Notes on categories incomplete and never to be finished

Russ Harmer CNRS & ENS Lyon

Chapter 1

Category theory I

Categories, functors and natural transformations.

1.1 Categories

A category **C** consists of a class $\mathcal{O}_{\mathbf{C}}$ of unstructured objects and a class $\mathcal{A}_{\mathbf{C}}$ of arrows of the form $f: c \to c'$ where f is our name for the arrow and c and c' are objects; we write dom f for c and codom f for c'. We require there to be, for every object c, an *identity* arrow $\mathbf{1}_c: c \to c$ and, for all composable arrows $f: c \to c'$ and $f': c' \to c''$, *i.e.* where codom f = dom f', a composite arrow $f' \circ f: c \to c''$ satisfying $f \circ \mathbf{1}_c = f = \mathbf{1}_{c'} \circ f$ and, for all arrows $f'': c'' \to c'''$, $(f'' \circ f') \circ f = f'' \circ (f' \circ f)$. The operation \circ is the composition law of **C**; the two requirements are the *identity* and the associativity properties.

An arrow $f: c \to c'$ is an *isomorphism* iff, for some $f': c' \to c$, $f' \circ f = 1_c$ and $f \circ f' = 1_{c'}$. If f' exists, it is unique since, for any other candidate $f'': c' \to c$, $f'' = f'' \circ f \circ f' = f'$. We then say that f is *invertible*, or *is an isomorphism*, and define the operation $f^{-1} := f'$; we also say that the objects c and c' are *isomorphic* [in the category **C**], written $c \cong c'$ [or $f: c \cong c'$ if we wish to stress the specific witness f].

A subcategory \mathbf{C}' of \mathbf{C} consists of a subclass $\mathcal{O}_{\mathbf{C}'}$ of $\mathcal{O}_{\mathbf{C}}$ and a subclass $\mathcal{A}_{\mathbf{C}'}$ of $\mathcal{A}_{\mathbf{C}}$ such that, for all arrows f in $\mathcal{A}_{\mathbf{C}'}$, dom f and codom f are both in $\mathcal{O}_{\mathbf{C}'}$, for all objects c in $\mathcal{O}_{\mathbf{C}'}$, $\mathcal{A}_{\mathbf{C}'}$ contains $\mathbf{1}_c$ and, for all arrows $f: c \to c'$ and $f': c' \to c''$ in $\mathcal{A}_{\mathbf{C}'}$, their composite $f' \circ f$ is also in $\mathcal{A}_{\mathbf{C}'}$. The identities and composition law of \mathbf{C}' are inherited from \mathbf{C} , *i.e.* $\mathbf{1}'_c := \mathbf{1}_c$, for all c in $\mathcal{O}_{\mathbf{C}'}$, and $f' \circ f := f' \circ f$, for all $f: c \to c'$ and $f': c' \to c''$ in $\mathcal{A}_{\mathbf{C}'}$.

The isomorphisms of **C** form a subcategory: if $f : c \cong c'$ and $f' : c' \cong c''$ then $f' \circ f : c \cong c''$ since, setting $(f' \circ f)^{-1} := f^{-1} \circ f'^{-1}$, we have $(f^{-1} \circ f'^{-1}) \circ (f' \circ f) = f^{-1} \circ (f'^{-1} \circ f') \circ f = 1_c$ and, similarly, $(f' \circ f) \circ (f^{-1} \circ f'^{-1}) = 1_{c''}$.

'The' category generally known as **Set** has all sets as objects and all total functions between them as arrows [where 'all' depends on your choice of set theory].

An arrow $f: c \to c'$ of **Set** is an isomorphism if, and only if, f [viewed as a set-theoretic function] is a bijection; so, in particular, c and c' [viewed as sets] are isomorphic.

The category \mathbf{C} is *small* iff its class of arrows is a set; its collection of objects is then necessarily also a set. A category where all the arrows are identity arrows is called *discrete*. A small discrete category is a set.

The category **C** is *locally small* iff, for all pairs of objects c and c', the class hom(c, c') of all arrows $f : c \to c'$ is an object of **Set**, *i.e.* actually a set, not a class.

A small category with one object, *i.e.* where *all* arrows are composable, is a *monoid*. A monoid where *all* arrows are invertible is a *group*. A small category where *all* arrows are invertible is a *groupoid*.

More generally, if **C** is a locally small category containing objects c and c', we define $\operatorname{Iso}(c, c')$ to be the set of all isomorphisms $f : c \cong c'$ and write $\operatorname{Aut}(c)$ for $\operatorname{Iso}(c, c)$. Given $f \in \operatorname{Iso}(c, c')$, define a total function from $g \in \operatorname{Aut}(c)$ to $\operatorname{Iso}(c, c')$ by $g \mapsto f \circ g$. This is an isomorphism in **Set** witnessed by the total function from $f' \in \operatorname{Iso}(c, c')$ to $\operatorname{Aut}(c)$ defined as $f' \mapsto f^{-1} \circ f'$: clearly $g \mapsto f^{-1} \circ (f \circ g) = g$ and $f' \mapsto f \circ (f^{-1} \circ f') = f'$. So, provided that $c \cong c'$, there are always exactly as many automorphisms of c (or indeed c') as there are witnesses of the isomorphism of c and c'.

The category of groups and group homomorphisms is called **Grp**; that of graphs and graph homomorphisms is called **Grph**.

The *opposite* category \mathbf{C}^{op} of the category \mathbf{C} is defined to have the same objects as \mathbf{C} and the 'same' arrows as \mathbf{C} but going in the other direction: $f^{op}: c \to c'$ is an arrow of \mathbf{C}^{op} iff $f: c' \to c$ is an arrow of \mathbf{C} . Concomitantly, $f'^{op} \circ^{op} f^{op} := (f \circ f')^{op}$ and $\mathbf{1}^{op}_{c} := \mathbf{1}_{c}$.

The product category $\mathbf{C_1} \times \mathbf{C_2}$ of the categories $\mathbf{C_1}$ and $\mathbf{C_2}$ has as objects all pairs $\langle c_1, c_2 \rangle$, where c_1 is an object of $\mathbf{C_1}$ and c_2 is an object of $\mathbf{C_2}$, and as arrows all pairs $\langle f_1, f_2 \rangle : \langle c_1, c_2 \rangle \to \langle c'_1, c'_2 \rangle$, where $f_1 : c_1 \to c'_1$ is an arrow of $\mathbf{C_1}$ and $f_2 : c_2 \to c'_2$ is an arrow of $\mathbf{C_2}$. Concomitantly, composable arrows $\langle f_1, f_2 \rangle$ and $\langle f'_1, f'_2 \rangle$ are composed component-wise, *i.e.* $\langle f'_1, f'_2 \rangle \circ_{1\times 2} \langle f_1, f_2 \rangle := \langle f'_1 \circ_1 f_1, f'_2 \circ_2 f_2 \rangle$, and $\mathbf{1}^{1\times 2}_{\langle c_1, c_2 \rangle} := \langle \mathbf{1}^1_{c_1}, \mathbf{1}^2_{c_2} \rangle$.

1.2 Functors

A functor F from the category \mathbf{C} to the category \mathbf{C}' consists of two mappings [one sending c in $\mathcal{O}_{\mathbf{C}}$ to Fc in $\mathcal{O}_{\mathbf{C}'}$ and the other sending $f: c \to c'$ in $\mathcal{A}_{\mathbf{C}}$ to $Ff: Fc \to Fc'$ in $\mathcal{A}_{\mathbf{C}'}$] satisfying, for all objects c of \mathbf{C} , $F1_c = 1'_{Fc}$ and, for all arrows $f: c \to c'$ and $f': c' \to c''$ of \mathbf{C} , $F(f' \circ f) = Ff' \circ' Ff$.

A functor from a monoid [viewed as the category \mathbf{C}] to a second monoid [viewed as the category \mathbf{C}'] is a standard *monoid homomorphism*. Likewise for groups and groupoids.

If the arrow $f: c \to c'$ of **C** is invertible then $(Ff)^{-1} := Ff^{-1}$ inverts $Ff: Fc \to Fc'$ in **C**' since $Ff^{-1} \circ' Ff = F(f^{-1} \circ f) = F1_c = 1'_{Fc}$ and $Ff \circ' Ff^{-1} = F(f \circ f^{-1}) = F1_{c'} = 1'_{Fc'}$.

An alternative possible definition of functor would specify only the arrow mapping: any mapping F from the arrows of \mathbf{C} to the arrows of \mathbf{C}' such that, for all arrows $f_1: c_1 \to c'_1$ and $f_2: c_2 \to c'_2$ of \mathbf{C} , dom $Ff_1 = \text{dom } Ff_2$ if dom $f_1 = \text{dom } f_2$ and codom $Ff_1 = \text{codom } Ff_2$ if codom $f_1 = \text{codom } f_2$ immediately induces a functor; the induced object mapping can be defined as Fc := c' iff $F1_c = 1'_{c'}$.

A third (and final) possible definition of functor is as a family of functions, $F_{c,c'}$: hom $(c, c') \rightarrow \text{hom}(Fc, Fc')$, indexed by all pairs of objects of **C**.

The functor $F : \mathbf{C} \to \mathbf{C}'$ is (i) faithful iff, for every pair c, c' of objects of \mathbf{C} , $F_{c,c'}$ is injective; (ii) full iff, for every pair c, c' of objects of \mathbf{C} , $F_{c,c'}$ is surjective; and (iii) essentially surjective iff, for every object c' of \mathbf{C}' , there is some object c of \mathbf{C} such that $Fc \cong c'$. A full and faithful functor is sometimes called fully faithful.

If \mathbf{C}' is a subcategory of \mathbf{C} , the *inclusion* functor $I : \mathbf{C}' \to \mathbf{C}$ sends each object and arrow of \mathbf{C}' to 'itself' in \mathbf{C} . This functor is always faithful. If it is full, we say that \mathbf{C}' is a *full subcategory* of \mathbf{C} ; a full subcategory is therefore uniquely determined by its subclass $\mathcal{O}_{\mathbf{C}'}$ of objects.

A category **C** is *concrete* iff there is a faithful functor $U : \mathbf{C} \to \mathbf{Set}$.

A locally small category **C** induces a hom functor hom_{**C**} : $\mathbf{C}^{op} \times \mathbf{C} \to \mathbf{Set}$ where $\langle c, c' \rangle \mapsto \text{hom}(c, c')$ and $\langle f_1^{op}, f_2 \rangle : \langle c_1, c_2 \rangle \to \langle c'_1, c'_2 \rangle \mapsto (f : c_1 \to c_2 \mapsto f_2 \circ f \circ f_1) : \text{hom}(c_1, c_2) \to \text{hom}(c'_1, c'_2):$

- Clearly, $\hom_{\mathbf{C}} 1_{\langle c_1, c_2 \rangle} = (f : c_1 \to c_2 \mapsto 1_{c_2} \circ f \circ 1_{c_1}) = 1_{\hom(c_1, c_2)}.$
- Moreover, given additionally $\langle f_1^{\prime op}, f_2^{\prime} \rangle : \langle c_1^{\prime}, c_2^{\prime} \rangle \to \langle c_1^{\prime\prime}, c_2^{\prime\prime} \rangle$, we have that $\hom_{\mathbf{C}}(\langle f_1^{\prime op}, f_2^{\prime} \rangle \circ \langle f_1^{op}, f_2 \rangle) = (f : c_1 \to c_2 \mapsto (f_2^{\prime} \circ f_2) \circ f \circ (f_1 \circ f_1^{\prime})) =$ $(f : c_1 \to c_2 \mapsto f_2^{\prime} \circ (f_2 \circ f \circ f_1) \circ f_1^{\prime}) = \hom_{\mathbf{C}} \langle f_1^{\prime op}, f_2^{\prime} \rangle \circ \hom_{\mathbf{C}} \langle f_1^{op}, f_2^{\prime} \rangle.$

The functors $F : \mathbf{C} \to \mathbf{C}'$ and $F' : \mathbf{C}' \to \mathbf{C}''$ can be composed by defining $c \mapsto F'(Fc)$, for all objects c of \mathbf{C} , and $f \mapsto F'(Ff)$, for all arrows $f : c \to c'$ of \mathbf{C} . This yields a functor $F' \circ F : \mathbf{C} \to \mathbf{C}''$ since (i) $(F' \circ F)\mathbf{1}_c = F'\mathbf{1}'_{Fc} = \mathbf{1}''_{(F'F)c}$; and, given $f' : c' \to c''$ of \mathbf{C} , (ii) $(F' \circ F)(f' \circ f) = F'(F(f' \circ f)) = F'(Ff' \circ Ff) = F'(Ff') \circ'' F'(Ff) = (F' \circ F)f' \circ'' (F' \circ F)f$.

The *identity* functor $1_{\mathbf{C}} : \mathbf{C} \to \mathbf{C}$ sends every object and arrow to itself; clearly $F1_{\mathbf{C}} = F = 1'_{\mathbf{C}'}F$. Moreover, given a third functor $F'' : \mathbf{C}'' \to \mathbf{C}'''$, clearly $((F'' \circ F') \circ F) = (F'' \circ (F' \circ F))$. So we have a category, known as **Cat**, with objects all *small* categories and arrows all functors between them; two small categories are *isomorphic* iff they are isomorphic in **Cat**.

1.3 Natural transformations

A natural transformation $\alpha : F \to F'$ from the functor $F : \mathbf{C} \to \mathbf{C}'$ to the functor $F' : \mathbf{C} \to \mathbf{C}'$ is a family of arrows $\alpha_c : Fc \to F'c$ of \mathbf{C}' , indexed by the objects of \mathbf{C} , such that

commutes for all arrows $f: c \to c'$ of **C**.

The natural transformation $\alpha: F \to F'$ is a *natural isomorphism* iff, for every object c of \mathbf{C} , the arrow $\alpha_c: Fc \to F'c$ is an isomorphism. This is equivalent to saying that there is a natural transformation $\alpha^{-1}: F' \to F$ satisfying, for all objects c of \mathbf{C} , $\alpha_c^{-1} \circ' \alpha_c = 1'_{Fc}$ and $\alpha_c \circ' \alpha'_c = 1'_{F'c}$.

Given a further natural transformation $\alpha': F' \to F''$, where $F'': \mathbf{C} \to \mathbf{C}'$ is a third functor, the *vertical* composite of α and α' , defined component-wise as $(\alpha' \bullet \alpha)_c := \alpha'_c \circ' \alpha_c$, is clearly a natural transformation $\alpha' \bullet \alpha : F \to F''$. The *identity* natural transformation $1_F: F \to F$, defined as $(1_F)_c := 1'_{Fc}$, satisfies $\alpha \bullet 1_F = \alpha = 1_{F'} \bullet \alpha$ and, given a fourth functor F''' and a third natural transformation $\alpha'': F'' \to F'''$, we have $(\alpha'' \bullet \alpha') \bullet \alpha = \alpha'' \bullet (\alpha' \bullet \alpha)$. Provided no 'problems of size' arise, we thus obtain a *functor category* $\mathbf{C}'^{\mathbf{C}}$ with objects all functors from \mathbf{C} to \mathbf{C}' and arrows all natural transformations between these functors; it is sufficient that \mathbf{C} be a small category.

Let 1 and 2 be the (small) discrete categories with one and two objects respectively. Clearly $\mathbf{C}^1 \cong \mathbf{C}$ and $\mathbf{C}^2 \cong \mathbf{C} \times \mathbf{C}$ in **Cat**.

The categories \mathbf{C} and \mathbf{C}' are *equivalent* iff there exist functors $F : \mathbf{C} \to \mathbf{C}'$ and $G : \mathbf{C}' \to \mathbf{C}$ and natural isomorphisms $\varepsilon : FG \cong \mathbf{1}_{\mathbf{C}'}$ and $\eta : \mathbf{1}_{\mathbf{C}} \cong GF$.

Since $\varepsilon_{c'}$: $F(Gc') \cong c'$, for all c' in $\mathcal{O}_{\mathbf{C}'}$, the functor F is essentially surjective. Moreover, for any arrow $f: c_1 \to c_2$ of \mathbf{C} , $f = \eta_{c_2} \circ GFf \circ \eta_{c_1}^{-1}$ and $GFf = \eta_{c_2}^{-1} \circ f \circ \eta_{c_1}$, so that $\hom(c_1, c_2)$ is in bijection with $\hom(GFc_1, GFc_2)$. [If \mathbf{C} is locally small, there is therefore an isomorphism in **Set** witnessing $\hom(c_1, c_2) \cong \hom(GFc_1, GFc_2)$.] So F_{c_1, c_2} must be injective and G_{Fc_1, Fc_2} must be surjective, for all pairs of objects c_1, c_2 , *i.e.* F is faithful and G is full. The symmetric argument establishes that G is essentially surjective and faithful and that F is full.

The functor $F : \mathbf{C} \to \mathbf{C}'$ is a *weak equivalence* iff, for some $G : \mathbf{C}' \to \mathbf{C}$, there exist natural isomorphisms $\epsilon : FG \cong \mathbf{1}_{\mathbf{C}'}$ and $\eta : \mathbf{1}_{\mathbf{C}} \cong GF$. If F is a weak equivalence then, from the above, we know that it is fully faithful and essentially surjective; the converse is also true—with the caveat that it depends on the axiom of choice:

Suppose that the functor $F : \mathbf{C} \to \mathbf{C}'$ is fully faithful and essentially surjective. By essential surjectivity, for any c' in $\mathcal{O}_{\mathbf{C}'}$, there is at least one c in $\mathcal{O}_{\mathbf{C}}$ such that $Fc \cong c'$; an application of the axiom of choice then picks out a choice of c, for each c' in $\mathcal{O}_{\mathbf{C}'}$, allowing us to define Gc' := c.

1.4 Cat as a 2-category

Given functors $F'_1, F'_2: \mathbf{C}' \to \mathbf{C}''$, a natural transformation $\alpha': F'_1 \to F'_2$ and functors $F: \mathbf{C} \to \mathbf{C}'$ and $F'': \mathbf{C}'' \to \mathbf{C}'''$, we define, for each object c of \mathbf{C} , an arrow $(F'' \circ \alpha' \circ F)_c := F''(\alpha'_{Fc})$ of \mathbf{C}''' . This defines a natural transformation $F'' \circ \alpha' \circ F: F'' \circ F'_1 \circ F \to F'' \circ F'_2 \circ F$ since, for any $f: c \to c'$ in \mathbf{C} ,

$$\begin{array}{c} F''(F_1'(Fc)) \xrightarrow{F''\alpha'_{Fc}} F''(F_2'(Fc)) \\ F''(F_1'(Ff)) & \downarrow F''(F_2'(Ff)) \\ F''(F_1'(Fc')) \xrightarrow{F''\alpha'_{Fc'}} F''(F_2'(Fc')) \end{array}$$

commutes (because α' is a natural transformation and F'' is a functor).

This hybrid composition of two functors and a natural transformation is usually called *whiskering*. It is a special case of the *horizontal* composition of natural transformations if we replace the functors F and F'' by the identity natural transformations $1_F: F \to F$ and $1_{F''}: F'' \to F''$ respectively: Given functors $F_1, F_2 : \mathbf{C} \to \mathbf{C}'$ and $F'_1, F'_2 : \mathbf{C}' \to \mathbf{C}''$ together with natural transformations $\alpha : F_1 \to F_2$ and $\alpha' : F'_1 \to F'_2$, the *horizontal* composite $\alpha' \circ \alpha : F'_1 \circ F_1 \to F'_2 \circ F_2$ of α and α' is defined, for each object cof \mathbf{C} , to be the diagonal of

$$\begin{array}{c|c} F_1'(F_1c) \xrightarrow{\alpha'_{F_1c}} F_2'(F_1c) \\ F_1'\alpha_c & & \downarrow F_2'\alpha_c \\ F_1'(F_2c) \xrightarrow{\alpha'_{F_2c}} F_2'(F_2c) \end{array}$$

(this square necessarily commutes because α' is a natural transformation). This defines a natural transformation since, for any arrow $f: c \to c'$ in \mathbf{C} , the two internal squares of

commute (because α' and α are natural transformations and F'_2 is a functor) and so the outer square commutes as required.

Horizontal composition has identities, specifically the identity natural transformations $1_{1_{\mathbf{C}'}}$ and $1_{1_{\mathbf{C}''}}$ for the identity functors $1_{\mathbf{C}'}$ and $1_{\mathbf{C}''}$. (Note that this differs from the identities for vertical composition.) It is also (strictly) associative as all the faces of the cube below commute.

$$\begin{array}{c|c} F_{1}''(F_{1}'(F_{1}c)) & \xrightarrow{\alpha_{F_{1}'(F_{1}c)}'} F_{2}''(F_{1}'(F_{1}c)) \\ & F_{1}''(F_{1}c) & \xrightarrow{F_{1}''(\alpha_{F_{1}c})} F_{1}''(F_{2}'(F_{1}c)) \\ & F_{1}''(F_{2}'(F_{1}c)) & \xrightarrow{\alpha_{F_{2}'(F_{1}c)}'} F_{2}''(F_{2}'(F_{1}c)) \\ & F_{1}''(F_{1}'(F_{2}c)) & \xrightarrow{F_{1}''(F_{2}cc)} F_{2}''(F_{1}'(F_{2}c)) \\ & & F_{1}''(F_{2}(F_{2}c)) & \xrightarrow{\alpha_{F_{1}'(F_{2}c)}'} F_{2}''(F_{1}'(F_{2}c)) \\ & & & F_{1}''(F_{2}'(F_{2}c)) & \xrightarrow{F_{2}''(F_{2}cc)} F_{2}''(F_{2}'(F_{2}c)) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$$

A 2-category **C** consists of a class $\mathcal{O}_{\mathbf{C}}$ of objects, also called θ -cells, where (i) for each ordered pair c, c' of 0-cells, there is a category $\hom_{\mathbf{C}}(c, c')$ whose objects and arrows are called 1-cells and 2-cells respectively; the composition of 2-cells $\alpha_1 : f_1 \to f_2$ and $\alpha_2 : f_2 \to f_3$ is called vertical composition and is denoted by $\alpha_2 \bullet \alpha_1$; (ii) for each 0-cell c, there is a functor $I_c : \mathbf{1} \to \hom_{\mathbf{C}}(c, c)$; and (iii) for each ordered triple c, c', c'' of 0-cells, there is a functor $C_{c,c',c''}$: $\hom_{\mathbf{C}}(c', c'') \times \hom_{\mathbf{C}}(c, c') \to \hom_{\mathbf{C}}(c, c'')$.

These data will be required to satisfy further conditions but let us first unpack what they mean: (i) the 1-cells of $\hom_{\mathbf{C}}(c, c')$ are the 'arrows' of \mathbf{C} from c to c'; the 2-cells of $\hom_{\mathbf{C}}(c, c')$ are 'arrows between arrows'; (ii) I_c picks out a 1-cell 1_c and its identity arrow 1_{1_c} in $\hom_{\mathbf{C}}(c, c)$; this 1-cell will be the 'identity arrow' for c in \mathbf{C} ; (iii) $C_{c,c',c''}$ defines the *horizontal* composition of 1- and 2-cells; its object part takes 'composable arrows' $f: c \to c'$ and $f': c' \to c''$ to $f' \circ f := C_{c,c',c''}(f', f): c \to c''$; and its arrow part takes 2-cells $\alpha: f_1 \to f_2$ and $\alpha': f'_1 \to f'_2$ between 'composable arrows' $f_1, f_2: c \to c'$ and $f'_1, f'_2: c' \to c''$ to $\alpha' \circ \alpha := C_{c,c',c''}(\alpha', \alpha): f'_1 \circ f_1 \to f'_2 \circ f_2$; and (iv) finally, functoriality of $C_{c,c',c''}$ imposes the *interchange law* relating the vertical and horizontal compositions of 2-cells $\alpha_1: f_1 \to f_2, \alpha_2: f_2 \to f_3, \alpha'_1: f'_1 \to f'_2$ and $\alpha'_2: f'_2 \to f'_3$ between the 1-cells $f_1, f_2, f_3: c \to c'$ and $f'_1, f'_2, f'_3: c' \to c''$:

$$(\alpha'_2 \bullet \alpha'_1) \circ (\alpha_2 \bullet \alpha_1) = (\alpha'_2 \circ \alpha_2) \bullet (\alpha'_1 \circ \alpha_1).$$

We complete the definition of 2-category by asking that (i) for any ordered quadruple of 0-cells c, c', c'', c''' together with 1-cells $f_1, f_2 : c \to c', f'_1, f'_2 : c' \to c''$ and $f''_1, f''_2 : c'' \to c'''$ and 2-cells $\alpha : f_1 \to f_2, \alpha' : f'_1 \to f'_2$ and $\alpha'' : c'' \to c'''$, we have $f''_1 \circ (f'_1 \circ f_1) = (f''_1 \circ f'_1) \circ f_1$ (and likewise for f_2, f'_2 and f''_2) and $\alpha'' \circ (\alpha' \circ \alpha) = (\alpha'' \circ \alpha') \circ \alpha$; and (ii) for any 0-cells c and c' together with 1-cells $f_1, f_2 : c \to c'$ and a 2-cell $\alpha : f_1 \to f_2$, we have $f_1 \circ 1_c = f_1 = 1_{c'} \circ f_1$ (and likewise for f_2) and $\alpha \circ 1_{1_c} = \alpha = 1_{1_{c'}} \circ \alpha$.

These conditions guarantee that, in accordance with the above intuition, the 0-cells and 1-cells of \mathbf{C} are indeed the objects and the arrows of a category.

The category **Cat** can be given the structure of a 2-category by setting $\mathcal{O}_{\mathbf{Cat}}$ to be the class of small categories; then (i) $\hom_{\mathbf{Cat}}(c,c') := c'^c$, the functor category from c to c'; (ii) I_c selects the identity functor 1_c on c and its identity natural transformation 1_{1_c} ; and (iii) $C_{c,c',c''}(F',F) := F' \circ F$ and $C_{c,c',c''}(\alpha',\alpha) := \alpha' \circ \alpha$, the horizontal composition of natural transformations.

We have already proved above that these data satisfy all the conditions required of a 2-category. Clearly, the induced category of 0-cells and 1-cells is just **Cat**.

1.5 Equivalences in a 2-category

In a category, we have a notion of isomorphism of objects but not of arrows. In a 2-category, we say that a 2-cell $\alpha : f_1 \to f_2$ is a 2-isomorphism [or just an isomorphism when we can get away with it] of the 1-cells $f_1, f_2 : c \to c'$ iff there exists a 2-cell $\alpha' : f_2 \to f_1$ such that $\alpha' \bullet \alpha = 1_{f_1}$ and $\alpha \bullet \alpha' = 1_{f_2}$. As α and α' are just isomorphisms in a category, *i.e.* hom $(c, c'), \alpha'$ is unique and we define $\alpha^{-1} := \alpha'$.

If $\alpha_1 : f_1 \to f_2$ and $\alpha_2 : f_2 \to f_3$ are 2-isomorphisms for $f_1, f_2, f_3 : c \to c'$ then $(\alpha_2 \bullet \alpha_1)^{-1} := \alpha_1^{-1} \bullet \alpha_2^{-1}$.

If $\alpha : f_1 \to f_2$ and $\alpha' : f_1' \to f_2'$ are 2-isomorphisms for $f_1, f_2 : c \to c'$ and $f_1', f_2' : c' \to c''$ then $(\alpha'^{-1} \circ \alpha^{-1}) \bullet (\alpha' \circ \alpha) = (\alpha'^{-1} \bullet \alpha') \circ (\alpha^{-1} \bullet \alpha) = 1_{f_1'} \circ 1_{f_1} = 1_{f_1' \circ f_1}$ and $(\alpha' \circ \alpha) \bullet (\alpha'^{-1} \circ \alpha^{-1}) = (\alpha' \bullet \alpha'^{-1}) \circ (\alpha \bullet \alpha^{-1}) = 1_{f_2'} \circ 1_{f_2} = 1_{f_2' \circ f_2};$ so we can define $(\alpha' \circ \alpha)^{-1} := \alpha'^{-1} \circ \alpha^{-1}$ [beware the subtle trap].

The 2-isomorphisms of **Cat** are precisely natural isomorphisms: clearly, any 2-isomorphism defines a natural isomorphism; conversely, each α_c : $F_1c \rightarrow F_2c$ of a natural isomorphism $\alpha : F_1 \rightarrow F_2$ [of functors $F_1, F_2 : \mathbf{C} \rightarrow \mathbf{C}'$] is invertible, so $\alpha_c^{-1} \circ' \alpha_c = 1'_{F_1c}$ and $\alpha_c \circ' \alpha_c^{-1} = 1'_{F_2c}$, *i.e.* $\alpha' \bullet \alpha = 1_{F_1}$ and $\alpha \bullet \alpha' = 1_{F_2}$ as required.

An equivalence in a 2-category consists of 1-cells $f : c \to c'$ and $f' : c' \to c$ and 2-isomorphisms $\eta : 1_c \to f' \circ f$ and $\varepsilon : f \circ f' \to 1_{c'}$. An equivalence in **Cat** is precisely an equivalence of categories as defined previously.

An equivalence is *adjoint* iff the so-called 'triangle identities' hold:

If $(f, f', \eta, \varepsilon)$ is an adjoint equivalence then so is $(f', f, \varepsilon^{-1}, \eta^{-1})$: $1_{f'} = 1_{f'}^{-1} = ((\eta \circ 1_{f'}) \bullet (1_{f'} \circ \varepsilon))^{-1} = (\eta \circ 1_{f'})^{-1} \bullet (1_{f'} \circ \varepsilon)^{-1} = (\eta^{-1} \circ 1_{f'}) \bullet (1_{f'} \circ \varepsilon^{-1});$ and $1_f = (1_f \circ \eta)^{-1} \bullet (\varepsilon \circ 1_f)^{-1} = (1_f \circ \eta^{-1}) \bullet (\varepsilon^{-1} \circ 1_f).$

If $(f, f', \eta, \varepsilon)$ is an equivalence then either triangle identity holds if, and only if, the other one does: ...

If $(f, f', \eta, \varepsilon)$ is an equivalence then there exist $f'' : c' \to c$ and $\varepsilon' : f \circ f'' \to 1_{c'}$ such that $(f, f'', \eta, \varepsilon')$ is an adjoint equivalence: ...

Chapter 2

Category theory II

Diagrams, limits, comma categories, universal arrows.

2.1 Categories of diagrams

A diagram [more properly, a **J**-diagram] in **C** is a functor $F : \mathbf{J} \to \mathbf{C}$ where **J** is a small, often even finite, category.

A cone to F is an object c of C together with arrows $\alpha_j : c \to Fj$ of C, where j ranges over the objects of J, such that $Ff \circ \alpha_j = \alpha_{j'}$ for all arrows $f : j \to j'$ of J. A cone is thus a natural transformation from the constant functor $\Delta_c : \mathbf{J} \to \mathbf{C}$ [defined by $\Delta_c(j) := c$ for all objects j of J; and $\Delta_c(f : j \to j') := 1_c$ for all arrows f of J] to F.

We call the functor category $\mathbf{C}^{\mathbf{J}}$ the *category of* \mathbf{J} -*diagrams in* \mathbf{C} ; a cone to F is thus an arrow of $\mathbf{C}^{\mathbf{J}}$ of the form $\alpha : \Delta_c \to F$. The category $\mathbf{C}^{\mathbf{J}}/F$ of \mathbf{J} -diagrams over F is defined to have arrows of $\mathbf{C}^{\mathbf{J}}$ of the form $\alpha : G \to F$ [any G] as objects; and arrows of $\mathbf{C}^{\mathbf{J}}$ of the form $\beta : G \to G'$, such that

commutes, as arrows.

A cone $v : \Delta_u \to F$ to F is *universal* iff, for any cone $\alpha : \Delta_c \to F$, there is a unique arrow $f : c \to u$ of **C** such that $v_j \circ f = \alpha_j$ for all objects j of **J**.

A universal cone to F, if it exists, is called a *limit* of [the diagram] F and is *unique up to unique isomorphism*.

2.2 Comma categories

If $F_1 : \mathbf{C}_1 \to \mathbf{C}$ and $F_2 : \mathbf{C}_2 \to \mathbf{C}$ are functors, the comma category $F_1 \downarrow F_2$ has, as objects, all triples $(c_1, c_2, f : F_1c_1 \to F_2c_2)$ where c_1 and c_2 are objects of \mathbf{C}_1 and \mathbf{C}_2 respectively and f is an arrow of \mathbf{C} ; and, as arrows from (c_1, c_2, f) to (c'_1, c'_2, f') , all pairs $(g_1 : c_1 \to c'_1, g_2 : c_2 \to c'_2)$, where g_1 and g_2 are arrows of \mathbf{C}_1 and \mathbf{C}_2 respectively, such that

$$\begin{array}{c|c} F_1c_1 \xrightarrow{F_1g_1} F_1c'_1 \\ f \\ f \\ F_2c_2 \xrightarrow{F_2g_2} F_2c'_2 \end{array}$$

commutes. Given $(g_1 : c_1 \to c'_1, g_2 : c_2 \to c'_2)$ and $(g'_1 : c'_1 \to c''_1, g'_2 : c'_2 \to c''_2)$, their composite is $(g'_1 \circ_1 g_1, g'_2 \circ_2 g_2)$; this is well-defined since F_1 and F_2 are functors and associative because **C** is a category. The identity arrow for $(c_1, c_2, f : F_1c_1 \to F_2c_2)$ is $(1_{c_1}, 1_{c_2})$; this indeed satisfies the identity property since F_1 and F_2 are functors and **C** is a category.

Comma categories are a very general concept that enable a unification of many otherwise seemingly *ad hoc* concepts: in the above discussion of limits, we had to define a notion of category of 'arrows to F' and, moreover, restrict to 'arrows from objects of the form Δ_c '. This can be elegantly presented using comma categories:

If $c: \mathbf{1} \to \mathbf{C}$ is the constant functor selecting the object c in \mathbf{C} then $\mathbf{1}_{\mathbf{C}} \downarrow c$ is the *slice category over* c, written \mathbf{C}/c , of arrows into c. More generally, $F_1 \downarrow c$ is the *category of arrows from* F_1 to c. The *category of cones to [the diagram]* F can therefore be expressed as $\Delta \downarrow F$ where $\Delta_{\mathbf{J}} : \mathbf{C} \to \mathbf{C}^{\mathbf{J}}$ sends c to Δ_c and $f: c \to c'$ to the natural transformation $\Delta f: \Delta_c \to \Delta_{c'}$ whose components are all f; and $F: \mathbf{C} \to \mathbf{C}^{\mathbf{J}}$ is the constant functor selecting F.

2.3 Universal arrows

An object 1 of C is *terminal* iff, for all objects c of C, there is exactly one arrow from c to 1. Dually, an object 0 is *initial* in C iff, for all objects c of C, there is exactly one arrow from 0 to c.

Any singleton set is terminal in Set; the category 1 is terminal in Cat. The empty set is initial in Set; the empty category 0, with no objects, is initial in Cat. Initial and terminal objects need not be unique but they are always unique up to isomorphism: if t and t' are both terminal objects in **C**, there must be an arrow $f': t' \to t$ from t' to t and an arrow $f: t \to t'$ from t to t'; so $f' \circ f = 1_t$, the unique arrow from t to itself, and $f \circ f' = 1_{t'}$, the unique arrow from t' to itself. Furthermore, t and t' are isomorphic up to a unique isomorphism: f' and f are themselves unique since t and t' are terminal.

A terminal arrow from a functor $F : \mathbf{C} \to \mathbf{C}'$ to an object c' of \mathbf{C}' is a terminal object in $F \downarrow c'$. In other words, a terminal arrow is an object c_t of \mathbf{C} and an arrow $f'_t : Fc_t \to c'$ of \mathbf{C}' such that, for any arrow $f' : Fc \to c'$ of \mathbf{C}' , there is a unique arrow $f^{\flat} : c \to c_t$ of \mathbf{C} such that

commutes.

An *initial arrow* from c' to F is defined dually. We speak of a *universal* arrow when we do not care to stress whether it is initial or terminal.

A universal cone [limit] is therefore the particular case of a terminal arrow from a diagonal functor $\Delta_{\mathbf{J}} : \mathbf{C} \to \mathbf{C}^{\mathbf{J}}$. An initial arrow to a diagonal functor is called a *co-limit*.

Products A terminal arrow from $\Delta_2 : \mathbf{C} \to \mathbf{C}^2$ to the object^{*} (c_1, c_2) consists of an object, that we write as $c_1 \times c_2$, of \mathbf{C} and an arrow $(\pi_1, \pi_2) : (c_1 \times c_2, c_1 \times c_2) \to (c_1, c_2)$ of \mathbf{C}^2 such that, for any arrow $(f_1, f_2) : (c, c) \to (c_1, c_2)$ of \mathbf{C}^2 , there is a *unique* arrow $f : c \to c_1 \times c_2$ such that

$$(c,c) \xrightarrow{(f,f)} (c_1 \times c_2, c_1 \times c_2)$$

$$\downarrow^{(\pi_1,\pi_2)}$$

$$(c_1,c_2)$$

commutes.

If the object $c_1 \times c_2$ and the arrows $\pi_1 : c_1 \times c_2 \to c_1$ and $\pi_2 : c_1 \times c_2 \to c_2$ exist in **C** then we say that $c_1 \times c_2$ is the *product* of c_1 and c_2 ; π_1 and π_2 are known as the *projections* (from $c_1 \times c_2$) and f as the *pairing* of f_1 and f_2 .

^{*}We have exploited the isomorphism $\mathbf{C} \times \mathbf{C} \cong \mathbf{C}^2$, between the product of \mathbf{C} with itself and the functor category from the discrete category 2, in order to have a more elementary description of the objects and arrows of \mathbf{C}^2 as pairs of objects and pairs of arrows of \mathbf{C} .

Pull-backs and push-outs More generally, consider the category Λ with three objects and two non-identity arrows:

The category \mathbf{C}^{\wedge} has *spans*, *i.e.* diagrams of the form $c_{\bullet} \xleftarrow{f_{\ell}} c_{\star} \xrightarrow{f_{r}} c_{\circ}$ in \mathbf{C} , as objects and triples $\langle f_{\star}, f_{\bullet}, f_{\circ} \rangle$ of arrows of \mathbf{C} satisfying

as arrows.

The category of *co-spans* of **C**, *i.e.* diagrams of the form $c_{\bullet} \xrightarrow{f_{\ell}o_{P}} c_{\star} \xleftarrow{f_{\tau}o_{P}} c_{\circ}$ in **C**, is defined as **C**^V where $V := \Lambda^{op}$.

A terminal arrow from $\Delta_{\mathbf{V}} : \mathbf{C} \to \mathbf{C}^{\mathbf{V}}$ to the co-span $c_2 \xrightarrow{f_{24}} c_4 \xleftarrow{f_{34}} c_3$ is a *pull-back* of the co-span. Concretely, this consists of an object c_1 and arrows $f_{1i} : c_1 \to c_i$ [for i = 2, 3, 4] such that $f_{24} \circ f_{12} = f_{14} = f_{34} \circ f_{13}$, *i.e.* a span making the resulting square commute which additionally satisfies the universal property that any other span making the square commute factors uniquely through it. If c_4 is a terminal object, this degenerates to the product of c_2 and c_3 .

Dually, an initial arrow from the span $c_2 \xleftarrow{f_{12}} c_1 \xrightarrow{f_{13}} c_3$ to Δ_{\wedge} is a *push-out* from the span. If c_1 is an initial object, this defines a *co-product* of c_2 and c_3 : an object $c_2 + c_3$ of **C** and *injections* $\iota_2 : c_2 \to c_2 + c_3$ and $\iota_3 : c_3 \to c_2 + c_3$ in **C** such that any pair of arrows $f_2 : c_2 \to c$ and $f_3 : c_3 \to c$ factorizes uniquely through the injections via their *co-pairing* $[f_2, f_3] : c_2 + c_3 \to c$.

Suppose we have commuting squares

where, as indicated, the right-hand inner square is a pull-back. It follows that the left-hand inner square is a pull-back if, and only if, the outer rectangle is a pull-back. This is called the *pasting lemma* for pull-backs.

2.4 Monos and pull-backs

An arrow $f: c \to c'$ is a *mono* iff, for any pair of parallel arrows $g_1, g_2: c'' \to c$, if $f \circ g_1 = f \circ g_2$ then $g_1 = g_2$, *i.e.* f is post-cancellable. We write $f: c \to c'$ to specify that f is a mono. The arrow $f: c \to c'$ is a mono if, and only if,

is a pull-back: given $f_1, f_2 : c'' \to c$ where $f \circ f_1 = f \circ f_2$, we have a unique $f' : c'' \to c$ such that $f_1 = 1_c \circ f' = f' = 1_c \circ f' = f_2$; and, for any $f_1, f_2 : c'' \to c$ such that $f \circ f_1 = f \circ f_2$, we have that $f_1 = f_2$ which defines the unique arrow that makes the commuting square $f \circ 1_c = f \circ 1_c$ a pull-back.

If $f : c \to c'$ and $f' : c' \to c''$ then $f' \circ f$ is a mono: if $g_1, g_2 : c''' \to c$ satisfy $(f' \circ f) \circ g_1 = (f' \circ f) \circ g_2$ then $f \circ g_1, f \circ g_2 : c''' \to c'$ and $f \circ g_1 = f \circ g_2$, since f' is a mono, whereupon $g_1 = g_2$ since f is a mono.

If $f: c \to c'$, $f_1: c \to c''$ and $f_2: c'' \to c'$ satisfy $f = f_2 \circ f_1$ then f_1 is a mono: if $g_1, g_2: c''' \to c$ satisfy $f_1 \circ g_1 = f_1 \circ g_2$ then $f_2 \circ (f_1 \circ g_1) = f_2 \circ (f_1 \circ g_2)$, whereupon $g_1 = g_2$ since f is a mono.

Monos are preserved by pull-backs in the following sense: given a co-span $f: c' \to c$ and $g: c'' \to c$ such that the span $f': c''' \to c''$ and $g': c''' \to c'$ is a pull-back thereof, it follows that g' is a mono. To see this, suppose that $h_1, h_2: c''' \to c'''$ such that $g' \circ h_1 = g' \circ h_2$; then $f \circ (g' \circ h_1) = f \circ (g' \circ h_2)$ and so $f' \circ h_1 = f' \circ h_2$ since the square commutes and g is a mono. Moreover, the span $g' \circ h_1: c'''' \to c''$ and $f' \circ h_2: c'''' \to c''$ makes the square commute; so there is a unique $h: c'''' \to c'''$ such that $g' \circ h = g' \circ h_1$ and $f' \circ h = f' \circ h_2$. But both h_1 and h_2 satisfy these conditions on h, so $h_1 = h_2$.

An arrow $f : c' \to c$ of **C** is an *epi* iff $f^{op} : c \to c'$ is a mono in \mathbf{C}^{op} . An epi is thus pre-cancellable. We write $f : c' \to c$ to specify that f is an epi. By definition, epis are preserved by push-outs in the dual of the preceding sense.

Chapter 3

Category theory III

Adjoint functors, ...

3.1 Adjoint functors

Let $F : \mathbf{C} \to \mathbf{C}'$ be a functor and suppose that, for *every* object c' of \mathbf{C}' , we have an object c := Gc' and a given terminal arrow $\varepsilon_{c'} : Fc \to c'$.

We extend the object mapping G to a functor $G : \mathbf{C}' \to \mathbf{C}$ by sending each arrow $f' : c'_1 \to c'_2$ of \mathbf{C}' to the unique arrow $f : c_1 \to c_2$ of \mathbf{C} [where $c_1 := Gc'_1$ and $c_2 := Gc'_2$] such that

commutes, *i.e.* $Gf' := (f' \circ \varepsilon_{c'_1})^{\flat}$.

This is indeed a functor since (i) $1'_{c'}: c' \to c'$ is sent to the unique arrow $f: c \to c$ such that $\varepsilon_{c'} = \varepsilon_{c'} \circ Ff$, so $f = 1_c$ as F is a functor; and (ii) for $f'_1: c'_1 \to c'_2$ and $f'_2: c'_2 \to c'_3$, there is a unique arrow $G(f'_2 \circ f'_1) := g: c_1 \to c_3$ such that $(f'_2 \circ f'_1) \circ \varepsilon_{c'_1} = \varepsilon_{c'_3} \circ Fg$; and unique arrows $Gf'_1: = g_1: c_1 \to c_2$ and $Gf'_2: = g_2: c_2 \to c_3$ such that $f'_1 \circ \varepsilon_{c'_1} = \varepsilon_{c'_2} \circ Fg_1$ and $f'_2 \circ \varepsilon_{c'_2} = \varepsilon_{c'_3} \circ Fg_2$; so $\varepsilon_{c'_3} \circ F(g_2 \circ g_1) = \varepsilon_{c'_3} \circ Fg_2 \circ Fg_1 = f'_2 \circ \varepsilon_{c'_2} \circ Fg_1 = f'_2 \circ f'_1 \circ \varepsilon_{c'_1}$, *i.e.* $g = g_2 \circ g_1$ as required. [Draw the diagrams!]

We say that F is *left adjoint* to G; note that F does not determine G without the additional data of the terminal arrows $\varepsilon_{c'}$.

The fact that G is a functor means that the terminal arrows $\varepsilon_{c'}$ are in fact the co-ordinates of a natural transformation $\varepsilon : F \circ G \to 1_{\mathbf{C}'}$: given an arrow $f' : c'_1 \to c'_2$ of \mathbf{C}' , the required naturality square

is simply the above triangle. The natural transformation ε is called the *co-unit* of the adjunction, a remarkably confusing terminology [from universal algebra] since it is induced by *terminal*, not *initial*, properties.

Given an object c of \mathbf{C} , define $\eta_c : c \to (G \circ F)c$ to be the unique arrow of \mathbf{C} such that

commutes, *i.e.* $\eta_c := 1_{Fc}^{\prime\flat}$. Given $g' : Fc \to c'$, we have that $F(Gg' \circ \eta_c) = FGg' \circ F\eta_c$, since F is a functor, and $\varepsilon_{c'} \circ FGg' = g' \circ \varepsilon_{Fc}$, since ε is a natural transformation; therefore $\varepsilon_{c'} \circ F(Gg' \circ \eta_c) = g' \circ (\varepsilon_{Fc} \circ F\eta_c) = g'$ which we can rephrase as $g'^{\flat} = Gg' \circ \eta_c$.

If $f: c \to Gc'$ is an arrow of **C**, its left adjunct $f^{\sharp} := \varepsilon_{c'} \circ Ff$ factors, by definition, through Ff so that $f = f^{\sharp\flat} = Gf^{\sharp} \circ \eta_c$, *i.e.* f factors through Gf^{\sharp} . If another $g': Fc \to c'$ satisfies $f = Gg' \circ \eta_c$ then $g'^{\flat} = Gg' \circ \eta_c = f = f^{\sharp\flat}$ and so $f^{\sharp} = g'$. This establishes that η_c is an initial arrow from c to G.

Moreover, given an arrow $f: c_1 \to c_2$ of **C**, the left adjunct $(\eta_{c_2} \circ f)^{\sharp} := \varepsilon_{Fc_2} \circ F(\eta_{c_2} \circ f) = \varepsilon_{Fc_2} \circ F\eta_{c_2} \circ Ff = Ff$ so that $Ff \circ \eta_{c_1} = \eta_{c_2} \circ f$, *i.e.* η is a natural transformation.

Finally, the left adjunct $1_{Gc'}^{\sharp} = \varepsilon_{c'}$ so that $G\varepsilon_{c'} \circ \eta_{Gc'} = 1_{Gc'}$; this is the so-called *triangle identity* for η :

Let us recap: starting from a functor $F : \mathbf{C} \to \mathbf{C'}$ and a family of terminal arrows $\varepsilon_{c'}$ (in $\mathbf{C'}$, indexed by the objects of $\mathbf{C'}$), we can define (i) a functor $G : \mathbf{C'} \to \mathbf{C}$ for which $\varepsilon : F \circ G \to \mathbf{1}_{\mathbf{C'}}$ becomes a natural transformation; and (ii) a family of initial arrows η_c (in \mathbf{C} , indexed by the objects of \mathbf{C}) that form a natural transformation $\eta : \mathbf{1}_{\mathbf{C}} \to G \circ F$ that satisfies the triangle identities: one by definition; and the other as shown just above.

Recall that the left adjunct $f^{\sharp} : Fc \to c'$ of an arrow $f : c \to Gc'$ of **C** is defined to be $f^{\sharp} := \varepsilon_{c'} \circ Ff$. The induced mapping from $\hom_{\mathbf{C}'}(Fc, c')$ to $\hom_{\mathbf{C}}(c, Gc')$ is (i) surjective, since every $f : c \to Gc'$ gives rise to some left adjunct; and (ii) injective, since $\varepsilon_{c'}$ being terminal means that f^{\sharp} is f's unique left adjunct.

This bijection $\phi_{c,c'}^{-1}$: hom_C $(c,Gc') \cong hom_{C'}(Fc,c')$ is 'natural' in the sense that, given $g: c_0 \to c, \phi_{c_0,c'}^{-1}(f \circ g) := \varepsilon_{c'} \circ F(f \circ g) = \varepsilon_{c'} \circ Ff \circ Fg =:$ $\phi_{c,c'}^{-1}(f) \circ Fg$; and, given $g': c' \to c'_0, \phi_{c,c'_0}^{-1}(Gg' \circ f) := \varepsilon_{c'_0} \circ F(Gg' \circ f) =$ $\varepsilon_{c'_0} \circ FGg' \circ Ff = g \circ \varepsilon_{c'} \circ Ff =: g \circ \phi^{-1}(f).$

If **C** and **C'** are locally small categories, this gives us a *bona fide* natural isomorphism $\phi_{c,c'}$: hom_{C'}(*Fc*, *c'*) \cong hom_C(*c*, *Gc'*) in **Set** with naturality in *c* [with respect to $g: c_0 \to c$]

$$\begin{array}{c|c} \hom_{\mathbf{C}'}(Fc,c') \xrightarrow{\phi_{c,c'}} \hom_{\mathbf{C}}(c,Gc') \\ & & \downarrow^{\lambda f.f \circ g} \\ & & \downarrow^{\lambda f.f \circ g} \\ & & \downarrow^{\lambda f.f \circ g} \\ & & & \downarrow^{\lambda f.f \circ g} \\ & & & \downarrow^{\lambda f.f \circ g} \end{array}$$

and naturality in c' [with respect to $g': c' \to c'_0$]

$$\begin{array}{c|c} \hom_{\mathbf{C}'}(Fc,c') \xrightarrow{\phi_{c,c'}} \hom_{\mathbf{C}}(c,Gc') \\ & & \downarrow^{\lambda f.Gg' \circ f} \\ & & \downarrow^{\lambda f.Gg' \circ f} \\ & & \downarrow^{\lambda f.Gg' \circ f} \\ & & & \downarrow^{\lambda f.Gg' \circ f} \\ & & & & \downarrow^{\lambda f.Gg' \circ f} \end{array}$$

dually to the above.

Note how the terminal arrows $\varepsilon_{c'}$ allow a generalization of the case, found in *equivalences* of categories, where F being a fully faithful functor induces a bijection $\hom_{\mathbf{C}}(c_1, c_2) \cong \hom_{\mathbf{C}'}(Fc_1, Fc_2)$. In the case of an adjunction, despite the lack of the assumption that F be full and faithful, we obtain our bijection by virtue of the universal property of $\varepsilon_{c'}$.