
Notes on categories

incomplete and never to be finished

Russ Harmer
CNRS & ENS Lyon

Chapter 1

Category theory I

Categories, functors and natural transformations.

1.1 Categories

A category C consists of a class OC of unstructured objects and a class AC of
arrows of the form f : c ! c0 where f is our name for the arrow and c and c0

are objects; we write dom f for c and codom f for c0. We require there to be,
for every object c, an identity arrow 1

c

: c ! c and, for all composable arrows
f : c ! c0 and f 0 : c0 ! c00, i.e. where codom f = dom f 0, a composite arrow
f 0 � f : c ! c00 satisfying f � 1

c

= f = 1
c

0 � f and, for all arrows f 00 : c00 ! c000,
(f 00 � f 0) � f = f 00 � (f 0 � f). The operation � is the composition law of C; the
two requirements are the identity and the associativity properties.

An arrow f : c ! c0 is an isomorphism i↵, for some f 0 : c0 ! c, f 0 �f = 1
c

and f � f 0 = 1
c

0 . If f 0 exists, it is unique since, for any other candidate
f 00 : c0 ! c, f 00 = f 00 � f � f 0 = f 0. We then say that f is invertible, or is an

isomorphism, and define the operation f�1 := f 0; we also say that the objects
c and c0 are isomorphic [in the category C], written c ⇠= c0 [or f : c ⇠= c0 if we
wish to stress the specific witness f].

A subcategory C

0 of C consists of a subclass OC0 of OC and a subclass
AC0 of AC such that, for all arrows f in AC0 , dom f and codom f are both
in OC0 , for all objects c in OC0 , AC0 contains 1

c

and, for all arrows f : c ! c0

and f 0 : c0 ! c00 in AC0 , their composite f 0 � f is also in AC0 . The identities
and composition law of C0 are inherited from C, i.e. 10

c

:= 1
c

, for all c in
OC0 , and f 0 �0 f := f 0 � f , for all f : c ! c0 and f 0 : c0 ! c00 in AC0 .

1

The isomorphisms of C form a subcategory: if f : c ⇠= c0 and f 0 : c0 ⇠= c00

then f 0 � f : c ⇠= c00 since, setting (f 0�f)�1 := f�1�f 0�1, we have (f�1�f 0�1)�
(f 0 � f) = f�1 � (f 0�1 � f 0) � f = 1

c

and, similarly, (f 0 � f) � (f�1 � f 0�1) = 1
c

00 .
‘The’ category generally known as Set has all sets as objects and all total

functions between them as arrows [where ‘all’ depends on your choice of set
theory].

An arrow f : c ! c0 of Set is an isomorphism if, and only if, f [viewed
as a set-theoretic function] is a bijection; so, in particular, c and c0 [viewed
as sets] are isomorphic.

The category C is small i↵ its class of arrows is a set; its collection of
objects is then necessarily also a set. A category where all the arrows are
identity arrows is called discrete. A small discrete category is a set.

The category C is locally small i↵, for all pairs of objects c and c0, the
class hom(c, c0) of all arrows f : c ! c0 is an object of Set, i.e. actually a set,
not a class.

A small category with one object, i.e. where all arrows are composable,
is a monoid. A monoid where all arrows are invertible is a group. A small
category where all arrows are invertible is a groupoid.

More generally, if C is a locally small category containing objects c and c0,
we define Iso(c, c0) to be the set of all isomorphisms f : c ⇠= c0 and write Aut(c)
for Iso(c, c). Given f 2 Iso(c, c0), define a total function from g 2 Aut(c) to
Iso(c, c0) by g 7! f � g. This is an isomorphism in Set witnessed by the
total function from f 0 2 Iso(c, c0) to Aut(c) defined as f 0 7! f�1 � f 0: clearly
g 7! f�1 � (f � g) = g and f 0 7! f � (f�1 � f 0) = f 0. So, provided that c ⇠= c0,
there are always exactly as many automorphisms of c (or indeed c0) as there
are witnesses of the isomorphism of c and c0.

The category of groups and group homomorphisms is called Grp; that of
graphs and graph homomorphisms is called Grph.

The opposite category C

op of the category C is defined to have the same
objects as C and the ‘same’ arrows as C but going in the other direction:
f op : c ! c0 is an arrow of Cop i↵ f : c0 ! c is an arrow of C. Concomitantly,
f 0op �op f op := (f � f 0)op and 1op

c

:= 1
c

.
The product category C1⇥C2 of the categories C1 and C2 has as objects

all pairs hc
1

, c
2

i, where c
1

is an object of C1 and c
2

is an object of C2,
and as arrows all pairs hf

1

, f
2

i : hc
1

, c
2

i ! hc0
1

, c0
2

i, where f
1

: c
1

! c0
1

is an arrow of C1 and f
2

: c
2

! c0
2

is an arrow of C2. Concomitantly,
composable arrows hf

1

, f
2

i and hf 0
1

, f 0
2

i are composed component-wise, i.e.
hf 0

1

, f 0
2

i �
1⇥2

hf
1

, f
2

i := hf 0
1

�
1

f
1

, f 0
2

�
2

f
2

i, and 11⇥2

hc1,c2i := h11
c1
, 12

c2
i.

2

1.2 Functors

A functor F from the category C to the category C

0 consists of two mappings
[one sending c in OC to Fc in OC0 and the other sending f : c ! c0 in AC to
Ff : Fc ! Fc0 in AC0] satisfying, for all objects c of C, F1

c

= 10
Fc

and, for
all arrows f : c ! c0 and f 0 : c0 ! c00 of C, F (f 0 � f) = Ff 0 �0 Ff .

A functor from a monoid [viewed as the category C] to a second monoid
[viewed as the category C

0] is a standard monoid homomorphism. Likewise
for groups and groupoids.

If the arrow f : c ! c0 of C is invertible then (Ff)�1 := Ff�1 inverts
Ff : Fc ! Fc0 in C

0 since Ff�1 �0 Ff = F (f�1 � f) = F1
c

= 10
Fc

and
Ff �0 Ff�1 = F (f � f�1) = F1

c

0 = 10
Fc

0 .
An alternative possible definition of functor would specify only the arrow

mapping: any mapping F from the arrows of C to the arrows of C0 such
that, for all arrows f

1

: c
1

! c0
1

and f
2

: c
2

! c0
2

of C, domFf
1

= domFf
2

if dom f
1

= dom f
2

and codomFf
1

= codomFf
2

if codom f
1

= codom f
2

immediately induces a functor; the induced object mapping can be defined
as Fc := c0 i↵ F1

c

= 10
c

0 .
A third (and final) possible definition of functor is as a family of functions,

F
c,c

0 : hom(c, c0) ! hom(Fc, Fc0), indexed by all pairs of objects of C.
The functor F : C ! C

0 is (i) faithful i↵, for every pair c, c0 of objects
of C, F

c,c

0 is injective; (ii) full i↵, for every pair c, c0 of objects of C, F
c,c

0 is
surjective; and (iii) essentially surjective i↵, for every object c0 of C0, there is
some object c ofC such that Fc ⇠= c0. A full and faithful functor is sometimes
called fully faithful.

If C0 is a subcategory of C, the inclusion functor I : C0 ! C sends each
object and arrow of C0 to ‘itself’ in C. This functor is always faithful. If it is
full, we say that C0 is a full subcategory of C; a full subcategory is therefore
uniquely determined by its subclass OC0 of objects.

A category C is concrete i↵ there is a faithful functor U : C ! Set.
A locally small category C induces a hom functor homC : Cop ⇥C ! Set

where hc, c0i 7! hom(c, c0) and hf op

1

, f
2

i : hc
1

, c
2

i ! hc0
1

, c0
2

i 7! (f : c
1

! c
2

7!
f
2

� f � f
1

) : hom(c
1

, c
2

) ! hom(c0
1

, c0
2

):

• Clearly, homC 1hc1,c2i = (f : c
1

! c
2

7! 1
c2 � f � 1

c1) = 1
hom(c1,c2).

• Moreover, given additionally hf 0op
1

, f 0
2

i : hc0
1

, c0
2

i ! hc00
1

, c00
2

i, we have that
homC(hf 0op

1

, f 0
2

i � hf op

1

, f
2

i) = (f : c
1

! c
2

7! (f 0
2

� f
2

) � f � (f
1

� f 0
1

)) =
(f : c

1

! c
2

7! f 0
2

� (f
2

� f � f
1

) � f 0
1

) = homChf 0op
1

, f 0
2

i � homChf op

1

, f
2

i.

3

The functors F : C ! C

0 and F 0 : C0 ! C

00 can be composed by defining
c 7! F 0(Fc), for all objects c of C, and f 7! F 0(Ff), for all arrows f : c ! c0

of C. This yields a functor F 0 � F : C ! C

00 since (i) (F 0 � F)1
c

= F 010
Fc

=
100
(F

0
F)c

; and, given f 0 : c0 ! c00 of C, (ii) (F 0 � F)(f 0 � f) = F 0(F (f 0 � f)) =
F 0(Ff 0 �0 Ff) = F 0(Ff 0) �00 F 0(Ff) = (F 0 � F)f 0 �00 (F 0 � F)f .

The identity functor 1C : C ! C sends every object and arrow to itself;
clearly F1C = F = 10C0F . Moreover, given a third functor F 00 : C00 ! C

000,
clearly ((F 00 � F 0) � F) = (F 00 � (F 0 � F)). So we have a category, known as
Cat, with objects all small categories and arrows all functors between them;
two small categories are isomorphic i↵ they are isomorphic in Cat.

1.3 Natural transformations

A natural transformation ↵ : F ! F 0 from the functor F : C ! C

0 to the
functor F 0 : C ! C

0 is a family of arrows ↵
c

: Fc ! F 0c of C0, indexed by
the objects of C, such that

Fc
↵

c

//

Ff

✏✏

F 0c

F

0
f

✏✏

Fc0
↵

c

0
// F 0c0

commutes for all arrows f : c ! c0 of C.
The natural transformation ↵ : F ! F 0 is a natural isomorphism i↵, for

every object c of C, the arrow ↵
c

: Fc ! F 0c is an isomorphism. This is
equivalent to saying that there is a natural transformation ↵�1 : F 0 ! F
satisfying, for all objects c of C, ↵�1

c

�0 ↵
c

= 10
Fc

and ↵
c

�0 ↵0
c

= 10
F

0
c

.
Given a further natural transformation ↵0 : F 0 ! F 00, where F 00 : C ! C

0

is a third functor, the vertical composite of ↵ and ↵0, defined component-wise
as (↵0 • ↵)

c

:= ↵0
c

�0 ↵
c

, is clearly a natural transformation ↵0 • ↵ : F ! F 00.
The identity natural transformation 1

F

: F ! F , defined as (1
F

)
c

:= 10
Fc

,
satisfies ↵ • 1

F

= ↵ = 1
F

0 • ↵ and, given a fourth functor F 000 and a third
natural transformation ↵00 : F 00 ! F 000, we have (↵00 • ↵0) • ↵ = ↵00 • (↵0 • ↵).
Provided no ‘problems of size’ arise, we thus obtain a functor category C

0C

with objects all functors from C to C0 and arrows all natural transformations
between these functors; it is su�cient that C be a small category.

Let 1 and 2 be the (small) discrete categories with one and two objects
respectively. Clearly C

1 ⇠= C and C

2 ⇠= C⇥C in Cat.

4

The categoriesC andC

0 are equivalent i↵ there exist functors F : C ! C

0

and G : C0 ! C and natural isomorphisms " : FG ⇠= 1C0 and ⌘ : 1C ⇠= GF .
Since "

c

0 : F (Gc0) ⇠= c0, for all c0 in OC0 , the functor F is essentially
surjective. Moreover, for any arrow f : c

1

! c
2

of C, f = ⌘
c2 �GFf �⌘�1

c1
and

GFf = ⌘�1

c2
�f �⌘

c1 , so that hom(c
1

, c
2

) is in bijection with hom(GFc
1

, GFc
2

).
[If C is locally small, there is therefore an isomorphism in Set witnessing
hom(c

1

, c
2

) ⇠= hom(GFc
1

, GFc
2

).] So F
c1,c2 must be injective and G

Fc1,F c2

must be surjective, for all pairs of objects c
1

, c
2

, i.e. F is faithful and G is
full. The symmetric argument establishes that G is essentially surjective and
faithful and that F is full.

The functor F : C ! C

0 is a weak equivalence i↵, for some G : C0 ! C,
there exist natural isomorphisms ✏ : FG ⇠= 1C0 and ⌘ : 1C ⇠= GF . If F is
a weak equivalence then, from the above, we know that it is fully faithful
and essentially surjective; the converse is also true—with the caveat that it
depends on the axiom of choice:

Suppose that the functor F : C ! C

0 is fully faithful and essentially
surjective. By essential surjectivity, for any c0 in OC0 , there is at least one
c in OC such that Fc ⇠= c0; an application of the axiom of choice then picks
out a choice of c, for each c0 in OC0 , allowing us to define Gc0 := c.

1.4 Cat as a 2-category

Given functors F 0
1

, F 0
2

: C0 ! C

00, a natural transformation ↵0 : F 0
1

! F 0
2

and
functors F : C ! C

0 and F 00 : C00 ! C

000, we define, for each object c of C, an
arrow (F 00 �↵0 �F)

c

:= F 00(↵0
Fc

) of C000. This defines a natural transformation
F 00 � ↵0 � F : F 00 � F 0

1

� F ! F 00 � F 0
2

� F since, for any f : c ! c0 in C,

F 00(F 0
1

(Fc))
F

00
↵

0
Fc

//

F

00
(F

0
1(Ff))

✏✏

F 00(F 0
2

(Fc))

F

00
(F

0
2(Ff))

✏✏

F 00(F 0
1

(Fc0))
F

00
↵

0
Fc

0

// F 00(F 0
2

(Fc0))

commutes (because ↵0 is a natural transformation and F 00 is a functor).
This hybrid composition of two functors and a natural transformation is

usually called whiskering. It is a special case of the horizontal composition of
natural transformations if we replace the functors F and F 00 by the identity
natural transformations 1

F

: F ! F and 1
F

00 : F 00 ! F 00 respectively:

5

Given functors F
1

, F
2

: C ! C

0 and F 0
1

, F 0
2

: C0 ! C

00 together with
natural transformations ↵ : F

1

! F
2

and ↵0 : F 0
1

! F 0
2

, the horizontal

composite ↵0 � ↵ : F 0
1

� F
1

! F 0
2

� F
2

of ↵ and ↵0 is defined, for each object c
of C, to be the diagonal of

F 0
1

(F
1

c)
↵

0
F1c
//

F

0
1↵c

✏✏

(↵

0�↵)
c

%%

F 0
2

(F
1

c)

F

0
2↵c

✏✏

F 0
1

(F
2

c)
↵

0
F2c

// F 0
2

(F
2

c)

(this square necessarily commutes because ↵0 is a natural transformation).
This defines a natural transformation since, for any arrow f : c ! c0 in C,
the two internal squares of

F 0
1

(F
1

c)

(↵

0�↵)
c

''

F

0
1(F1f)

✏✏

↵

0
F1c
// F 0

2

(F
1

c)

F

0
2(F1f)

✏✏

F

0
2↵c

// F 0
2

(F
2

c)

F

0
2(F2f)

✏✏

F 0
1

(F
1

c0)

(↵

0�↵)
c

0

77

↵

0
F1c

0

// F 0
2

(F
1

c0)
F

0
2↵c

0
// F 0

2

(F
2

c0)

commute (because ↵0 and ↵ are natural transformations and F 0
2

is a functor)
and so the outer square commutes as required.

Horizontal composition has identities, specifically the identity natural
transformations 1

1C0 and 1
1C00 for the identity functors 1C0 and 1C00 . (Note

that this di↵ers from the identities for vertical composition.) It is also
(strictly) associative as all the faces of the cube below commute.

F 00
1

(F 0
1

(F
1

c))
↵

00
F

0
1(F1c)

//

F

00
1 (↵

0
F1c

)

%%

F

00
1 (F

0
1↵c

)

✏✏

F 00
2

(F 0
1

(F
1

c))

F

00
2 (↵

0
F1c

)

%%

F

00
2 (F

0
1↵c

)

✏✏

F 00
1

(F 0
2

(F
1

c))
↵

00
F

0
2(F1c)

//

F

00
1 (F

0
2↵c

)

✏✏

F 00
2

(F 0
2

(F
1

c))

F

00
2 (F

0
2↵c

)

✏✏

F 00
1

(F 0
1

(F
2

c))
↵

00
F

0
1(F2c)

//

F

00
1 (↵

0
F2c

)

%%

F 00
2

(F 0
1

(F
2

c))

F

00
2 (↵

0
F2c

)

%%

F 00
1

(F 0
2

(F
2

c))
↵

00
F

0
2(F2c)

// F 00
2

(F 0
2

(F
2

c))

6

A 2-category C consists of a class OC of objects, also called 0-cells, where
(i) for each ordered pair c, c0 of 0-cells, there is a category homC(c, c0) whose
objects and arrows are called 1-cells and 2-cells respectively; the composition
of 2-cells ↵

1

: f
1

! f
2

and ↵
2

: f
2

! f
3

is called vertical composition and is
denoted by ↵

2

•↵
1

; (ii) for each 0-cell c, there is a functor I
c

: 1 ! homC(c, c);
and (iii) for each ordered triple c, c0, c00 of 0-cells, there is a functor C

c,c

0
,c

00 :
homC(c0, c00)⇥ homC(c, c0) ! homC(c, c00).

These data will be required to satisfy further conditions but let us first
unpack what they mean: (i) the 1-cells of homC(c, c0) are the ‘arrows’ of
C from c to c0; the 2-cells of homC(c, c0) are ‘arrows between arrows’; (ii) I

c

picks out a 1-cell 1
c

and its identity arrow 1
1

c

in homC(c, c); this 1-cell will be
the ‘identity arrow’ for c in C; (iii) C

c,c

0
,c

00 defines the horizontal composition
of 1- and 2-cells; its object part takes ‘composable arrows’ f : c ! c0 and
f 0 : c0 ! c00 to f 0 �f := C

c,c

0
,c

00(f 0, f) : c ! c00; and its arrow part takes 2-cells
↵ : f

1

! f
2

and ↵0 : f 0
1

! f 0
2

between ‘composable arrows’ f
1

, f
2

: c ! c0 and
f 0
1

, f 0
2

: c0 ! c00 to ↵0 � ↵ := C
c,c

0
,c

00(↵0,↵) : f 0
1

� f
1

! f 0
2

� f
2

; and (iv) finally,
functoriality of C

c,c

0
,c

00 imposes the interchange law relating the vertical and
horizontal compositions of 2-cells ↵

1

: f
1

! f
2

, ↵
2

: f
2

! f
3

, ↵0
1

: f 0
1

! f 0
2

and ↵0
2

: f 0
2

! f 0
3

between the 1-cells f
1

, f
2

, f
3

: c ! c0 and f 0
1

, f 0
2

, f 0
3

: c0 ! c00:

(↵0
2

• ↵0
1

) � (↵
2

• ↵
1

) = (↵0
2

� ↵
2

) • (↵0
1

� ↵
1

).

We complete the definition of 2-category by asking that (i) for any ordered
quadruple of 0-cells c, c0, c00, c000 together with 1-cells f

1

, f
2

: c ! c0, f 0
1

, f 0
2

:
c0 ! c00 and f 00

1

, f 00
2

: c00 ! c000 and 2-cells ↵ : f
1

! f
2

, ↵0 : f 0
1

! f 0
2

and
↵00 : c00 ! c000, we have f 00

1

� (f 0
1

� f
1

) = (f 00
1

� f 0
1

) � f
1

(and likewise for f
2

,
f 0
2

and f 00
2

) and ↵00 � (↵0 � ↵) = (↵00 � ↵0) � ↵; and (ii) for any 0-cells c and
c0 together with 1-cells f

1

, f
2

: c ! c0 and a 2-cell ↵ : f
1

! f
2

, we have
f
1

� 1
c

= f
1

= 1
c

0 � f
1

(and likewise for f
2

) and ↵ � 1
1

c

= ↵ = 1
1

c

0 � ↵.
These conditions guarantee that, in accordance with the above intuition,

the 0-cells and 1-cells ofC are indeed the objects and the arrows of a category.
The category Cat can be given the structure of a 2-category by setting

OCat to be the class of small categories; then (i) homCat(c, c0) := c0c, the
functor category from c to c0; (ii) I

c

selects the identity functor 1
c

on c and
its identity natural transformation 1

1

c

; and (iii) C
c,c

0
,c

00(F 0, F) := F 0 � F and
C

c,c

0
,c

00(↵0,↵) := ↵0�↵, the horizontal composition of natural transformations.
We have already proved above that these data satisfy all the conditions

required of a 2-category. Clearly, the induced category of 0-cells and 1-cells
is just Cat.

7

1.5 Equivalences in a 2-category

In a category, we have a notion of isomorphism of objects but not of arrows.
In a 2-category, we say that a 2-cell ↵ : f

1

! f
2

is a 2-isomorphism [or just
an isomorphism when we can get away with it] of the 1-cells f

1

, f
2

: c ! c0

i↵ there exists a 2-cell ↵0 : f
2

! f
1

such that ↵0 • ↵ = 1
f1 and ↵ • ↵0 = 1

f2 .
As ↵ and ↵0 are just isomorphisms in a category, i.e. hom(c, c0), ↵0 is unique
and we define ↵�1 := ↵0.

If ↵
1

: f
1

! f
2

and ↵
2

: f
2

! f
3

are 2-isomorphisms for f
1

, f
2

, f
3

: c ! c0

then (↵
2

• ↵
1

)�1 := ↵�1

1

• ↵�1

2

.
If ↵ : f

1

! f
2

and ↵0 : f 0
1

! f 0
2

are 2-isomorphisms for f
1

, f
2

: c ! c0 and
f 0
1

, f 0
2

: c0 ! c00 then (↵0�1 �↵�1)• (↵0 �↵) = (↵0�1 •↵0)� (↵�1 •↵) = 1
f

0
1
�1

f1 =
1
f

0
1�f1 and (↵0 � ↵) • (↵0�1 � ↵�1) = (↵0 • ↵0�1) � (↵ • ↵�1) = 1

f

0
2
� 1

f2 = 1
f

0
2�f2 ;

so we can define (↵0 � ↵)�1 := ↵0�1 � ↵�1 [beware the subtle trap].
The 2-isomorphisms of Cat are precisely natural isomorphisms: clearly,

any 2-isomorphism defines a natural isomorphism; conversely, each ↵
c

:
F
1

c ! F
2

c of a natural isomorphism ↵ : F
1

! F
2

[of functors F
1

, F
2

: C !
C

0] is invertible, so ↵�1

c

�0 ↵
c

= 10
F1c

and ↵
c

�0 ↵�1

c

= 10
F2c

, i.e. ↵0 • ↵ = 1
F1

and ↵ • ↵0 = 1
F2 as required.

An equivalence in a 2-category consists of 1-cells f : c ! c0 and f 0 : c0 ! c
and 2-isomorphisms ⌘ : 1

c

! f 0 � f and " : f � f 0 ! 1
c

0 . An equivalence in
Cat is precisely an equivalence of categories as defined previously.

An equivalence is adjoint i↵ the so-called ‘triangle identities’ hold:

f
1

f

�⌘
//

1

f

##

f � f 0 � f
"�1

f

✏✏

f 0 � f � f 0

1

f

0�"
✏✏

f 0

1

f

0
zz

⌘�1
f

0
oo

f f 0

If (f, f 0, ⌘, ") is an adjoint equivalence then so is (f 0, f, "�1, ⌘�1): 1
f

0 =
1�1

f

0 = ((⌘ �1
f

0)• (1
f

0 �"))�1 = (⌘ �1
f

0)�1 • (1
f

0 �")�1 = (⌘�1 �1
f

0)• (1
f

0 �"�1);
and 1

f

= (1
f

� ⌘)�1 • (" � 1
f

)�1 = (1
f

� ⌘�1) • ("�1 � 1
f

).
If (f, f 0, ⌘, ") is an equivalence then either triangle identity holds if, and

only if, the other one does: ...
If (f, f 0, ⌘, ") is an equivalence then there exist f 00 : c0 ! c and "0 :

f � f 00 ! 1
c

0 such that (f, f 00, ⌘, "0) is an adjoint equivalence: ...

8

Chapter 2

Category theory II

Diagrams, limits, comma categories, universal arrows.

2.1 Categories of diagrams

A diagram [more properly, a J-diagram] in C is a functor F : J ! C where
J is a small, often even finite, category.

A cone to F is an object c of C together with arrows ↵
j

: c ! Fj of
C, where j ranges over the objects of J, such that Ff � ↵

j

= ↵
j

0 for all
arrows f : j ! j0 of J. A cone is thus a natural transformation from the
constant functor �

c

: J ! C [defined by �
c

(j) := c for all objects j of J;
and �

c

(f : j ! j0) := 1
c

for all arrows f of J] to F .
We call the functor category C

J the category of J-diagrams in C; a cone
to F is thus an arrow of CJ of the form ↵ : �

c

! F . The category C

J/F of
J-diagrams over F is defined to have arrows of CJ of the form ↵ : G ! F
[any G] as objects; and arrows of CJ of the form � : G ! G0, such that

G

↵

��

�

// G0

↵

0
~~

F

commutes, as arrows.
A cone � : �

u

! F to F is universal i↵, for any cone ↵ : �
c

! F , there
is a unique arrow f : c ! u of C such that �

j

� f = ↵
j

for all objects j of J.
A universal cone to F , if it exists, is called a limit of [the diagram] F and

is unique up to unique isomorphism.

9

2.2 Comma categories

If F
1

: C
1

! C and F
2

: C
2

! C are functors, the comma category F
1

F
2

has, as objects, all triples (c
1

, c
2

, f : F
1

c
1

! F
2

c
2

) where c
1

and c
2

are
objects of C

1

and C

2

respectively and f is an arrow of C; and, as arrows
from (c

1

, c
2

, f) to (c0
1

, c0
2

, f 0), all pairs (g
1

: c
1

! c0
1

, g
2

: c
2

! c0
2

), where g
1

and g
2

are arrows of C
1

and C

2

respectively, such that

F
1

c
1

F1g1
//

f

✏✏

F
1

c0
1

f

0

✏✏

F
2

c
2

F2g2

// F
2

c0
2

commutes. Given (g
1

: c
1

! c0
1

, g
2

: c
2

! c0
2

) and (g0
1

: c0
1

! c00
1

, g0
2

: c0
2

! c00
2

),
their composite is (g0

1

�
1

g
1

, g0
2

�
2

g
2

); this is well-defined since F
1

and F
2

are functors and associative because C is a category. The identity arrow for
(c

1

, c
2

, f : F
1

c
1

! F
2

c
2

) is (1
c1 , 1c2); this indeed satisfies the identity property

since F
1

and F
2

are functors and C is a category.
Comma categories are a very general concept that enable a unification of

many otherwise seemingly ad hoc concepts: in the above discussion of limits,
we had to define a notion of category of ‘arrows to F ’ and, moreover, restrict
to ‘arrows from objects of the form �

c

’. This can be elegantly presented
using comma categories:

If c : 1 ! C is the constant functor selecting the object c in C then 1C #c
is the slice category over c, written C/c, of arrows into c. More generally,
F
1

c is the category of arrows from F
1

to c. The category of cones to [the

diagram] F can therefore be expressed as � # F where �J : C ! C

J sends
c to �

c

and f : c ! c0 to the natural transformation �f : �
c

! �
c

0 whose
components are all f ; and F : C ! C

J is the constant functor selecting F .

2.3 Universal arrows

An object 1 of C is terminal i↵, for all objects c of C, there is exactly one
arrow from c to 1. Dually, an object 0 is initial in C i↵, for all objects c of
C, there is exactly one arrow from 0 to c.

Any singleton set is terminal in Set; the category 1 is terminal in Cat.
The empty set is initial in Set; the empty category 0, with no objects, is
initial in Cat.

10

Initial and terminal objects need not be unique but they are always unique
up to isomorphism: if t and t0 are both terminal objects in C, there must
be an arrow f 0 : t0 ! t from t0 to t and an arrow f : t ! t0 from t to t0; so
f 0 � f = 1

t

, the unique arrow from t to itself, and f � f 0 = 1
t

0 , the unique
arrow from t0 to itself. Furthermore, t and t0 are isomorphic up to a unique

isomorphism: f 0 and f are themselves unique since t and t0 are terminal.
A terminal arrow from a functor F : C ! C

0 to an object c0 of C0 is a
terminal object in F # c0. In other words, a terminal arrow is an object c

t

of
C and an arrow f 0

t

: Fc
t

! c0 of C0 such that, for any arrow f 0 : Fc ! c0 of
C

0, there is a unique arrow f [: c ! c
t

of C such that

Fc
Ff

[

//

f

0
!!

Fc
t

f

0
t

✏✏

c0

commutes.
An initial arrow from c0 to F is defined dually. We speak of a universal

arrow when we do not care to stress whether it is initial or terminal.
A universal cone [limit] is therefore the particular case of a terminal arrow

from a diagonal functor �J : C ! C

J. An initial arrow to a diagonal functor
is called a co-limit.

Products A terminal arrow from �2 : C ! C

2 to the object⇤ (c
1

, c
2

)
consists of an object, that we write as c

1

⇥ c
2

, of C and an arrow (⇡
1

, ⇡
2

) :
(c

1

⇥ c
2

, c
1

⇥ c
2

) ! (c
1

, c
2

) of C2 such that, for any arrow (f
1

, f
2

) : (c, c) !
(c

1

, c
2

) of C2, there is a unique arrow f : c ! c
1

⇥ c
2

such that

(c, c)
(f,f)

//

(f1,f2)
''

(c
1

⇥ c
2

, c
1

⇥ c
2

)

(⇡1,⇡2)

✏✏

(c
1

, c
2

)

commutes.
If the object c

1

⇥c
2

and the arrows ⇡
1

: c
1

⇥ c
2

! c
1

and ⇡
2

: c
1

⇥ c
2

! c
2

exist in C then we say that c
1

⇥ c
2

is the product of c
1

and c
2

; ⇡
1

and ⇡
2

are
known as the projections (from c

1

⇥ c
2

) and f as the pairing of f
1

and f
2

.

⇤
We have exploited the isomorphism C⇥C ⇠

=

C2
, between the product of C with itself

and the functor category from the discrete category 2, in order to have a more elementary

description of the objects and arrows of C2
as pairs of objects and pairs of arrows of C.

11

Pull-backs and push-outs More generally, consider the category ^̂̂ with
three objects and two non-identity arrows:

?
`

��

r

��• �
The category C

^̂̂ has spans, i.e. diagrams of the form c• c
?

f

`

oo

f

r

//c� in C,
as objects and triples hf

?

, f•, f�i of arrows of C satisfying

c
?

f

?

//

f

`

✏✏

c0
?

f

0
`

✏✏

c
?

f

?

//

f

r

✏✏

c0
?

f

0
r

✏✏

c•
f•
// c0• c�

f�
// c0�

as arrows.

The category of co-spans of C, i.e. diagrams of the form c•
f

`

op

//c
?

c�
f

r

op

oo

in C, is defined as C___ where ___ := ^̂̂op.

A terminal arrow from �___ : C ! C

___ to the co-span c
2

f24
//c
4

c
3

f34
oo

is a pull-back of the co-span. Concretely, this consists of an object c
1

and
arrows f

1i

: c
1

! c
i

[for i = 2, 3, 4] such that f
24

� f
12

= f
14

= f
34

� f
13

, i.e.
a span making the resulting square commute which additionally satisfies the
universal property that any other span making the square commute factors
uniquely through it. If c

4

is a terminal object, this degenerates to the product
of c

2

and c
3

.

Dually, an initial arrow from the span c
2

c
1

f12
oo

f13
//c
3

to�^̂̂ is a push-out
from the span. If c

1

is an initial object, this defines a co-product of c
2

and c
3

:
an object c

2

+ c
3

of C and injections ◆
2

: c
2

! c
2

+ c
3

and ◆
3

: c
3

! c
2

+ c
3

in
C such that any pair of arrows f

2

: c
2

! c and f
3

: c
3

! c factorizes uniquely
through the injections via their co-pairing [f

2

, f
3

] : c
2

+ c
3

! c.
Suppose we have commuting squares

c //

✏✏

c0 //

✏✏

c00

✏✏

c000 // c0000 // c00000

where, as indicated, the right-hand inner square is a pull-back. It follows that
the left-hand inner square is a pull-back if, and only if, the outer rectangle
is a pull-back. This is called the pasting lemma for pull-backs.

12

2.4 Monos and pull-backs

An arrow f : c ! c0 is amono i↵, for any pair of parallel arrows g
1

, g
2

: c00 ! c,
if f � g

1

= f � g
2

then g
1

= g
2

, i.e. f is post-cancellable. We write f : c ⇢ c0

to specify that f is a mono. The arrow f : c ! c0 is a mono if, and only if,

c
1

c

//

1

c

✏✏

c

f

✏✏

c
f

// c0

is a pull-back: given f
1

, f
2

: c00 ! c where f � f
1

= f � f
2

, we have a unique
f 0 : c00 ! c such that f

1

= 1
c

� f 0 = f 0 = 1
c

� f 0 = f
2

; and, for any
f
1

, f
2

: c00 ! c such that f � f
1

= f � f
2

, we have that f
1

= f
2

which defines
the unique arrow that makes the commuting square f �1

c

= f �1
c

a pull-back.
If f : c ⇢ c0 and f 0 : c0 ⇢ c00 then f 0 � f is a mono: if g

1

, g
2

: c000 ! c
satisfy (f 0�f)�g

1

= (f 0�f)�g
2

then f � g
1

, f � g
2

: c000 ! c0 and f �g
1

= f �g
2

,
since f 0 is a mono, whereupon g

1

= g
2

since f is a mono.
If f : c ⇢ c0, f

1

: c ! c00 and f
2

: c00 ! c0 satisfy f = f
2

� f
1

then f
1

is a
mono: if g

1

, g
2

: c000 ! c satisfy f
1

�g
1

= f
1

�g
2

then f
2

�(f
1

�g
1

) = f
2

�(f
1

�g
2

),
whereupon g

1

= g
2

since f is a mono.
Monos are preserved by pull-backs in the following sense: given a co-span

f : c0 ! c and g : c00 ⇢ c such that the span f 0 : c000 ! c00 and g0 : c000 ! c0

is a pull-back thereof, it follows that g0 is a mono. To see this, suppose that
h
1

, h
2

: c0000 ! c000 such that g0�h
1

= g0�h
2

; then f �(g0�h
1

) = f �(g0�h
2

) and
so f 0 � h

1

= f 0 � h
2

since the square commutes and g is a mono. Moreover,
the span g0 � h

1

: c0000 ! c0 and f 0 � h
2

: c0000 ! c00 makes the square commute;
so there is a unique h : c0000 ! c000 such that g0 �h = g0 �h

1

and f 0 �h = f 0 �h
2

.
But both h

1

and h
2

satisfy these conditions on h, so h
1

= h
2

.
An arrow f : c0 ! c of C is an epi i↵ f op : c ! c0 is a mono in C

op. An
epi is thus pre-cancellable. We write f : c0 ⇣ c to specify that f is an epi.
By definition, epis are preserved by push-outs in the dual of the preceding
sense.

13

Chapter 3

Category theory III

Adjoint functors, ...

3.1 Adjoint functors

Let F : C ! C

0 be a functor and suppose that, for every object c0 of C0, we
have an object c := Gc0 and a given terminal arrow "

c

0 : Fc ! c0.
We extend the object mapping G to a functor G : C0 ! C by sending

each arrow f 0 : c0
1

! c0
2

of C0 to the unique arrow f : c
1

! c
2

of C [where
c
1

:= Gc0
1

and c
2

:= Gc0
2

] such that

Fc
1

f

0�"
c

0
1
//

Ff

✏✏

c0
2

Fc
2

"

c

0
2

>>

commutes, i.e. Gf 0 := (f 0 � "
c

0
1
)[.

This is indeed a functor since (i) 10
c

0 : c0 ! c0 is sent to the unique arrow
f : c ! c such that "

c

0 = "
c

0 � Ff , so f = 1
c

as F is a functor; and (ii) for
f 0
1

: c0
1

! c0
2

and f 0
2

: c0
2

! c0
3

, there is a unique arrow G(f 0
2

�0f 0
1

) := g : c
1

! c
3

such that (f 0
2

�0 f 0
1

) �0 "
c

0
1
= "

c

0
3
�0 Fg; and unique arrows Gf 0

1

:= g
1

: c
1

! c
2

and Gf 0
2

:= g
2

: c
2

! c
3

such that f 0
1

�0"
c

0
1
= "

c

0
2
�0Fg

1

and f 0
2

�0"
c

0
2
= "

c

0
3
�0Fg

2

;
so "

c

0
3
�0 F (g

2

� g
1

) = "
c

0
3
�0 Fg

2

�0 Fg
1

= f 0
2

�0 "
c

0
2
�0 Fg

1

= f 0
2

�0 f 0
1

�0 "
c

0
1
, i.e.

g = g
2

� g
1

as required. [Draw the diagrams!]
We say that F is left adjoint to G; note that F does not determine G

without the additional data of the terminal arrows "
c

0 .

14

The fact that G is a functor means that the terminal arrows "
c

0 are in
fact the co-ordinates of a natural transformation " : F �G ! 1C0 : given an
arrow f 0 : c0

1

! c0
2

of C0, the required naturality square

(F �G)c0
1

"

c

0
1
//

(F�G)f

0

✏✏

c0
1

f

0

✏✏

(F �G)c0
2

"

c

0
2

// c0
2

is simply the above triangle. The natural transformation " is called the co-

unit of the adjunction, a remarkably confusing terminology [from universal
algebra] since it is induced by terminal, not initial, properties.

Given an object c of C, define ⌘
c

: c ! (G � F)c to be the unique arrow
of C such that

Fc
1

0
Fc

//

F⌘

c

✏✏

Fc

(F �G � F)c

"

Fc

88

commutes, i.e. ⌘
c

:= 10 [
Fc

. Given g0 : Fc ! c0, we have that F (Gg0 � ⌘
c

) =
FGg0 �F⌘

c

, since F is a functor, and "
c

0 �FGg0 = g0 �"
Fc

, since " is a natural
transformation; therefore "

c

0 � F (Gg0 � ⌘
c

) = g0 � ("
Fc

� F⌘
c

) = g0 which we
can rephrase as g0 [= Gg0 � ⌘

c

.
If f : c ! Gc0 is an arrow of C, its left adjunct f] := "

c

0 � Ff factors, by
definition, through Ff so that f = f][= Gf] �⌘

c

, i.e. f factors through Gf].
If another g0 : Fc ! c0 satisfies f = Gg0 � ⌘

c

then g0 [= Gg0 � ⌘
c

= f = f][

and so f] = g0. This establishes that ⌘
c

is an initial arrow from c to G.
Moreover, given an arrow f : c

1

! c
2

of C, the left adjunct (⌘
c2 � f)] :=

"
Fc2 � F (⌘

c2 � f) = "
Fc2 � F⌘

c2 � Ff = Ff so that Ff � ⌘
c1 = ⌘

c2 � f , i.e. ⌘ is
a natural transformation.

Finally, the left adjunct 1]
Gc

0 = "
c

0 so that G"
c

0 � ⌘
Gc

0 = 1
Gc

0 ; this is the
so-called triangle identity for ⌘:

Gc0
1

Gc

0
//

⌘

Gc

0
✏✏

Gc0

(G � F �G)c0
G"

c

0

88

15

Let us recap: starting from a functor F : C ! C

0 and a family of terminal
arrows "

c

0 (in C

0, indexed by the objects of C0), we can define (i) a functor
G : C0 ! C for which " : F �G ! 1C0 becomes a natural transformation;
and (ii) a family of initial arrows ⌘

c

(in C, indexed by the objects of C)
that form a natural transformation ⌘ : 1C ! G � F that satisfies the triangle
identities: one by definition; and the other as shown just above.

Recall that the left adjunct f] : Fc ! c0 of an arrow f : c ! Gc0 of C
is defined to be f] := "

c

0 � Ff . The induced mapping from homC0(Fc, c0)
to homC(c, Gc0) is (i) surjective, since every f : c ! Gc0 gives rise to some
left adjunct; and (ii) injective, since "

c

0 being terminal means that f] is f ’s
unique left adjunct.

This bijection ��1

c,c

0 : homC(c, Gc0) ⇠= homC0(Fc, c0) is ‘natural’ in the

sense that, given g : c
0

! c, ��1

c0,c
0(f � g) := "

c

0 � F (f � g) = "
c

0 � Ff � Fg =:

��1

c,c

0(f) � Fg; and, given g0 : c0 ! c0
0

, ��1

c,c

0
0
(Gg0 � f) := "

c

0
0
� F (Gg0 � f) =

"
c

0
0
� FGg0 � Ff = g � "

c

0 � Ff =: g � ��1(f).
If C and C

0 are locally small categories, this gives us a bona fide natural
isomorphism �

c,c

0 : homC0(Fc, c0) ⇠= homC(c, Gc0) in Set with naturality in c
[with respect to g : c

0

! c]

homC0(Fc, c0)
�

c,c

0
//

�f

0
.f

0�Fg

✏✏

homC(c, Gc0)

�f.f�g
✏✏

homC0(Fc
0

, c0)
�

c0,c
0
// homC(c0, Gc0)

and naturality in c0 [with respect to g0 : c0 ! c0
0

]

homC0(Fc, c0)
�

c,c

0
//

�f

0
.g�f 0

✏✏

homC(c, Gc0)

�f.Gg

0�f
✏✏

homC0(Fc, c0
0

)
�

c,c

0
0

// homC(c, Gc0
0

)

dually to the above.
Note how the terminal arrows "

c

0 allow a generalization of the case, found
in equivalences of categories, where F being a fully faithful functor induces
a bijection homC(c1, c2) ⇠= homC0(Fc

1

, F c
2

). In the case of an adjunction,
despite the lack of the assumption that F be full and faithful, we obtain our
bijection by virtue of the universal property of "

c

0 .

16

