\right) \bullet\left(1_{f^{\prime}} \circ \varepsilon\right)\right)^{-1}=\left(\eta \circ 1_{f^{\prime}}\right)^{-1} \bullet\left(1_{f^{\prime}} \circ \varepsilon\right)^{-1}=\left(\eta^{-1} \circ 1_{f^{\prime}}\right) \bullet\left(1_{f^{\prime}} \circ \varepsilon^{-1}\right) ;$ and $1_{f}=\left(1_{f} \circ \eta\right)^{-1} \bullet\left(\varepsilon \circ 1_{f}\right)^{-1}=\left(1_{f} \circ \eta^{-1}\right) \bullet\left(\varepsilon^{-1} \circ 1_{f}\right)$.

If $\left(f, f^{\prime}, \eta, \varepsilon\right)$ is an equivalence then either triangle identity holds if, and only if, the other one does: ...

If $\left(f, f^{\prime}, \eta, \varepsilon\right)$ is an equivalence then there exist $f^{\prime \prime}: c^{\prime} \rightarrow c$ and $\varepsilon^{\prime}:$ $f \circ f^{\prime \prime} \rightarrow 1_{c^{\prime}}$ such that $\left(f, f^{\prime \prime}, \eta, \varepsilon^{\prime}\right)$ is an adjoint equivalence: ...

Chapter 2

Category theory II

Diagrams, limits, comma categories, universal arrows.

2.1 Categories of diagrams

A diagram [more properly, a \mathbf{J}-diagram] in \mathbf{C} is a functor $F: \mathbf{J} \rightarrow \mathbf{C}$ where \mathbf{J} is a small, often even finite, category.

A cone to F is an object c of \mathbf{C} together with arrows $\alpha_{j}: c \rightarrow F j$ of \mathbf{C}, where j ranges over the objects of \mathbf{J}, such that $F f \circ \alpha_{j}=\alpha_{j^{\prime}}$ for all arrows $f: j \rightarrow j^{\prime}$ of \mathbf{J}. A cone is thus a natural transformation from the constant functor $\Delta_{c}: \mathbf{J} \rightarrow \mathbf{C}$ [defined by $\Delta_{c}(j):=c$ for all objects j of \mathbf{J}; and $\Delta_{c}\left(f: j \rightarrow j^{\prime}\right):=1_{c}$ for all arrows f of $\left.\mathbf{J}\right]$ to F.

We call the functor category $\mathbf{C}^{\mathbf{J}}$ the category of \mathbf{J}-diagrams in \mathbf{C}; a cone to F is thus an arrow of $\mathbf{C}^{\mathbf{J}}$ of the form $\alpha: \Delta_{c} \rightarrow F$. The category $\mathbf{C}^{\mathbf{J}} / F$ of J-diagrams over F is defined to have arrows of $\mathbf{C}^{\mathbf{J}}$ of the form $\alpha: G \rightarrow F$ [any G] as objects; and arrows of $\mathbf{C}^{\mathbf{J}}$ of the form $\beta: G \rightarrow G^{\prime}$, such that

commutes, as arrows.
A cone $v: \Delta_{u} \rightarrow F$ to F is universal iff, for any cone $\alpha: \Delta_{c} \rightarrow F$, there is a unique arrow $f: c \rightarrow u$ of \mathbf{C} such that $v_{j} \circ f=\alpha_{j}$ for all objects j of \mathbf{J}.

A universal cone to F, if it exists, is called a limit of [the diagram] F and is unique up to unique isomorphism.

2.2 Comma categories

If $F_{1}: \mathbf{C}_{1} \rightarrow \mathbf{C}$ and $F_{2}: \mathbf{C}_{2} \rightarrow \mathbf{C}$ are functors, the comma category $F_{1} \downarrow F_{2}$ has, as objects, all triples $\left(c_{1}, c_{2}, f: F_{1} c_{1} \rightarrow F_{2} c_{2}\right)$ where c_{1} and c_{2} are objects of \mathbf{C}_{1} and \mathbf{C}_{2} respectively and f is an arrow of \mathbf{C}; and, as arrows from $\left(c_{1}, c_{2}, f\right)$ to ($c_{1}^{\prime}, c_{2}^{\prime}, f^{\prime}$), all pairs $\left(g_{1}: c_{1} \rightarrow c_{1}^{\prime}, g_{2}: c_{2} \rightarrow c_{2}^{\prime}\right)$, where g_{1} and g_{2} are arrows of \mathbf{C}_{1} and \mathbf{C}_{2} respectively, such that

commutes. Given $\left(g_{1}: c_{1} \rightarrow c_{1}^{\prime}, g_{2}: c_{2} \rightarrow c_{2}^{\prime}\right)$ and ($\left.g_{1}^{\prime}: c_{1}^{\prime} \rightarrow c_{1}^{\prime \prime}, g_{2}^{\prime}: c_{2}^{\prime} \rightarrow c_{2}^{\prime \prime}\right)$, their composite is $\left(g_{1}^{\prime} \circ_{1} g_{1}, g_{2}^{\prime} \circ_{2} g_{2}\right)$; this is well-defined since F_{1} and F_{2} are functors and associative because \mathbf{C} is a category. The identity arrow for $\left(c_{1}, c_{2}, f: F_{1} c_{1} \rightarrow F_{2} c_{2}\right)$ is $\left(1_{c_{1}}, 1_{c_{2}}\right)$; this indeed satisfies the identity property since F_{1} and F_{2} are functors and \mathbf{C} is a category.

Comma categories are a very general concept that enable a unification of many otherwise seemingly ad hoc concepts: in the above discussion of limits, we had to define a notion of category of 'arrows to F ' and, moreover, restrict to 'arrows from objects of the form Δ_{c} '. This can be elegantly presented using comma categories:

If $c: \mathbf{1} \rightarrow \mathbf{C}$ is the constant functor selecting the object c in \mathbf{C} then $1_{\mathbf{C}} \downarrow c$ is the slice category over c, written \mathbf{C} / c, of arrows into c. More generally, $F_{1} \downarrow c$ is the category of arrows from F_{1} to c. The category of cones to [the diagram F can therefore be expressed as $\Delta \downarrow F$ where $\Delta_{\mathbf{J}}: \mathbf{C} \rightarrow \mathbf{C}^{\mathbf{J}}$ sends c to Δ_{c} and $f: c \rightarrow c^{\prime}$ to the natural transformation $\Delta f: \Delta_{c} \rightarrow \Delta_{c^{\prime}}$ whose components are all f; and $F: \mathbf{C} \rightarrow \mathbf{C}^{\mathbf{J}}$ is the constant functor selecting F.

2.3 Universal arrows

An object $\mathbf{1}$ of \mathbf{C} is terminal iff, for all objects c of \mathbf{C}, there is exactly one arrow from c to $\mathbf{1}$. Dually, an object $\mathbf{0}$ is initial in \mathbf{C} iff, for all objects c of \mathbf{C}, there is exactly one arrow from $\mathbf{0}$ to c.

Any singleton set is terminal in Set; the category $\mathbf{1}$ is terminal in Cat. The empty set is initial in Set; the empty category $\mathbf{0}$, with no objects, is initial in Cat.

Initial and terminal objects need not be unique but they are always unique up to isomorphism: if t and t^{\prime} are both terminal objects in \mathbf{C}, there must be an arrow $f^{\prime}: t^{\prime} \rightarrow t$ from t^{\prime} to t and an arrow $f: t \rightarrow t^{\prime}$ from t to t^{\prime}; so $f^{\prime} \circ f=1_{t}$, the unique arrow from t to itself, and $f \circ f^{\prime}=1_{t^{\prime}}$, the unique arrow from t^{\prime} to itself. Furthermore, t and t^{\prime} are isomorphic up to a unique isomorphism: f^{\prime} and f are themselves unique since t and t^{\prime} are terminal.

A terminal arrow from a functor $F: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ to an object c^{\prime} of \mathbf{C}^{\prime} is a terminal object in $F \downarrow c^{\prime}$. In other words, a terminal arrow is an object c_{t} of \mathbf{C} and an arrow $f_{t}^{\prime}: F c_{t} \rightarrow c^{\prime}$ of \mathbf{C}^{\prime} such that, for any arrow $f^{\prime}: F c \rightarrow c^{\prime}$ of \mathbf{C}^{\prime}, there is a unique arrow $f^{b}: c \rightarrow c_{t}$ of \mathbf{C} such that

commutes.
An initial arrow from c^{\prime} to F is defined dually. We speak of a universal arrow when we do not care to stress whether it is initial or terminal.

A universal cone [limit] is therefore the particular case of a terminal arrow from a diagonal functor $\Delta_{\mathbf{J}}: \mathbf{C} \rightarrow \mathbf{C}^{\mathbf{J}}$. An initial arrow to a diagonal functor is called a co-limit.

Products A terminal arrow from $\Delta_{\mathbf{2}}: \mathbf{C} \rightarrow \mathbf{C}^{\mathbf{2}}$ to the object* $\left(c_{1}, c_{2}\right)$ consists of an object, that we write as $c_{1} \times c_{2}$, of \mathbf{C} and an arrow $\left(\pi_{1}, \pi_{2}\right)$: $\left(c_{1} \times c_{2}, c_{1} \times c_{2}\right) \rightarrow\left(c_{1}, c_{2}\right)$ of \mathbf{C}^{2} such that, for any arrow $\left(f_{1}, f_{2}\right):(c, c) \rightarrow$ $\left(c_{1}, c_{2}\right)$ of \mathbf{C}^{2}, there is a unique arrow $f: c \rightarrow c_{1} \times c_{2}$ such that

$$
(c, c) \xrightarrow[\left(f_{1}, f_{2}\right)]{\longrightarrow}\left(c_{1} \times \underset{\substack{(f, f) \\\left(c_{1}, c_{2}\right)}}{\left.c_{2}, c_{1} \times c_{2}\right)}\right.
$$

commutes.
If the object $c_{1} \times c_{2}$ and the arrows $\pi_{1}: c_{1} \times c_{2} \rightarrow c_{1}$ and $\pi_{2}: c_{1} \times c_{2} \rightarrow c_{2}$ exist in \mathbf{C} then we say that $c_{1} \times c_{2}$ is the product of c_{1} and $c_{2} ; \pi_{1}$ and π_{2} are known as the projections (from $c_{1} \times c_{2}$) and f as the pairing of f_{1} and f_{2}.

[^0]Pull-backs and push-outs More generally, consider the category \wedge with three objects and two non-identity arrows:

 as objects and triples $\left\langle f_{\star}, f_{\bullet}, f_{\circ}\right\rangle$ of arrows of \mathbf{C} satisfying

as arrows.
The category of co-spans of C, i.e. diagrams of the form $c_{\bullet} \xrightarrow{f_{\ell} o p} c_{\star} \stackrel{f_{r} o p}{ } c_{\circ}$ in \mathbf{C}, is defined as \mathbf{C}^{\vee} where $\vee:=\wedge^{o p}$.

A terminal arrow from $\Delta_{\mathrm{V}}: \mathbf{C} \rightarrow \mathbf{C}^{\vee}$ to the co-span $c_{2} \xrightarrow{f_{24}} c_{4} \stackrel{f_{34}}{ } c_{3}$ is a pull-back of the co-span. Concretely, this consists of an object c_{1} and arrows $f_{1 i}: c_{1} \rightarrow c_{i}$ [for $\left.i=2,3,4\right]$ such that $f_{24} \circ f_{12}=f_{14}=f_{34} \circ f_{13}$, i.e. a span making the resulting square commute which additionally satisfies the universal property that any other span making the square commute factors uniquely through it. If c_{4} is a terminal object, this degenerates to the product of c_{2} and c_{3}.

Dually, an initial arrow from the span $c_{2} \stackrel{f_{12}}{\longleftrightarrow} c_{1} \xrightarrow{f_{13}} c_{3}$ to Δ_{Λ} is a push-out from the span. If c_{1} is an initial object, this defines a co-product of c_{2} and c_{3} : an object $c_{2}+c_{3}$ of \mathbf{C} and injections $\iota_{2}: c_{2} \rightarrow c_{2}+c_{3}$ and $\iota_{3}: c_{3} \rightarrow c_{2}+c_{3}$ in \mathbf{C} such that any pair of arrows $f_{2}: c_{2} \rightarrow c$ and $f_{3}: c_{3} \rightarrow c$ factorizes uniquely through the injections via their co-pairing $\left[f_{2}, f_{3}\right]: c_{2}+c_{3} \rightarrow c$.

Suppose we have commuting squares

where, as indicated, the right-hand inner square is a pull-back. It follows that the left-hand inner square is a pull-back if, and only if, the outer rectangle is a pull-back. This is called the pasting lemma for pull-backs.

2.4 Monos and pull-backs

An arrow $f: c \rightarrow c^{\prime}$ is a mono iff, for any pair of parallel arrows $g_{1}, g_{2}: c^{\prime \prime} \rightarrow c$, if $f \circ g_{1}=f \circ g_{2}$ then $g_{1}=g_{2}$, i.e. f is post-cancellable. We write $f: c \hookrightarrow c^{\prime}$ to specify that f is a mono. The arrow $f: c \rightarrow c^{\prime}$ is a mono if, and only if,

is a pull-back: given $f_{1}, f_{2}: c^{\prime \prime} \rightarrow c$ where $f \circ f_{1}=f \circ f_{2}$, we have a unique $f^{\prime}: c^{\prime \prime} \rightarrow c$ such that $f_{1}=1_{c} \circ f^{\prime}=f^{\prime}=1_{c} \circ f^{\prime}=f_{2}$; and, for any $f_{1}, f_{2}: c^{\prime \prime} \rightarrow c$ such that $f \circ f_{1}=f \circ f_{2}$, we have that $f_{1}=f_{2}$ which defines the unique arrow that makes the commuting square $f \circ 1_{c}=f \circ 1_{c}$ a pull-back.

If $f: c \longmapsto c^{\prime}$ and $f^{\prime}: c^{\prime} \longmapsto c^{\prime \prime}$ then $f^{\prime} \circ f$ is a mono: if $g_{1}, g_{2}: c^{\prime \prime \prime} \rightarrow c$ satisfy $\left(f^{\prime} \circ f\right) \circ g_{1}=\left(f^{\prime} \circ f\right) \circ g_{2}$ then $f \circ g_{1}, f \circ g_{2}: c^{\prime \prime \prime} \rightarrow c^{\prime}$ and $f \circ g_{1}=f \circ g_{2}$, since f^{\prime} is a mono, whereupon $g_{1}=g_{2}$ since f is a mono.

If $f: c \longmapsto c^{\prime}, f_{1}: c \rightarrow c^{\prime \prime}$ and $f_{2}: c^{\prime \prime} \rightarrow c^{\prime}$ satisfy $f=f_{2} \circ f_{1}$ then f_{1} is a mono: if $g_{1}, g_{2}: c^{\prime \prime \prime} \rightarrow c$ satisfy $f_{1} \circ g_{1}=f_{1} \circ g_{2}$ then $f_{2} \circ\left(f_{1} \circ g_{1}\right)=f_{2} \circ\left(f_{1} \circ g_{2}\right)$, whereupon $g_{1}=g_{2}$ since f is a mono.

Monos are preserved by pull-backs in the following sense: given a co-span $f: c^{\prime} \rightarrow c$ and $g: c^{\prime \prime} \longrightarrow c$ such that the span $f^{\prime}: c^{\prime \prime \prime} \rightarrow c^{\prime \prime}$ and $g^{\prime}: c^{\prime \prime \prime} \rightarrow c^{\prime}$ is a pull-back thereof, it follows that g^{\prime} is a mono. To see this, suppose that $h_{1}, h_{2}: c^{\prime \prime \prime \prime} \rightarrow c^{\prime \prime \prime}$ such that $g^{\prime} \circ h_{1}=g^{\prime} \circ h_{2}$; then $f \circ\left(g^{\prime} \circ h_{1}\right)=f \circ\left(g^{\prime} \circ h_{2}\right)$ and so $f^{\prime} \circ h_{1}=f^{\prime} \circ h_{2}$ since the square commutes and g is a mono. Moreover, the span $g^{\prime} \circ h_{1}: c^{\prime \prime \prime \prime} \rightarrow c^{\prime}$ and $f^{\prime} \circ h_{2}: c^{\prime \prime \prime \prime} \rightarrow c^{\prime \prime}$ makes the square commute; so there is a unique $h: c^{\prime \prime \prime \prime} \rightarrow c^{\prime \prime \prime}$ such that $g^{\prime} \circ h=g^{\prime} \circ h_{1}$ and $f^{\prime} \circ h=f^{\prime} \circ h_{2}$. But both h_{1} and h_{2} satisfy these conditions on h, so $h_{1}=h_{2}$.

An arrow $f: c^{\prime} \rightarrow c$ of \mathbf{C} is an epi iff $f^{o p}: c \rightarrow c^{\prime}$ is a mono in $\mathbf{C}^{o p}$. An epi is thus pre-cancellable. We write $f: c^{\prime} \rightarrow c$ to specify that f is an epi. By definition, epis are preserved by push-outs in the dual of the preceding sense.

Chapter 3

Category theory III

Adjoint functors, ...

3.1 Adjoint functors

Let $F: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ be a functor and suppose that, for every object c^{\prime} of \mathbf{C}^{\prime}, we have an object $c:=G c^{\prime}$ and a given terminal arrow $\varepsilon_{c^{\prime}}: F c \rightarrow c^{\prime}$.

We extend the object mapping G to a functor $G: \mathbf{C}^{\prime} \rightarrow \mathbf{C}$ by sending each arrow $f^{\prime}: c_{1}^{\prime} \rightarrow c_{2}^{\prime}$ of \mathbf{C}^{\prime} to the unique arrow $f: c_{1} \rightarrow c_{2}$ of \mathbf{C} [where $c_{1}:=G c_{1}^{\prime}$ and $\left.c_{2}:=G c_{2}^{\prime}\right]$ such that

commutes, i.e. $G f^{\prime}:=\left(f^{\prime} \circ \varepsilon_{c_{1}^{\prime}}\right)^{b}$.
This is indeed a functor since (i) $1_{c^{\prime}}^{\prime}: c^{\prime} \rightarrow c^{\prime}$ is sent to the unique arrow $f: c \rightarrow c$ such that $\varepsilon_{c^{\prime}}=\varepsilon_{c^{\prime}} \circ F f$, so $f=1_{c}$ as F is a functor; and (ii) for $f_{1}^{\prime}: c_{1}^{\prime} \rightarrow c_{2}^{\prime}$ and $f_{2}^{\prime}: c_{2}^{\prime} \rightarrow c_{3}^{\prime}$, there is a unique arrow $G\left(f_{2}^{\prime} \circ^{\prime} f_{1}^{\prime}\right):=g: c_{1} \rightarrow c_{3}$ such that $\left(f_{2}^{\prime} \circ^{\prime} f_{1}^{\prime}\right) \circ^{\prime} \varepsilon_{c_{1}^{\prime}}=\varepsilon_{c_{3}^{\prime}} \circ^{\prime} F g$; and unique arrows $G f_{1}^{\prime}:=g_{1}: c_{1} \rightarrow c_{2}$ and $G f_{2}^{\prime}:=g_{2}: c_{2} \rightarrow c_{3}$ such that $f_{1}^{\prime} \circ^{\prime} \varepsilon_{c_{1}^{\prime}}=\varepsilon_{c_{2}^{\prime}} \prime^{\prime} F g_{1}$ and $f_{2}^{\prime} \circ^{\prime} \varepsilon_{c_{2}^{\prime}}=\varepsilon_{c_{3}^{\prime}} \prime^{\prime} F g_{2}$; so $\varepsilon_{c_{3}^{\prime}} \circ^{\prime} F\left(g_{2} \circ g_{1}\right)=\varepsilon_{c_{3}^{\prime}} \circ^{\prime} F g_{2} \circ^{\prime} F g_{1}=f_{2}^{\prime} \circ^{\prime} \varepsilon_{c_{2}^{\prime}} \circ^{\prime} F g_{1}=f_{2}^{\prime} \circ^{\prime} f_{1}^{\prime} \circ^{\prime} \varepsilon_{c_{1}^{\prime}}$, i.e. $g=g_{2} \circ g_{1}$ as required. [Draw the diagrams!]

We say that F is left adjoint to G; note that F does not determine G without the additional data of the terminal arrows $\varepsilon_{c^{\prime}}$.

The fact that G is a functor means that the terminal arrows $\varepsilon_{c^{\prime}}$ are in fact the co-ordinates of a natural transformation $\varepsilon: F \circ G \rightarrow 1_{\mathbf{C}^{\prime}}:$ given an arrow $f^{\prime}: c_{1}^{\prime} \rightarrow c_{2}^{\prime}$ of \mathbf{C}^{\prime}, the required naturality square

is simply the above triangle. The natural transformation ε is called the counit of the adjunction, a remarkably confusing terminology [from universal algebra] since it is induced by terminal, not initial, properties.

Given an object c of \mathbf{C}, define $\eta_{c}: c \rightarrow(G \circ F) c$ to be the unique arrow of \mathbf{C} such that

commutes, i.e. $\eta_{c}:=1_{F c}^{\prime b}$. Given $g^{\prime}: F c \rightarrow c^{\prime}$, we have that $F\left(G g^{\prime} \circ \eta_{c}\right)=$ $F G g^{\prime} \circ F \eta_{c}$, since F is a functor, and $\varepsilon_{c^{\prime}} \circ F G g^{\prime}=g^{\prime} \circ \varepsilon_{F c}$, since ε is a natural transformation; therefore $\varepsilon_{c^{\prime}} \circ F\left(G g^{\prime} \circ \eta_{c}\right)=g^{\prime} \circ\left(\varepsilon_{F c} \circ F \eta_{c}\right)=g^{\prime}$ which we can rephrase as $g^{\prime b}=G g^{\prime} \circ \eta_{c}$.

If $f: c \rightarrow G c^{\prime}$ is an arrow of \mathbf{C}, its left adjunct $f^{\sharp}:=\varepsilon_{c^{\prime}} \circ F f$ factors, by definition, through $F f$ so that $f=f^{\sharp b}=G f^{\sharp} \circ \eta_{c}$, i.e. f factors through $G f^{\sharp}$. If another $g^{\prime}: F c \rightarrow c^{\prime}$ satisfies $f=G g^{\prime} \circ \eta_{c}$ then $g^{\prime b}=G g^{\prime} \circ \eta_{c}=f=f^{\sharp D}$ and so $f^{\sharp}=g^{\prime}$. This establishes that η_{c} is an initial arrow from c to G.

Moreover, given an arrow $f: c_{1} \rightarrow c_{2}$ of \mathbf{C}, the left adjunct $\left(\eta_{c_{2}} \circ f\right)^{\sharp}:=$ $\varepsilon_{F c_{2}} \circ F\left(\eta_{c_{2}} \circ f\right)=\varepsilon_{F c_{2}} \circ F \eta_{c_{2}} \circ F f=F f$ so that $F f \circ \eta_{c_{1}}=\eta_{c_{2}} \circ f$, i.e. η is a natural transformation.

Finally, the left adjunct $1_{G c^{\prime}}^{\sharp}=\varepsilon_{c^{\prime}}$ so that $G \varepsilon_{c^{\prime}} \circ \eta_{G c^{\prime}}=1_{G c^{\prime}}$; this is the so-called triangle identity for η :

Let us recap: starting from a functor $F: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ and a family of terminal arrows $\varepsilon_{c^{\prime}}$ (in \mathbf{C}^{\prime}, indexed by the objects of \mathbf{C}^{\prime}), we can define (i) a functor $G: \mathbf{C}^{\prime} \rightarrow \mathbf{C}$ for which $\varepsilon: F \circ G \rightarrow 1_{\mathbf{C}^{\prime}}$ becomes a natural transformation; and (ii) a family of initial arrows η_{c} (in \mathbf{C}, indexed by the objects of \mathbf{C}) that form a natural transformation $\eta: 1_{\mathbf{C}} \rightarrow G \circ F$ that satisfies the triangle identities: one by definition; and the other as shown just above.

Recall that the left adjunct $f^{\sharp}: F c \rightarrow c^{\prime}$ of an arrow $f: c \rightarrow G c^{\prime}$ of \mathbf{C} is defined to be $f^{\sharp}:=\varepsilon_{c^{\prime}} \circ F f$. The induced mapping from $\operatorname{hom}_{\mathbf{C}^{\prime}}\left(F c, c^{\prime}\right)$ to $\operatorname{hom}_{\mathbf{C}}\left(c, G c^{\prime}\right)$ is (i) surjective, since every $f: c \rightarrow G c^{\prime}$ gives rise to some left adjunct; and (ii) injective, since $\varepsilon_{c^{\prime}}$ being terminal means that f^{\sharp} is $f^{\prime} s$ unique left adjunct.

This bijection $\phi_{c, c^{\prime}}^{-1}: \operatorname{hom}_{\mathbf{C}}\left(c, G c^{\prime}\right) \cong \operatorname{hom}_{\mathbf{C}^{\prime}}\left(F c, c^{\prime}\right)$ is 'natural' in the sense that, given $g: c_{0} \rightarrow c, \phi_{c_{0}, c^{\prime}}^{-1}(f \circ g):=\varepsilon_{c^{\prime}} \circ F(f \circ g)=\varepsilon_{c^{\prime}} \circ F f \circ F g=$: $\phi_{c, c^{\prime}}^{-1}(f) \circ F g$; and, given $g^{\prime}: c^{\prime} \rightarrow c_{0}^{\prime}, \phi_{c, c_{0}^{\prime}}^{-1}\left(G g^{\prime} \circ f\right):=\varepsilon_{c_{0}^{\prime}} \circ F\left(G g^{\prime} \circ f\right)=$ $\varepsilon_{c_{0}^{\prime}} \circ F G g^{\prime} \circ F f=g \circ \varepsilon_{c^{\prime}} \circ F f=: g \circ \phi^{-1}(f)$.

If \mathbf{C} and \mathbf{C}^{\prime} are locally small categories, this gives us a bona fide natural isomorphism $\phi_{c, c^{\prime}}: \operatorname{hom}_{\mathbf{C}^{\prime}}\left(F c, c^{\prime}\right) \cong \operatorname{hom}_{\mathbf{C}}\left(c, G c^{\prime}\right)$ in Set with naturality in c [with respect to $g: c_{0} \rightarrow c$]

and naturality in c^{\prime} [with respect to $g^{\prime}: c^{\prime} \rightarrow c_{0}^{\prime}$]

dually to the above.
Note how the terminal arrows $\varepsilon_{c^{\prime}}$ allow a generalization of the case, found in equivalences of categories, where F being a fully faithful functor induces a bijection $\operatorname{hom}_{\mathbf{C}}\left(c_{1}, c_{2}\right) \cong \operatorname{hom}_{\mathbf{C}^{\prime}}\left(F c_{1}, F c_{2}\right)$. In the case of an adjunction, despite the lack of the assumption that F be full and faithful, we obtain our bijection by virtue of the universal property of $\varepsilon_{c^{\prime}}$.

[^0]: *We have exploited the isomorphism $\mathbf{C} \times \mathbf{C} \cong \mathbf{C}^{2}$, between the product of \mathbf{C} with itself and the functor category from the discrete category $\mathbf{2}$, in order to have a more elementary description of the objects and arrows of \mathbf{C}^{2} as pairs of objects and pairs of arrows of \mathbf{C}.

