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Chapter 1

Category theory I

Categories, functors and natural transformations.

1.1 Categories

A category C consists of a class O¢ of unstructured objects and a class Ag of
arrows of the form f : ¢ — ¢ where f is our name for the arrow and ¢ and ¢
are objects; we write dom f for ¢ and codom f for ¢. We require there to be,
for every object ¢, an identity arrow 1. : ¢ — ¢ and, for all composable arrows
fie—dand f:d — ¢, i.e. where codom f = dom f/, a composite arrow
flof:c— " satisfying fol, = f = 1y0 f and, for all arrows f” : " — ¢,
(f"of)Yof=f"o(f of). The operation o is the composition law of C; the
two requirements are the identity and the associativity properties.

An arrow f : ¢ — ¢ is an isomorphism iff, for some f': ¢ = ¢, flof =1,
and fo f = 1.. If f’ exists, it is unique since, for any other candidate
f"id —=e, f"=f"ofof = f. We then say that f is invertible, or is an
isomorphism, and define the operation f~! := f’; we also say that the objects
c and ¢ are isomorphic [in the category CJ|, written ¢ = ¢ [or f : ¢ = ¢ if we
wish to stress the specific witness f].

A subcategory C' of C consists of a subclass O of O¢ and a subclass
Ac of Ac such that, for all arrows f in Aeg/, dom f and codom f are both
in O¢, for all objects ¢ in O¢/, Acy contains 1. and, for all arrows f : ¢ — ¢
and f':d — ¢ in Ag/, their composite [’ o f is also in Acs. The identities
and composition law of C’ are inherited from C, i.e. 1/ := 1., for all ¢ in
Oc,and f'o' f:=fof, forall f:c—d and f': ¢ — " in Ac.
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The isomorphisms of C form a subcategory: if f:c = and f': = ¢
then f'o f: ¢ = ¢ since, setting (f'of)™! := f~tof'~1 wehave (f~tof'"1)o
(flof) = fo(f Vo f))of = 1, and, similarly, (/o f)o (f o ') = 1.

‘The’ category generally known as Set has all sets as objects and all total
functions between them as arrows [where ‘all” depends on your choice of set
theory].

An arrow f : ¢ — ¢ of Set is an isomorphism if, and only if, f [viewed
as a set-theoretic function] is a bijection; so, in particular, ¢ and ¢ [viewed
as sets| are isomorphic.

The category C is small iff its class of arrows is a set; its collection of
objects is then necessarily also a set. A category where all the arrows are
identity arrows is called discrete. A small discrete category is a set.

The category C is locally small iff, for all pairs of objects ¢ and ¢, the
class hom(c, ¢) of all arrows f : ¢ — ' is an object of Set, i.e. actually a set,
not a class.

A small category with one object, i.e. where all arrows are composable,
is a monoid. A monoid where all arrows are invertible is a group. A small
category where all arrows are invertible is a groupoid.

More generally, if C is a locally small category containing objects ¢ and ¢/,
we define Iso(c, ¢) to be the set of all isomorphisms f : ¢ = ¢’ and write Aut(c)
for Iso(c, ¢). Given f € Iso(c, ), define a total function from g € Aut(c) to
Iso(c,d) by g — f og. This is an isomorphism in Set witnessed by the
total function from f’ € Iso(c, ) to Aut(c) defined as f' +— f~1 o f': clearly
g flo(fog)=gand f'+ fo(f'of) = f" So, provided that ¢ = ¢,
there are always exactly as many automorphisms of ¢ (or indeed ¢’) as there
are witnesses of the isomorphism of ¢ and ¢'.

The category of groups and group homomorphisms is called Grp; that of
graphs and graph homomorphisms is called Grph.

The opposite category C of the category C is defined to have the same
objects as C and the ‘same’ arrows as C but going in the other direction:
fP ¢ — c is an arrow of C? iff f : ¢ — ¢ is an arrow of C. Concomitantly,
floP o foP := (f o f')? and 1% := 1..

The product category Cq x Co of the categories C; and Cs has as objects
all pairs (c1,ce), where ¢; is an object of C; and ¢y is an object of Cs,
and as arrows all pairs (f1, fo) @ (c1,¢2) — (c], ), where f; : ¢ — (]
is an arrow of C; and fy : ¢ — ¢, is an arrow of Cy. Concomitantly,
composable arrows (fi, fo) and (f7, f5) are composed component-wise, i.e.

(f1, £3) o1x2 (fi, fa) i= (fi o1 fi, fy 00 fo), and 102 = (10, 12).
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1.2 Functors

A functor F from the category C to the category C’ consists of two mappings
[one sending ¢ in O¢ to Fe¢ in O and the other sending f : ¢ — ¢ in Ac to
Ff:Fc— Fd in Ag/] satisfying, for all objects ¢ of C, F1, = 1%, and, for
all arrows f:c—cd and f': ¢ = " of C, F(f' o f)=Ff' o Ff.

A functor from a monoid [viewed as the category C] to a second monoid
[viewed as the category C']| is a standard monoid homomorphism. Likewise
for groups and groupoids.

If the arrow f : ¢ — ¢ of C is invertible then (Ff)~! := Ff~! inverts
Ff: Fc— Fd in C since Ff'o Ff = F(f'of) = Fl. = 1}, and
Ffo Ff'=F(fof™)=Fly=1%,.

An alternative possible definition of functor would specify only the arrow
mapping: any mapping F from the arrows of C to the arrows of C’ such
that, for all arrows fi : ¢ — ¢] and fy : ¢o — ¢, of C, dom F'f; = dom F'f,
if dom f; = dom f5 and codom F'f; = codom F'f5 if codom f; = codom f5
immediately induces a functor; the induced object mapping can be defined
as Fe:=cdiff F1.=1.,.

A third (and final) possible definition of functor is as a family of functions,
F.. :hom(c, ') = hom(Fc, F'¢'), indexed by all pairs of objects of C.

The functor F' : C — C' is (i) faithful iff, for every pair ¢, ¢ of objects
of C, F, . is injective; (i) full iff, for every pair ¢, of objects of C, F. . is
surjective; and (iii) essentially surjective iff, for every object ¢ of C', there is
some object ¢ of C such that F'c = ¢/. A full and faithful functor is sometimes
called fully faithful.

If C’ is a subcategory of C, the inclusion functor I : C' — C sends each
object and arrow of C’ to ‘itself” in C. This functor is always faithful. If it is
full, we say that C’ is a full subcategory of C; a full subcategory is therefore
uniquely determined by its subclass O of objects.

A category C is concrete iff there is a faithful functor U : C — Set.

A locally small category C induces a hom functor homg : C? x C — Set
where (¢, ) — hom(c, ) and (f{", f2) : (c1,ca) = (], ) — (f 1 c1 = o —
fao fo fi):hom(cy,co) = hom(c),d):

e Clearly, homc Lic, e,y = (f 1 c1 = ca = 15,0 fole) = Lhom(er,e0)-

e Moreover, given additionally {f,7, f3) : {¢|,cy) — (c!, ), we have that
home ((fi”, f3) o (fi¥ f2)) = (f rcv = x> (fro fa) o fo(fio f])) =
(frer—=ex fyo(fao fofi)ofi) =home(fi”, f3) o home(f”, f2).
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The functors F': C — C" and F’ : C' — C” can be composed by defining
¢ — F'(Fc), for all objects ¢ of C, and f — F'(Ff), for all arrows f : ¢ — ¢
of C. This yields a functor F' o F': C — C” since (i) (F' o F)1, = F'1},, =
Vg gy and, given f': ¢ — " of C, (ii) (F' o F)(f'o f) = F'(F(f'o [)) =
FI(Ff o Ff) = F'(Ff)o" FI(Ff) = (F' o F)f' o (F' o F)f.

The identity functor 1¢ : C — C sends every object and arrow to itself;
clearly Flc = F = 1o F. Moreover, given a third functor ¥’ : C" — C",
clearly ((F" o F')o F') = (F" o (F' o F')). So we have a category, known as
Cat, with objects all small categories and arrows all functors between them;
two small categories are isomorphic iff they are isomorphic in Cat.

1.3 Natural transformations

A natural transformation o : F — F' from the functor F' : C — C’ to the
functor F’ : C — C' is a family of arrows a, : F'c — F'c of C’, indexed by
the objects of C, such that

(e}
Fe—=F'c

o e

FC,T/>F/C,
C

commutes for all arrows f: ¢ — ¢ of C.

The natural transformation « : F' — F' is a natural isomorphism iff, for
every object ¢ of C, the arrow a. : Fe¢ — F’c is an isomorphism. This is
equivalent to saying that there is a natural transformation o=t : F' — F
satisfying, for all objects ¢ of C, a;' o' . = 1}, and . o’ o, = 1%,

Given a further natural transformation o : F' — F”, where F" : C — C’
is a third functor, the vertical composite of o and «’, defined component-wise
as (o e ), := o, o a., is clearly a natural transformation o/ e o : ' — F".
The identity natural transformation 1p : F' — F, defined as (1p). := 1,
satisfies v @ 1 = o = 1 @ o and, given a fourth functor F”” and a third
natural transformation o’ : F” — F" we have (o e /) e v =" o (a/ ® ).
Provided no ‘problems of size’ arise, we thus obtain a functor category C'©
with objects all functors from C to C’ and arrows all natural transformations
between these functors; it is sufficient that C be a small category.

Let 1 and 2 be the (small) discrete categories with one and two objects
respectively. Clearly C! = C and C? = C x C in Cat.
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The categories C and C’ are equivalent iff there exist functors F' : C — C’
and G : C' — C and natural isomorphisms € : FG = 1 and 7 : 1¢ = GF.

Since e» : F(G) = ¢, for all ¢ in O, the functor F' is essentially
surjective. Moreover, for any arrow f :c; = co of C, f =1, oGFfongl1 and
GFf =n_'ofone,,so that hom(cy, ¢p) is in bijection with hom(GFey, GFey).
[If C is locally small, there is therefore an isomorphism in Set witnessing
hom(cy, ¢a) = hom(GFey,GFey).] So F., ., must be injective and Gre, pe,
must be surjective, for all pairs of objects ¢y, co, i.e. F' is faithful and G is
full. The symmetric argument establishes that GG is essentially surjective and
faithful and that F' is full.

The functor F': C — C' is a weak equivalence iff, for some G : C' — C,
there exist natural isomorphisms € : FG = 1o and n : 1¢ = GF. If F is
a weak equivalence then, from the above, we know that it is fully faithful
and essentially surjective; the converse is also true—with the caveat that it
depends on the axiom of choice:

Suppose that the functor F' : C — C’ is fully faithful and essentially
surjective. By essential surjectivity, for any ¢ in O/, there is at least one
¢ in O¢ such that F'e¢ = ¢; an application of the axiom of choice then picks
out a choice of ¢, for each ¢ in O¢, allowing us to define G¢' := c.

1.4 Cat as a 2-category

Given functors F, F : C' — C”, a natural transformation o/ : F] — F} and
functors F' : C — C' and F” : C" — C", we define, for each object ¢ of C, an
arrow (F"od/oF). := F"(a/p,) of C"”. This defines a natural transformation
FlodoF :F"oF/oF — F"o Fjo F since, for any f:c— ¢ in C,

Uy

FY(Fi(Fe) =25 Fr(Fy(Fo))
F”(F{(Ff))t jF”(Fé(Ff))
FUF(F¢)) o F'(Fy(FY))

commutes (because o/ is a natural transformation and F” is a functor).
This hybrid composition of two functors and a natural transformation is

usually called whiskering. It is a special case of the horizontal composition of

natural transformations if we replace the functors F' and F” by the identity

natural transformations 1p : FF — F and 1p» : F” — F” respectively:



Given functors Fy, Fy : C — C’ and F|, F) : C' — C” together with
natural transformations a : Fy — F, and o : F| — Fj, the horizontal
composite o o : F| o F} — Fj o F, of @ and ¢’ is defined, for each object ¢
of C, to be the diagonal of

Flc

F{(Flc) F'(Flc)
F{act '(o'/ooz_)‘.C LFéaC
F{(Fyec) —— F3(Fac)

Fyc

(this square necessarily commutes because o’ is a natural transformation).
This defines a natural transformation since, for any arrow f : ¢ — ¢ in C,
the two internal squares of

/aoa F\*

FI(Fic) — FY(Fre) —2% F(Fye)
F{(Flf)l Fg’(llﬂf) lFQ’(sz)

F(Flc)—>F’(Flc)—>F’(Fgc)
&aoa /

commute (because o/ and « are natural transformations and F} is a functor)
and so the outer square commutes as required.

Horizontal composition has identities, specifically the identity natural
transformations 1,_, and 1;,, for the identity functors 1¢ and 1¢r. (Note
that this differs from the identities for vertical composition.) It is also
(strictly) associative as all the faces of the cube below commute.

//
F (F1e)

FY(F{(Fic))

Fy (Fi(Fic))




A 2-category C consists of a class O¢ of objects, also called 0-cells, where
(i) for each ordered pair ¢, ¢’ of 0-cells, there is a category homcg(c, ¢’) whose
objects and arrows are called 1-cells and 2-cells respectively; the composition
of 2-cells oy : fi — fo and ay : fo — f3 is called vertical composition and is
denoted by aseay; (ii) for each 0-cell ¢, there is a functor 1. : 1 — homc(c, ¢);
and (iii) for each ordered triple ¢, ¢, ¢” of 0-cells, there is a functor C, o :
home(c, ¢’) x homg(c, ) — home(c, ).

These data will be required to satisfy further conditions but let us first
unpack what they mean: (i) the 1-cells of homg(c, ') are the ‘arrows’ of
C from ¢ to ¢; the 2-cells of homg(c, ) are ‘arrows between arrows’; (ii) /.
picks out a 1-cell 1. and its identity arrow 1;, in homg(c, ¢); this 1-cell will be
the ‘identity arrow’ for ¢ in C; (iii) C. ~  defines the horizontal composition
of 1- and 2-cells; its object part takes ‘composable arrows’ f : ¢ — ¢ and
frod—=dtoflof =Coow(f,f): c— " and its arrow part takes 2-cells
a: fi — foand o : f| — f) between ‘composable arrows’ fi, fo : ¢ — ¢ and
fi.fs:d =>d"tod oa:=Crue(d,a): flofi = fi0 fo; and (iv) finally,
functoriality of C, . . imposes the interchange law relating the vertical and
horizontal compositions of 2-cells oy : f1 — fo, as : fo — f3, &) = f{ = [
and o, : fy — f3 between the 1-cells f1, fo, fs: ¢ = ¢ and f1, f3, fi : ¢ = "

(ayea))o(azear) = (ay0ay)e(ajoa).

We complete the definition of 2-category by asking that (i) for any ordered
quadruple of 0-cells ¢, ', ¢”, " together with 1-cells fi, fo : ¢ = ¢, fi, f5 :
d — dand fI' ff " — " and 2-cells a : f; — fo, & f] — f} and
o " — " we have f o (f{o f1) = (ff o f]) o f1 (and likewise for f,
f5 and f) and o” o (& o ) = (& 0 &) o a; and (ii) for any O-cells ¢ and
c together with 1-cells fi,fo : ¢ = ¢ and a 2-cell o : f; — fo, we have
fiol.= fi =1uo fi (and likewise for f;) and a0 l;, =a =1, 0q.

These conditions guarantee that, in accordance with the above intuition,
the O-cells and 1-cells of C are indeed the objects and the arrows of a category.

The category Cat can be given the structure of a 2-category by setting
Ocat to be the class of small categories; then (i) homcat(c, ) = ¢, the
functor category from ¢ to ¢; (ii) I. selects the identity functor 1. on ¢ and
its identity natural transformation 1, ; and (iii) Cpp o (F', F) := F' o ' and
Cewor(df @) := o/ oav, the horizontal composition of natural transformations.

We have already proved above that these data satisfy all the conditions
required of a 2-category. Clearly, the induced category of 0-cells and 1-cells
is just Cat.



1.5 Equivalences in a 2-category

In a category, we have a notion of isomorphism of objects but not of arrows.
In a 2-category, we say that a 2-cell a: fi — fo is a 2-isomorphism [or just
an isomorphism when we can get away with it] of the 1-cells fi, fo : ¢ — ¢
iff there exists a 2-cell @’ : fo — f; such that o’ ea =1y, and a e’ = 1y,.
As « and o are just isomorphisms in a category, i.e. hom(c, ), o is unique
and we define ot := o',

If oy : f1 = fo and ay : fo — f3 are 2-isomorphisms for f1, fo, f3: ¢ — ¢
then (ax e o)™t i=a; ey’

Ifa: fi = fyand o : f| — f} are 2-isomorphisms for fi, fo : ¢ — ¢ and
fiofs o = ¢ then (o' 'oa ") e(d/oa) = (' e )o(a ea) =10l =
Ljor, and (o’ 0a) e (@' oa™)) = (' s’ ) o (aeal) = Iy o1y, = Lgop,:
so we can define (o/ oa)™! := a7t o a™! [beware the subtle trap].

The 2-isomorphisms of Cat are precisely natural isomorphisms: clearly,
any 2-isomorphism defines a natural isomorphism; conversely, each a. :
Fic — Fyc of a natural isomorphism « : F; — Fy [of functors Fy, Fy : C —
C'] is invertible, so o' o' @ = 17, and a. o a;! = 1}, i.e. o/ @ = 1p,
and o e o/ = 1p, as required.

An equivalence in a 2-category consists of 1-cells f : ¢ — ¢ and f' : ¢ — ¢
and 2-isomorphisms 7 : 1, = f'o fand e : fo f — 1. An equivalence in
Cat is precisely an equivalence of categories as defined previously.

An equivalence is adjoint iff the so-called ‘triangle identities’ hold:

f fofof Fofop X p
\Lsolf 1f/05l/

f !

If (f,f,n,¢e) is an adjoint equivalence then so is (f', f,e~t,n~1): 1p =
17 = ((no15) e (1p02)) " = (noly) ' e(Lpoe) = (3 oLy e (10);
and 1y = (1pon) e (coly)™ =(lgon)e (e oly).

If (f, f',n,e) is an equivalence then either triangle identity holds if, and
only if, the other one does: ...

If (f,f,n,e) is an equivalence then there exist f” : ¢ — ¢ and &' :
fof"— 1. such that (f, f”,n,€') is an adjoint equivalence: ...
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Diagrams, limits, comma categories, universal arrows.

2.1 Categories of diagrams

A diagram [more properly, a J-diagram] in C is a functor F': J — C where
J is a small, often even finite, category.

A cone to F' is an object ¢ of C together with arrows o; : ¢ = Fj of
C, where j ranges over the objects of J, such that F'f o a; = aj for all
arrows f : j — j  of J. A cone is thus a natural transformation from the
constant functor A, : J — C [defined by A.(j) := ¢ for all objects j of J;
and A.(f :j — j') := 1. for all arrows f of J] to F.

We call the functor category C” the category of J-diagrams in C; a cone
to F is thus an arrow of C? of the form o : A, — F. The category C?/F of
J-diagrams over F is defined to have arrows of C? of the form o : G — F
[any G] as objects; and arrows of C? of the form 3: G — G’, such that

commutes, as arrows.
A cone v : A, — F to F is universal iff, for any cone o : A, — F', there
is a unique arrow f : ¢ — u of C such that v; o f = «; for all objects j of J.
A universal cone to F, if it exists, is called a limit of [the diagram] F' and
is unique up to unique isomorphism.



2.2 Comma categories

If Fi: C; — C and F; : C; — C are functors, the comma category Fy | F5
has, as objects, all triples (ci,co, f @ Ficy — Fyce) where ¢; and ¢y are
objects of C; and C, respectively and f is an arrow of C; and, as arrows
from (cq,cq, f) to (¢}, ¢, f'), all pairs (g1 : ¢1 — ¢}, g2 : ca — &), where g
and gy are arrows of C; and C, respectively, such that

Fig
F1C1 I FlCll

|

F202 ?92' FQC’Q
commutes. Given (g, : ¢; — ¢}, g2 : ca = ) and (g] : ¢} = ¢, 95 : ¢y — &),
their composite is (g] o1 g1, g5 ©2 g2); this is well-defined since F; and Fj
are functors and associative because C is a category. The identity arrow for
(c1,¢o, f 1 Ficg — Faco) is (1, e, ); this indeed satisfies the identity property
since F} and F5, are functors and C is a category.

Comma categories are a very general concept that enable a unification of
many otherwise seemingly ad hoc concepts: in the above discussion of limits,
we had to define a notion of category of ‘arrows to F’ and, moreover, restrict
to ‘arrows from objects of the form A.’. This can be elegantly presented
using comma categories:

If ¢: 1 — C is the constant functor selecting the object ¢ in C then 1¢ . ¢
is the slice category over ¢, written C/c, of arrows into c¢. More generally,
Fy | ¢ is the category of arrows from Fy to c¢. The category of cones to [the
diagram] F can therefore be expressed as A | F' where Ay : C — C? sends
cto A, and f : ¢ — ¢ to the natural transformation Af : A. — A, whose
components are all f; and F': C — CY is the constant functor selecting F.

2.3 Universal arrows

An object 1 of C is terminal iff, for all objects ¢ of C, there is exactly one
arrow from ¢ to 1. Dually, an object 0 is initial in C iff, for all objects ¢ of
C, there is exactly one arrow from 0 to c.

Any singleton set is terminal in Set; the category 1 is terminal in Cat.
The empty set is initial in Set; the empty category 0, with no objects, is
initial in Cat.
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Initial and terminal objects need not be unique but they are always unique
up to isomorphism: if t and t' are both terminal objects in C, there must
be an arrow [’ :t' — ¢ from ¢’ to ¢t and an arrow f : t — t' from t to t’; so
f'o f = 1;, the unique arrow from ¢ to itself, and f o f' = 1, the unique
arrow from ¢’ to itself. Furthermore, ¢ and ¢’ are isomorphic up to a unique
isomorphism: f’ and f are themselves unique since ¢t and t' are terminal.

A terminal arrow from a functor F' : C — C’ to an object ¢ of C' is a
terminal object in F' | ¢’. In other words, a terminal arrow is an object ¢; of
C and an arrow f; : Fe; — ¢ of C’ such that, for any arrow f’': Fc — ¢ of
C’, there is a unique arrow f°: ¢ — ¢, of C such that

F b
FC ....... f> Fct

N

C/

commutes.

An initial arrow from ¢ to F' is defined dually. We speak of a universal
arrow when we do not care to stress whether it is initial or terminal.

A universal cone [limit] is therefore the particular case of a terminal arrow
from a diagonal functor Ay : C — C7. An initial arrow to a diagonal functor
is called a co-limit.

Products A terminal arrow from Ay : C — C2 to the object* (c1,cs)
consists of an object, that we write as ¢; X ¢z, of C and an arrow (7, m2) :
(c1 X cay01 X ¢3) = (c1,¢2) of C? such that, for any arrow (f1, f2) @ (¢, ¢) —
(c1,co) of C2, there is a unique arrow f : ¢ — ¢; X ¢o such that

(¢,c) A (€1 X €,¢1 X €3)

(f1,f2) j(m,m)
(Cl7 02)

commutes.

If the object ¢y X ¢ and the arrows 7y : ¢; X ¢ — ¢y and 7y : ¢; X ¢o — ¢
exist in C then we say that ¢; X ¢y is the product of ¢; and c¢y; 7 and 7 are
known as the projections (from c; X ¢3) and f as the pairing of f; and f.

*We have exploited the isomorphism C x C 22 C2, between the product of C with itself
and the functor category from the discrete category 2, in order to have a more elementary
description of the objects and arrows of C? as pairs of objects and pairs of arrows of C.
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Pull-backs and push-outs More generally, consider the category A with
three objects and two non-identity arrows:

SN

The category C" has spans, i.e. diagrams of the form C.&C*LCO in C,
as objects and triples (f,, fs, fo) of arrows of C satisfying

I fx

Cp —= ¢, Cp — ¢,
Co —C, Co—C,
L] o

as arrows.

The category of co-spans of C, i.e. diagrams of the form c.ﬂc*ﬂco

in C, is defined as CY where V := A%,

A terminal arrow from Ay : C — CV to the co-span 02&c4<f3—403

is a pull-back of the co-span. Concretely, this consists of an object ¢; and
arrows fi; 1 ¢ — ¢; [for i = 2,3,4] such that foy o fio = f14 = fas 0 fi3, i.e.
a span making the resulting square commute which additionally satisfies the
universal property that any other span making the square commute factors
uniquely through it. If ¢4 is a terminal object, this degenerates to the product
of ¢y and c3.

Dually, an initial arrow from the span 02<f1—201 &03 to Ax is a push-out

from the span. If ¢; is an initial object, this defines a co-product of ¢ and cs:
an object ¢y + c3 of C and injections Ly : ¢ — 9 + c3 and 13 : c3 — ¢ + ¢3 in
C such that any pair of arrows f5 : ¢o — ¢ and f3 : ¢c3 — ¢ factorizes uniquely
through the injections via their co-pairing [fe, f3] : c2 + c3 — ¢.

Suppose we have commuting squares

c Cl C/ /

C/// Cl//l Cl/l//

where, as indicated, the right-hand inner square is a pull-back. It follows that
the left-hand inner square is a pull-back if, and only if, the outer rectangle
is a pull-back. This is called the pasting lemma for pull-backs.
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2.4 Monos and pull-backs

An arrow f : ¢ — ¢ is a mono iff, for any pair of parallel arrows g1, g2 : ¢/ — ¢,
if fog, = fogsthen g = go, i.e. f is post-cancellable. We write f : ¢ — ¢
to specify that f is a mono. The arrow f : ¢ — ¢’ is a mono if, and only if,

1le

is a pull-back: given fi, fo : ¢’ — ¢ where f o f; = f o f5, we have a unique
f' o — csuch that f{ = 1.0 f' = f' = 1.0 f' = f5; and, for any
fi, fo: " — csuch that fo fi = f o fo, we have that f; = f, which defines
the unique arrow that makes the commuting square fol. = fol. a pull-back.

If f:c—dandf :d— ¢ then f'of is a mono: if g;,92 : " — ¢
satisfy (f'of)ogr = (f'of)ogs then fogy, fogs: " — ¢ and fog; = fogs,
since f’ is a mono, whereupon ¢g; = g3 since f is a mono.

Iff:ec—d, fi:c—d and fo: " —  satisty f = fyo f; then f; is a
mono: if g1, gs : " — csatisfy fiogi = fiogs then fyo(fiogi) = foo(fioga),
whereupon g; = go since f is a mono.

Monos are preserved by pull-backs in the following sense: given a co-span
f:d —cand g: ¢ — csuch that the span f': ¢ — " and ¢’ : " — ¢
is a pull-back thereof, it follows that ¢’ is a mono. To see this, suppose that
hi,hy : " — " such that ¢'ohy = g’ ohsy; then fo(g'ohy) = fo(g' ohs) and
so f" o hy = f’ o hy since the square commutes and ¢ is a mono. Moreover,
the span ¢’ o hy : " — ¢ and f' o hy : """ — ¢ makes the square commute;
so there is a unique h : """ — ¢” such that ¢oh = ¢'ohy and f'oh = f'ohs.
But both hy and hy satisfy these conditions on h, so hy = hs.

An arrow f: ¢ — cof Cis an epi iff fP : ¢ — ¢ is a mono in C?. An
epi is thus pre-cancellable. We write f : ¢ — ¢ to specify that f is an epi.
By definition, epis are preserved by push-outs in the dual of the preceding
sense.
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Chapter 3

Category theory III

Adjoint functors, ...

3.1 Adjoint functors

Let F': C — C’ be a functor and suppose that, for every object ¢’ of C’, we
have an object ¢ := G¢’ and a given terminal arrow . : Fe — .

We extend the object mapping G to a functor G : C' — C by sending
each arrow f' : ¢) — ¢, of C’ to the unique arrow f : ¢; — ¢ of C [where
¢ := G¢) and ¢y := Gd)] such that

floe
1
Fey —d,

Ff.

FCQ

commutes, i.e. Gf == (f oey ).

This is indeed a functor since (i) 1/, : ¢ — ¢ is sent to the unique arrow
f:c— csuch that e = e 0 F'f, so f =1, as F is a functor; and (ii) for
fi1:c, — cyand fi @ ¢y — ¢, there is a unique arrow G(f50' f]) == g :¢c1 — ¢3
such that (f5 o' f]) o es = e¢, o' Fg; and unique arrows G f] == g1 : c1 — ¢
and G f; := gz : cg — czsuch that fio'es = ey 0 Fgy and fi0'ey = €40 Fgo;
80 £, 0 F(gzog1) = ey 0 Fgao' Fg1 = fy0 ey o Fg = fy0' flo' ey, ie
g = g2 0 g1 as required. [Draw the diagrams!]

We say that F' is left adjoint to G; note that I’ does not determine GG
without the additional data of the terminal arrows ..
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The fact that GG is a functor means that the terminal arrows . are in
fact the co-ordinates of a natural transformation € : F o G — 1¢/: given an
arrow f':c} — ¢, of C', the required naturality square

E.l
(F o)y —1¢]

wor| s

(FoG)e—~6

is simply the above triangle. The natural transformation ¢ is called the co-
unit of the adjunction, a remarkably confusing terminology [from universal
algebral since it is induced by terminal, not initial, properties.

Given an object ¢ of C, define 1. : ¢ — (G o F')c to be the unique arrow

of C such that

%
(FoGoF)c

commutes, i.e. 7. := 12, Given ¢’ : Fc — ¢, we have that F(Gg on.) =
FGg' o Fn,, since F is a functor, and e, 0 FGg' = ¢’ o, since ¢ is a natural
transformation; therefore . o F(Gg on.) = ¢’ o (ep. © Fn.) = ¢’ which we
can rephrase as ¢'> = Gg' o 7,.

If f:c— Gc is an arrow of C, its left adjunct f* := e, o F'f factors, by
definition, through Ff so that f = f¥ = G ffon,, i.e. f factors through G f*.
If another ¢/ : Fc — ¢ satisfies f = G¢g' o1, then ¢> = Gg' on. = f = f¥
and so f# = ¢’. This establishes that 7, is an initial arrow from c to G.

Moreover, given an arrow f : ¢; — ¢y of C, the left adjunct (1., o f)F :=
EFC2OF(77620f) :gFCQOFnCQOFf:Ff so that Ffontn :Uc20f7 i.e. 7718
a natural transformation.

Finally, the left adjunct 1ﬂGC, = e so that Gey o gy = lge; this is the
so-called triangle identity for n:

lgu
Gd z Gd

77G’§
L %

v
(GoFoG)d
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Let us recap: starting from a functor /' : C — C’ and a family of terminal
arrows £» (in C’, indexed by the objects of C’), we can define (i) a functor
G : C' — C for which ¢ : FoG — 1c becomes a natural transformation;
and (ii) a family of initial arrows 7. (in C, indexed by the objects of C)
that form a natural transformation 7 : 1c — G o F' that satisfies the triangle
identities: one by definition; and the other as shown just above.

Recall that the left adjunct f*: Fc — ¢ of an arrow f : ¢ = G¢' of C
is defined to be f* := ¢4 o F'f. The induced mapping from homcg: (Fe, ')
to home(c, G') is (i) surjective, since every f : ¢ — G¢ gives rise to some
left adjunct; and (ii) injective, since £~ being terminal means that f*is f’s
unique left adjunct.

This bijection gb;i, : homg(e, G) = home (Fe,d) is ‘natural’ in the
sense that, given g:cy — ¢, ¢, (fog) :=cyp o F(fog) =cwoFfoFg=:

co,c!
d);g,(f) o Fg; and, given ¢’ : ¢ — ¢, ¢;Cl6(Gg’ of) =c¢egoF(Ggof)=
e, 0 FGy o Ff =goes o Ff = go¢™'(f).
If C and C’ are locally small categories, this gives us a bona fide natural
isomorphism ¢, : home/ (Fe, ') = home(c, G¢') in Set with naturality in ¢

[with respect to g : ¢ — (]

¢C C/
home (Fe, ) —— homc(c, G¢')
/\f’-f’oFgl le.fog

homes (Feg, ¢) — homeg(cp, G¢')

co,c’

and naturality in ¢’ [with respect to ¢’ : ¢ — ¢}

d)c ¢!
home (Fe,d) —— homcg(c, G')
Af'-gof'l lAf-Gg’Of

home (Fe, cf) e homc(c, Gep)

el
dually to the above.

Note how the terminal arrows €. allow a generalization of the case, found
in equivalences of categories, where F' being a fully faithful functor induces
a bijection homeg(cy, o) = home/(Fep, Fes). In the case of an adjunction,

despite the lack of the assumption that F' be full and faithful, we obtain our
bijection by virtue of the universal property of €.
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