Notes on categories
incomplete and never to be finished

Russ Harmer
CNRS & ENS Lyon
Chapter 1

Category theory I

Categories, functors and natural transformations.

1.1 Categories

A category \(\mathcal{C} \) consists of a class \(\mathcal{O}_\mathcal{C} \) of unstructured objects and a class \(\mathcal{A}_\mathcal{C} \) of arrows of the form \(f : c \rightarrow c' \) where \(f \) is our name for the arrow and \(c \) and \(c' \) are objects; we write \(\text{dom} f \) for \(c \) and \(\text{codom} f \) for \(c' \). We require there to be, for every object \(c \), an identity arrow \(1_c : c \rightarrow c \) and, for all composable arrows \(f : c \rightarrow c' \) and \(f' : c' \rightarrow c'' \), i.e. where \(\text{codom} f = \text{dom} f' \), a composite arrow \(f' \circ f : c \rightarrow c'' \) satisfying \(f \circ 1_c = f = 1_{c'} \circ f \) and, for all arrows \(f'' : c'' \rightarrow c' \), \((f'' \circ f') \circ f = f'' \circ (f' \circ f) \). The operation \(\circ \) is the composition law of \(\mathcal{C} \); the two requirements are the identity and the associativity properties.

An arrow \(f : c \rightarrow c' \) is an isomorphism iff, for some \(f' : c' \rightarrow c \), \(f' \circ f = 1_c \) and \(f \circ f' = 1_{c'} \). If \(f' \) exists, it is unique since, for any other candidate \(f'' : c' \rightarrow c \), \(f'' = f'' \circ f \circ f' = f' \). We then say that \(f \) is invertible, or is an isomorphism, and define the operation \(f^{-1} := f' \); we also say that the objects \(c \) and \(c' \) are isomorphic [in the category \(\mathcal{C} \)], written \(c \cong c' \) [or \(f : c \cong c' \) if we wish to stress the specific witness \(f \)].

A subcategory \(\mathcal{C}' \) of \(\mathcal{C} \) consists of a subclass \(\mathcal{O}_\mathcal{C}' \) of \(\mathcal{O}_\mathcal{C} \) and a subclass \(\mathcal{A}_\mathcal{C}' \) of \(\mathcal{A}_\mathcal{C} \) such that, for all arrows \(f \) in \(\mathcal{A}_\mathcal{C}' \), \(\text{dom} f \) and \(\text{codom} f \) are both in \(\mathcal{O}_\mathcal{C}' \), for all objects \(c \) in \(\mathcal{O}_\mathcal{C}' \), \(\mathcal{A}_\mathcal{C}' \) contains \(1_c \) and, for all arrows \(f : c \rightarrow c' \) and \(f' : c' \rightarrow c'' \) in \(\mathcal{A}_\mathcal{C}' \), their composite \(f' \circ f \) is also in \(\mathcal{A}_\mathcal{C}' \). The identities and composition law of \(\mathcal{C}' \) are inherited from \(\mathcal{C} \), i.e. \(1_c' := 1_c \), for all \(c \) in \(\mathcal{O}_\mathcal{C}' \), and \(f' \circ f := f' \circ f \), for all \(f : c \rightarrow c' \) and \(f' : c' \rightarrow c'' \) in \(\mathcal{A}_\mathcal{C}' \).
The isomorphisms of \(C \) form a subcategory: if \(f : c \cong c' \) and \(f' : c' \cong c'' \) then \(f' \circ f : c \cong c'' \) since, setting \((f' \circ f)^{-1} := f^{-1} \circ f'^{-1}, \) we have \((f' \circ f)^{-1} \circ (f' \circ f) = f^{-1} \circ (f'^{-1} \circ f' \circ f) \circ f = 1_c \) and, similarly, \((f' \circ f) \circ (f^{-1} \circ f'^{-1}) = 1_{c''}. \)

‘The’ category generally known as \(\textbf{Set} \) has all sets as objects and all total functions between them as arrows [where ‘all’ depends on your choice of set theory].

An arrow \(f : c \to c' \) of \(\textbf{Set} \) is an isomorphism if, and only if, \(f \) [viewed as a set-theoretic function] is a bijection; so, in particular, \(c \) and \(c' \) [viewed as sets] are isomorphic.

The category \(C \) is \textit{small} iff its class of arrows is a set; its collection of objects is then necessarily also a set. A category where all the arrows are identity arrows is called \textit{discrete}. A small discrete category is a set.

The category \(C \) is \textit{locally small} iff, for all pairs of objects \(c \) and \(c' \), the class \(\text{hom}(c, c') \) of all arrows \(f : c \to c' \) is an object of \(\textbf{Set} \), \textit{i.e.} actually a set, not a class.

A small category with one object, \textit{i.e.} where all arrows are composable, is a \textit{monoid}. A monoid where all arrows are invertible is a \textit{group}. A small category where all arrows are invertible is a \textit{groupoid}.

More generally, if \(C \) is a locally small category containing objects \(c \) and \(c' \), we define \(\text{Iso}(c, c') \) to be the set of all isomorphisms \(f : c \cong c' \) and write \(\text{Aut}(c) \) for \(\text{Iso}(c, c) \). Given \(f \in \text{Iso}(c, c') \), define a total function from \(g \in \text{Aut}(c) \) to \(\text{Iso}(c, c') \) by \(g \mapsto f \circ g \). This is an isomorphism in \(\textbf{Set} \) witnessed by the total function from \(f' \in \text{Iso}(c, c') \) to \(\text{Aut}(c) \) defined as \(f' \mapsto f'^{-1} \circ f' \); clearly \(g \mapsto f'^{-1} \circ (f \circ g) = g \) and \(f' \mapsto f \circ (f'^{-1} \circ f') = f' \). So, provided that \(c \cong c' \), there are always exactly as many automorphisms of \(c \) (or indeed \(c' \)) as there are witnesses of the isomorphism of \(c \) and \(c' \).

The category of groups and group homomorphisms is called \(\textbf{Grp} \); that of graphs and graph homomorphisms is called \(\textbf{Grph} \).

The \textit{opposite} category \(C^{\text{op}} \) of the category \(C \) is defined to have the same objects as \(C \) and the ‘same’ arrows as \(C \) but going in the other direction: \(f^{\text{op}} : c \to c' \) is an arrow of \(C^{\text{op}} \) iff \(f : c' \to c \) is an arrow of \(C \). Concomitantly, \(f^{\text{op}} \circ f'^{\text{op}} := (f \circ f')^{\text{op}} \) and \(1_c^{\text{op}} := 1_{c^{\text{op}}} \).

The \textit{product category} \(C_1 \times C_2 \) of the categories \(C_1 \) and \(C_2 \) has as objects all pairs \(\langle c_1, c_2 \rangle \), where \(c_1 \) is an object of \(C_1 \) and \(c_2 \) is an object of \(C_2 \), and as arrows all pairs \(\langle f_1, f_2 \rangle : \langle c_1, c_2 \rangle \to \langle c'_1, c'_2 \rangle \), where \(f_1 : c_1 \to c'_1 \) is an arrow of \(C_1 \) and \(f_2 : c_2 \to c'_2 \) is an arrow of \(C_2 \). Concomitantly, composable arrows \(\langle f_1, f_2 \rangle \) and \(\langle f'_1, f'_2 \rangle \) are composed component-wise, \textit{i.e.} \(\langle f'_1, f'_2 \rangle \circ_{1 \times 2} \langle f_1, f_2 \rangle := \langle f'_1 \circ f_1, f'_2 \circ f_2 \rangle \), and \(1_{\langle c_1, c_2 \rangle}^{1 \times 2} := \langle 1_{c_1}, 1_{c_2} \rangle \).
1.2 Functors

A functor F from the category C to the category C' consists of two mappings [one sending c in O_C to Fc in $O_{C'}$ and the other sending $f : c \to c'$ in A_C to $Ff : Fc \to Fc'$ in $A_{C'}$] satisfying, for all objects c of C, $F1_c = 1'_{Fc}$ and, for all arrows $f : c \to c'$ and $f' : c' \to c''$ of C, $F(f' \circ f) = Ff' \circ Ff$.

A functor from a monoid [viewed as the category C] to a second monoid [viewed as the category C'] is a standard monoid homomorphism. Likewise for groups and groupoids.

If the arrow $f : c \to c'$ of C is invertible then $(Ff)^{-1} := Ff^{-1}$ inverts $Ff : Fc \to Fc'$ in C' since $Ff^{-1} \circ Ff = F(f^{-1} \circ f) = F1c = 1'_{Fc}$ and $Ff \circ Ff^{-1} = F(f \circ f^{-1}) = F1_{c'}$.

An alternative possible definition of functor would specify only the arrow mapping: any mapping F from the arrows of C to the arrows of C' such that, for all arrows $f_1 : c_1 \to c'_1$ and $f_2 : c_2 \to c'_2$ of C, $dom f_1 = dom Ff_1$, $codom f_1 = codom Ff_1$, $dom f_2 = dom Ff_2$, and $codom f_2 = codom Ff_2$ immediately induces a functor; the induced object mapping can be defined as $Fc := c'$ iff $F1_c = 1'_{Fc}$.

A third (and final) possible definition of functor is as a family of functions, $F_{c,c'} : \text{hom}(c,c') \to \text{hom}(Fc,Fc')$, indexed by all pairs of objects of C.

The functor $F : C \to C'$ is (i) faithful iff, for every pair c,c' of objects of C, $F_{c,c'}$ is injective; (ii) full iff, for every pair c,c' of objects of C, $F_{c,c'}$ is surjective; and (iii) essentially surjective iff, for every object c' of C', there is some object c of C such that $Fc \cong c'$. A full and faithful functor is sometimes called fully faithful.

If C' is a subcategory of C, the inclusion functor $I : C' \to C$ sends each object and arrow of C' to ‘itself’ in C. This functor is always faithful. If it is full, we say that C' is a full subcategory of C; a full subcategory is therefore uniquely determined by its subclass $O_{C'}$ of objects.

A category C is concrete iff there is a faithful functor $U : C \to \text{Set}$.

A locally small category C induces a hom functor $\text{hom}_C : C^{op} \times C \to \text{Set}$ where $\langle c,c' \rangle \mapsto \text{hom}(c,c')$ and $\langle f_1^{op}, f_2 \rangle : \langle c_1, c_2 \rangle \to \langle c'_1, c'_2 \rangle \mapsto (f : c_1 \to c_2 \mapsto f_2 \circ f \circ f_1) : \text{hom}(c_1, c_2) \to \text{hom}(c'_1, c'_2)$:

- Clearly, $\text{hom}_C 1_{\langle c_1,c_2 \rangle} = (f : c_1 \to c_2 \mapsto 1_{c_2} \circ f \circ 1_{c_1}) = 1_{\text{hom}_{\langle c_1,c_2 \rangle}}$.
- Moreover, given additionally $\langle f_1^{op}, f_2 \rangle : \langle c_1', c_2' \rangle \to \langle c'_1, c'_2 \rangle$, we have that $\text{hom}_C(\langle f_1^{op}, f_2 \rangle \circ \langle f_1^{op}, f_2 \rangle) = (f : c_1 \to c_2 \mapsto (f_2 \circ f_2) \circ f \circ (f_1 \circ f_1)) = (f : c_1 \to c_2 \mapsto f_2 \circ (f_2 \circ f \circ f_1) \circ f_1) = \text{hom}_C(\langle f_1^{op}, f_2 \rangle \circ \text{hom}_C(\langle f_1^{op}, f_2 \rangle)$.
The functors $F : C \to C'$ and $F' : C' \to C''$ can be composed by defining $c \mapsto F'(Fc)$, for all objects c of C, and $f \mapsto F'(Ff)$, for all arrows $f : c \to c'$ of C. This yields a functor $F' \circ F : C \to C''$ since (i) $(F' \circ F)c = F'1_{Fc} = 1_{(F'F)c}$; and, given $f' : c' \to c''$ of C, (ii) $(F' \circ F)(f' \circ f) = F'(F(f' \circ f)) = F'(Ff') \circ F'(Ff) = (F' \circ F)f' \circ (F' \circ F)f$.

The identity functor $1_C : C \to C$ sends every object and arrow to itself; clearly $F1_C = F = 1_{C'}F$. Moreover, given a third functor $F'' : C'' \to C'''$, clearly $((F'' \circ F') \circ F) = (F'' \circ (F' \circ F))$. So we have a category, known as \mathbf{Cat}, with objects all small categories and arrows all functors between them; two small categories are isomorphic iff they are isomorphic in \mathbf{Cat}.

1.3 Natural transformations

A natural transformation $\alpha : F \to F'$ from the functor $F : C \to C'$ to the functor $F' : C \to C'$ is a family of arrows $\alpha_c :Fc \to F'c$ of C', indexed by the objects of C, such that

$$
\begin{array}{ccc}
Fc & \xrightarrow{\alpha_c} & F'c \\
Ff & \downarrow & F'f \\
Fc' & \xrightarrow{\alpha_{c'}} & F'c'
\end{array}
$$

commutes for all arrows $f : c \to c'$ of C.

The natural transformation $\alpha : F \to F'$ is a natural isomorphism iff, for every object c of C, the arrow $\alpha_c :Fc \to F'c$ is an isomorphism. This is equivalent to saying that there is a natural transformation $\alpha^{-1} : F' \to F$ satisfying, for all objects c of C, $\alpha^{-1}_c \circ \alpha_c = 1_{Fc}$ and $\alpha_c \circ' \alpha'_c = 1_{F'c}$.

Given a further natural transformation $\alpha' : F' \to F''$, where $F'' : C \to C'$ is a third functor, the vertical composite of α and α', defined component-wise as $(\alpha' \bullet \alpha)_c := \alpha'_c \circ' \alpha_c$, is clearly a natural transformation $\alpha' \bullet \alpha : F \to F''$. The identity natural transformation $1_F : F \to F$, defined as $(1_F)_c := 1_{Fc}$, satisfies $\alpha \bullet 1_F = \alpha = 1_{F'} \bullet \alpha$ and, given a fourth functor F''' and a third natural transformation $\alpha'' : F'' \to F'''$, we have $(\alpha'' \bullet \alpha') \bullet \alpha = \alpha'' \bullet (\alpha' \bullet \alpha)$. Provided no ‘problems of size’ arise, we thus obtain a functor category $C^{C'}$ with objects all functors from C to C' and arrows all natural transformations between these functors; it is sufficient that C be a small category.

Let 1 and 2 be the (small) discrete categories with one and two objects respectively. Clearly $C^1 \cong C$ and $C^2 \cong C \times C$ in \mathbf{Cat}.

4
The categories C and C' are equivalent iff there exist functors $F : C \to C'$
and $G : C' \to C$ and natural isomorphisms $\varepsilon : FG \cong 1_{C'}$ and $\eta : 1_C \cong GF$.

Since $\varepsilon_{c'} : F(Gc') \cong c'$, for all c' in $O_{C'}$, the functor F is essentially
surjective. Moreover, for any arrow $f : c_1 \to c_2$ of C, $f = \eta_{c_2} \circ GFf \circ \eta_{c_1}^{-1}$ and
$GFf = \eta_{c_2}^{-1} \circ f \circ \eta_{c_1}$, so that $\hom(c_1, c_2)$ is in bijection with $\hom(GFc_1, GFc_2)$.

[If C is locally small, there is therefore an isomorphism in \textbf{Set} witnessing
$\hom(c_1, c_2) \cong \hom(GFc_1, GFc_2)$.] So F_{c_1, c_2} must be injective and G_{Fc_1,Fc_2}
must be surjective, for all pairs of objects c_1, c_2, i.e. F is faithful and G is
full. The symmetric argument establishes that G is essentially surjective and
faithful and that F is full.

The functor $F : C \to C'$ is a weak equivalence iff, for some $G : C' \to C$,
there exist natural isomorphisms $\epsilon : FG \cong 1_{C'}$ and $\eta : 1_C \cong GF$. If F is
a weak equivalence then, from the above, we know that it is fully faithful
and essentially surjective; the converse is also true—with the caveat that it
depends on the axiom of choice:

Suppose that the functor $F : C \to C'$ is fully faithful and essentially
surjective. By essential surjectivity, for any c' in $O_{C'}$, there is at least one
c in O_C such that $Fc \cong c'$; an application of the axiom of choice then picks
out a choice of c, for each c' in $O_{C'}$, allowing us to define $Gc' := c$.

1.4 Cat as a 2-category

Given functors $F'_1, F'_2 : C' \to C''$, a natural transformation $\alpha' : F'_1 \to F'_2$ and
functors $F : C \to C'$ and $F'' : C'' \to C'''$, we define, for each object c of C, an
arrow $(F'' \circ \alpha' \circ F)_c := F''(\alpha'_F_c)$ of C'''. This defines a natural transformation
$F'' \circ \alpha' \circ F : F'' \circ F'_1 \circ F \to F'' \circ F'_2 \circ F$ since, for any $f : c \to c'$ in C,

$$F''(F'_1(Fc)) \xrightarrow{F''(\alpha'_F_c)} F''(F'_2(Fc))$$

commutes (because α' is a natural transformation and F'' is a functor).

This hybrid composition of two functors and a natural transformation is
usually called whiskering. It is a special case of the horizontal composition of
natural transformations if we replace the functors F and F'' by the identity
natural transformations $1_F : F \to F$ and $1_{F''} : F'' \to F''$ respectively:
Given functors $F_1, F_2 : C \to C'$ and $F'_1, F'_2 : C' \to C''$ together with natural transformations $\alpha : F_1 \to F_2$ and $\alpha' : F'_1 \to F'_2$, the horizontal composite $\alpha' \circ \alpha : F'_1 \circ F_1 \to F'_2 \circ F_2$ of α and α' is defined, for each object c of C, to be the diagonal of

$$
\begin{align*}
F'_1(F_1c) & \xrightarrow{\alpha'_{F_1c}} F'_2(F_1c) \\
F'_1(F_2c) & \xrightarrow{\alpha'_{F_2c}} F'_2(F_2c)
\end{align*}
$$

(this square necessarily commutes because α' is a natural transformation). This defines a natural transformation since, for any arrow $f : c \to c'$ in C, the two internal squares of

$$
\begin{array}{ccc}
F'_1(F_1c) & \xrightarrow{\alpha'_{F_1c}} & F'_2(F_1c) \\
\downarrow F'_1(F_1f) & & \downarrow F'_2(F_1f) \\
F'_1(F_1c') & \xrightarrow{\alpha'_{F_1c'}} & F'_2(F_1c')
\end{array}
$$

commute (because α' and α are natural transformations and F'_2 is a functor) and so the outer square commutes as required.

Horizontal composition has identities, specifically the identity natural transformations $1_{C'}$ and $1_{C''}$ for the identity functors $1_{C'}$ and $1_{C''}$. (Note that this differs from the identities for vertical composition.) It is also (strictly) associative as all the faces of the cube below commute.
A 2-category \mathbf{C} consists of a class $\mathcal{O}_\mathbf{C}$ of objects, also called 0-cells, where (i) for each ordered pair c, c' of 0-cells, there is a category $\text{hom}_{\mathbf{C}}(c, c')$ whose objects and arrows are called 1-cells and 2-cells respectively; the composition of 2-cells $\alpha_1 : f_1 \to f_2$ and $\alpha_2 : f_2 \to f_3$ is called vertical composition and is denoted by $\alpha_2 \circ \alpha_1$; (ii) for each 0-cell c, there is a functor $I_c : \mathbf{1} \to \text{hom}_{\mathbf{C}}(c, c)$; and (iii) for each ordered triple c, c', c'' of 0-cells, there is a functor $C_{c,c',c''} : \text{hom}_{\mathbf{C}}(c', c'') \times \text{hom}_{\mathbf{C}}(c, c') \to \text{hom}_{\mathbf{C}}(c, c'')$.

These data will be required to satisfy further conditions but let us first unpack what they mean: (i) the 1-cells of $\text{hom}_{\mathbf{C}}(c, c')$ are the ‘arrows’ of \mathbf{C} from c to c'; the 2-cells of $\text{hom}_{\mathbf{C}}(c, c')$ are ‘arrows between arrows’; (ii) I_c picks out a 1-cell 1 and its identity arrow 1_c in $\text{hom}_{\mathbf{C}}(c, c)$; this 1-cell will be the ‘identity arrow’ for c in \mathbf{C}; (iii) $C_{c,c',c''}$ defines the horizontal composition of 1- and 2-cells; its object part takes ‘composable arrows’ $f : c \to c'$ and $f' : c' \to c''$ to $f' \circ f := C_{c,c',c''}(f', f) : c \to c''$; and its arrow part takes 2-cells $\alpha : f_1 \to f_2$ and $\alpha' : f'_1 \to f'_2$ between ‘composable arrows’ $f_1, f_2 : c \to c'$ and $f'_1, f'_2 : c' \to c''$ to $\alpha' \circ \alpha := C_{c,c',c''}(\alpha', \alpha) : f'_1 \circ f_1 \to f'_2 \circ f_2$; and (iv) finally, functoriality of $C_{c,c',c''}$ imposes the interchange law relating the vertical and horizontal compositions of 2-cells $\alpha_1 : f_1 \to f_2$, $\alpha_2 : f_2 \to f_3$, $\alpha'_1 : f'_1 \to f'_2$ and $\alpha'_2 : f'_2 \to f'_3$ between the 1-cells $f_1, f_2, f_3 : c \to c'$ and $f'_1, f'_2, f'_3 : c' \to c''$:

$$(\alpha'_2 \circ \alpha'_1) \circ (\alpha_2 \circ \alpha_1) = (\alpha'_2 \circ \alpha_2) \circ (\alpha'_1 \circ \alpha_1).$$

We complete the definition of 2-category by asking that (i) for any ordered quadruple of 0-cells c, c', c'', c''' together with 1-cells $f_1, f_2 : c \to c'$, $f'_1, f'_2 : c' \to c''$ and 2-cells $\alpha : f_1 \to f_2$, $\alpha' : f'_1 \to f'_2$ and $\alpha'' : c' \to c'''$, we have $f''_1 \circ (f'_1 \circ f_1) = (f''_1 \circ f'_1) \circ f_1$ (and likewise for f_2, f''_2 and f''_3) and $\alpha'' \circ (\alpha' \circ \alpha) = (\alpha'' \circ \alpha'') \circ \alpha$; and (ii) for any 0-cells c and c' together with 1-cells $f_1, f_2 : c \to c'$ and a 2-cell $\alpha : f_1 \to f_2$, we have $f_1 \circ 1_c = f_1 = 1_{c'} \circ f_1$ (and likewise for f_2) and $\alpha \circ 1_c = \alpha = 1_{c'} \circ \alpha$.

These conditions guarantee that, in accordance with the above intuition, the 0-cells and 1-cells of \mathbf{C} are indeed the objects and the arrows of a category.

The category \mathbf{Cat} can be given the structure of a 2-category by setting $\mathcal{O}_{\mathbf{Cat}}$ to be the class of small categories; then (i) $\text{hom}_{\mathbf{Cat}}(c, c') := c^c$, the functor category from c to c'; (ii) I_c selects the identity functor 1_c on c and its identity natural transformation 1_{1_c}; and (iii) $C_{c,c',c''}(F', F) := F' \circ F$ and $C_{c,c',c''}(\alpha', \alpha) := \alpha' \circ \alpha$, the horizontal composition of natural transformations.

We have already proved above that these data satisfy all the conditions required of a 2-category. Clearly, the induced category of 0-cells and 1-cells is just \mathbf{Cat}. 7
1.5 Equivalences in a 2-category

In a category, we have a notion of isomorphism of objects but not of arrows. In a 2-category, we say that a 2-cell $\alpha : f_1 \to f_2$ is a 2-isomorphism [or just an isomorphism when we can get away with it] of the 1-cells $f_1, f_2 : c \to c'$ iff there exists a 2-cell $\alpha' : f_2 \to f_1$ such that $\alpha' \circ \alpha = 1_{f_1}$ and $\alpha \circ \alpha' = 1_{f_2}$. As α and α' are just isomorphisms in a category, i.e. $\text{hom}(c, c')$, α' is unique and we define $\alpha^{-1} := \alpha'$.

If $\alpha_1 : f_1 \to f_2$ and $\alpha_2 : f_2 \to f_3$ are 2-isomorphisms for $f_1, f_2, f_3 : c \to c'$ then $(\alpha_2 \circ \alpha_1)^{-1} := \alpha_1^{-1} \circ \alpha_2^{-1}$.

If $\alpha : f_1 \to f_2$ and $\alpha' : f_1' \to f_2'$ are 2-isomorphisms for $f_1, f_2 : c \to c'$ and $f_1', f_2' : c' \to c''$ then $(\alpha'^{-1} \circ \alpha^{-1}) \circ (\alpha' \circ \alpha) = (\alpha'^{-1} \circ \alpha') \circ (\alpha^{-1} \circ \alpha) = 1_{f_1'} \circ 1_{f_1} = \text{hom}(f_1, f_2 \circ f_1')$ and $(\alpha' \circ \alpha) \circ (\alpha'^{-1} \circ \alpha^{-1}) = (\alpha' \circ \alpha'^{-1}) \circ (\alpha \circ \alpha^{-1}) = 1_{f_2'} \circ 1_{f_2} = 1_{f_2'} \circ f_2$; so we can define $(\alpha' \circ \alpha)^{-1} := \alpha'^{-1} \circ \alpha^{-1}$ [beware the subtle trap].

The 2-isomorphisms of Cat are precisely natural isomorphisms: clearly, any 2-isomorphism defines a natural isomorphism; conversely, each $\alpha : F_1 c \to F_2 c$ of a natural isomorphism $\alpha : F_1 \to F_2$ [of functors $F_1, F_2 : \text{Cat} \to \text{Cat}$] is invertible, so $\alpha^{-1} \circ \alpha = 1_{F_1 c}$ and $\alpha \circ \alpha^{-1} = 1_{F_2 c}$, i.e. $\alpha' \circ \alpha = 1_{F_1}$ and $\alpha \circ \alpha' = 1_{F_2}$ as required.

An equivalence in a 2-category consists of 1-cells $f : c \to c'$ and $f' : c' \to c$ and 2-isomorphisms $\eta : 1_c \to f' \circ f$ and $\varepsilon : f \circ f' \to 1_c$. An equivalence in Cat is precisely an equivalence of categories as defined previously.

An equivalence is adjoint iff the so-called ‘triangle identities’ hold:

$$
\begin{array}{ccc}
 f' & \xrightarrow{\eta \circ \varepsilon} & f' \\
 1_{f'} \circ f' \circ f & \xrightarrow{\varepsilon \circ 1_f} & f' \\
 f & \xrightarrow{1_{f}} & f \\
\end{array}
$$

If $(f, f', \eta, \varepsilon)$ is an adjoint equivalence then so is $(f', f, \varepsilon^{-1}, \eta^{-1})$: $1_{f'} = 1_{f'} = ((\eta \circ 1_f \circ (1_{f'} \circ \varepsilon))^{-1} = (\eta \circ 1_f \circ (1_{f'} \circ \varepsilon))^{-1} = (\eta \circ 1_f \circ (1_{f'} \circ \varepsilon))^{-1}$; and $1_f = (1_f \circ \eta)^{-1} \circ (\varepsilon \circ 1_f)^{-1} = (1_f \circ \eta^{-1}) \circ (\varepsilon^{-1} \circ 1_f)$.

If $(f, f', \eta, \varepsilon)$ is an equivalence then either triangle identity holds if, and only if, the other one does: ...

If $(f, f', \eta, \varepsilon)$ is an equivalence then there exist $f'' : c' \to c$ and $\varepsilon' : f \circ f'' \to 1_c$ such that $(f, f'', \eta, \varepsilon')$ is an adjoint equivalence: ...
Chapter 2

Category theory II

Diagrams, limits, comma categories, universal arrows.

2.1 Categories of diagrams

A diagram [more properly, a J-diagram] in C is a functor $F : J \to \mathsf{C}$ where J is a small, often even finite, category.

A cone to F is an object c of C together with arrows $\alpha_j : c \to Fj$ of C, where j ranges over the objects of J, such that $Ff \circ \alpha_j = \alpha_{j'}$ for all arrows $f : j \to j'$ of J. A cone is thus a natural transformation from the constant functor $\Delta_c : J \to \mathsf{C}$ [defined by $\Delta_c(j) := c$ for all objects j of J; and $\Delta_c(f : j \to j') := 1_c$ for all arrows f of J] to F.

We call the functor category C^J the category of J-diagrams in C; a cone to F is thus an arrow of C^J of the form $\alpha : \Delta_c \to F$. The category C^J/F of J-diagrams over F is defined to have arrows of C^J of the form $\alpha : G \to F$ [any G] as objects; and arrows of C^J of the form $\beta : G \to G'$, such that

\[
\begin{array}{ccc}
G & \xrightarrow{\beta} & G' \\
\alpha \downarrow & & \downarrow \alpha' \\
F & & F'
\end{array}
\]

commutes, as arrows.

A cone $\nu : \Delta_u \to F$ to F is universal iff, for any cone $\alpha : \Delta_c \to F$, there is a unique arrow $f : c \to u$ of C such that $\nu_j \circ f = \alpha_j$ for all objects j of J.

A universal cone to F, if it exists, is called a limit of [the diagram] F and is unique up to unique isomorphism.
2.2 Comma categories

If $F_1 : C_1 \to C$ and $F_2 : C_2 \to C$ are functors, the \textit{comma category} $F_1 \downarrow F_2$ has, as objects, all triples $(c_1, c_2, f : F_1 c_1 \to F_2 c_2)$ where c_1 and c_2 are objects of C_1 and C_2 respectively and f is an arrow of C; and, as arrows from (c_1, c_2, f) to (c'_1, c'_2, f'), all pairs $(g_1 : c_1 \to c'_1, g_2 : c_2 \to c'_2)$, where g_1 and g_2 are arrows of C_1 and C_2 respectively, such that

$$
\begin{array}{ccc}
F_1 c_1 & \xrightarrow{F_1 g_1} & F_1 c'_1 \\
\downarrow f & & \downarrow f' \\
F_2 c_2 & \xrightarrow{F_2 g_2} & F_2 c'_2
\end{array}
$$

commutes. Given $(g_1 : c_1 \to c'_1, g_2 : c_2 \to c'_2)$ and $(g'_1 : c'_1 \to c''_1, g'_2 : c'_2 \to c''_2)$, their composite is $(g'_1 \circ g_1, g'_2 \circ g_2)$; this is well-defined since F_1 and F_2 are functors and associative because C is a category. The identity arrow for $(c_1, c_2, f : F_1 c_1 \to F_2 c_2)$ is $(1_{c_1}, 1_{c_2})$; this indeed satisfies the identity property since F_1 and F_2 are functors and C is a category.

Comma categories are a very general concept that enable a unification of many otherwise seemingly ad hoc concepts: in the above discussion of limits, we had to define a notion of category of ‘arrows to F’ and, moreover, restrict to ‘arrows from objects of the form Δc’. This can be elegantly presented using comma categories:

If $c : 1 \to C$ is the constant functor selecting the object c in C then $1_C \downarrow c$ is the \textit{slice category} over c, written C/c, of arrows into c. More generally, $F_1 \downarrow c$ is the \textit{category of arrows from F_1 to c}. The \textit{category of cones to [the diagram] F} can therefore be expressed as $\Delta \downarrow F$ where $\Delta : C \to C^J$ sends c to Δc and $f : c \to c'$ to the natural transformation $\Delta f : \Delta c \to \Delta c'$ whose components are all f; and $F : C \to C^J$ is the constant functor selecting F.

2.3 Universal arrows

An object 1 of C is \textit{terminal} iff, for all objects c of C, there is exactly one arrow from c to 1. Dually, an object 0 is \textit{initial} in C iff, for all objects c of C, there is exactly one arrow from 0 to c.

Any singleton set is terminal in Set; the category 1 is terminal in Cat. The empty set is initial in Set; the empty category 0, with no objects, is initial in Cat.
Initial and terminal objects need not be unique but they are always unique up to isomorphism: if \(t \) and \(t' \) are both terminal objects in \(C \), there must be an arrow \(f' : t' \to t \) from \(t' \) to \(t \) and an arrow \(f : t \to t' \) from \(t \) to \(t' \); so \(f' \circ f = 1_t \), the unique arrow from \(t \) to itself, and \(f \circ f' = 1_{t'} \), the unique arrow from \(t' \) to itself. Furthermore, \(t \) and \(t' \) are isomorphic up to a unique isomorphism: \(f' \) and \(f \) are themselves unique since \(t \) and \(t' \) are terminal.

A terminal arrow from a functor \(F : C \to C' \) to an object \(c' \) of \(C' \) is a terminal object in \(F \circ c' \). In other words, a terminal arrow is an object \(c_t \) of \(C \) and an arrow \(f'_t : Fc_t \to c' \) of \(C' \) such that, for any arrow \(f' : Fc \to c' \) of \(C' \), there is a unique arrow \(f : c \to c_t \) of \(C \) such that

\[
\begin{array}{c}
\text{commutes.} \\
\end{array}
\]

An initial arrow from \(c' \) to \(F \) is defined dually. We speak of a universal arrow when we do not care to stress whether it is initial or terminal.

A universal cone [limit] is therefore the particular case of a terminal arrow from a diagonal functor \(\Delta_J : C \to C^J \). An initial arrow to a diagonal functor is called a co-limit.

Products A terminal arrow from \(\Delta_2 : C \to C^2 \) to the object* \((c_1, c_2) \) consists of an object, that we write as \(c_1 \times c_2 \), of \(C \) and an arrow \((\pi_1, \pi_2) : (c_1 \times c_2, c_1 \times c_2) \to (c_1, c_2) \) of \(C^2 \) such that, for any arrow \((f_1, f_2) : (c, c) \to (c_1, c_2) \) of \(C^2 \), there is a unique arrow \(f : c \to c_1 \times c_2 \) such that

\[
\begin{array}{c}
\text{commutes.} \\
\end{array}
\]

If the object \(c_1 \times c_2 \) and the arrows \(\pi_1 : c_1 \times c_2 \to c_1 \) and \(\pi_2 : c_1 \times c_2 \to c_2 \) exist in \(C \) then we say that \(c_1 \times c_2 \) is the product of \(c_1 \) and \(c_2 \); \(\pi_1 \) and \(\pi_2 \) are known as the projections (from \(c_1 \times c_2 \)) and \(f \) as the pairing of \(f_1 \) and \(f_2 \).

*We have exploited the isomorphism \(C \times C \cong C^2 \), between the product of \(C \) with itself and the functor category from the discrete category \(2 \), in order to have a more elementary description of the objects and arrows of \(C^2 \) as pairs of objects and pairs of arrows of \(C \).
Pull-backs and push-outs More generally, consider the category Λ with three objects and two non-identity arrows:

The category \mathcal{C}^Λ has spans, i.e. diagrams of the form $c \xrightarrow{f} c' \xrightarrow{f'} c''$ in \mathcal{C}, as objects and triples $(f, f', f''$) of arrows of \mathcal{C} satisfying $c \xrightarrow{f} c' \xrightarrow{f'} c''$ as arrows.

The category of co-spans of \mathcal{C}, i.e. diagrams of the form $c \xleftarrow{f} c' \xleftarrow{f'} c''$ in \mathcal{C}, is defined as \mathcal{C}^\vee where $\vee := \Lambda^{op}$.

A terminal arrow from $\Delta : \mathcal{C} \rightarrow \mathcal{C}^\vee$ to the co-span $c \xrightarrow{f_{21}} c_2 \xrightarrow{f_{34}} c_3$ is a pull-back of the co-span. Concretely, this consists of an object c_1 and arrows $f_{1i} : c_1 \rightarrow c_i$ [for $i = 2, 3, 4$] such that $f_{21} \circ f_{12} = f_{14} = f_{34} \circ f_{13}$. i.e. a span making the resulting square commute which additionally satisfies the universal property that any other span making the square commute factors uniquely through it. If c_4 is a terminal object, this degenerates to the product of c_2 and c_3.

Dually, an initial arrow from the span $c \xleftarrow{f_{12}} c_2 \xleftarrow{f_{13}} c_3$ to Δ is a push-out from the span. If c_1 is an initial object, this defines a co-product of c_2 and c_3: an object $c_2 + c_3$ of \mathcal{C} and injections $i_2 : c_2 \rightarrow c_2 + c_3$ and $i_3 : c_3 \rightarrow c_2 + c_3$ in \mathcal{C} such that any pair of arrows $f_2 : c_2 \rightarrow c$ and $f_3 : c_3 \rightarrow c$ factorizes uniquely through the injections via their co-pairing $[f_2, f_3] : c_2 + c_3 \rightarrow c$.

Suppose we have commuting squares

where, as indicated, the right-hand inner square is a pull-back. It follows that the left-hand inner square is a pull-back if, and only if, the outer rectangle is a pull-back. This is called the pasting lemma for pull-backs.
2.4 Monos and pull-backs

An arrow \(f : c \to c' \) is a mono iff, for any pair of parallel arrows \(g_1, g_2 : c'' \to c \), if \(f \circ g_1 = f \circ g_2 \), then \(g_1 = g_2 \), i.e. \(f \) is post-cancellable. We write \(f : c \to c' \) to specify that \(f \) is a mono. The arrow \(f : c \to c' \) is a mono if, and only if,

\[
\begin{array}{c}
 c \\
 \downarrow 1_c \\
 f \\
 \downarrow h \\
 c' \\
\end{array}
\]

is a pull-back: given \(f_1, f_2 : c'' \to c \) where \(f \circ f_1 = f \circ f_2 \), we have a unique \(f' : c'' \to c \) such that \(f_1 = 1_c \circ f' = f' = 1_c \circ f' = f_2 \); and, for any \(f_1, f_2 : c'' \to c \) such that \(f \circ f_1 = f \circ f_2 \), we have that \(f_1 = f_2 \) which defines the unique arrow that makes the commuting square \(f \circ 1_c = f \circ 1_c \) a pull-back.

If \(f : c' \to c' \) and \(f' : c' \to c' \) then \(f' \circ f \) is a mono: if \(g_1, g_2 : c'' \to c \) satisfy \((f' \circ f) \circ g_1 = (f' \circ f) \circ g_2 \), then \(f \circ g_1, f \circ g_2 : c'' \to c' \) and \(f \circ g_1 = f \circ g_2 \), since \(f' \) is a mono, whereupon \(g_1 = g_2 \) since \(f \) is a mono.

If \(f : c \to c' \), \(f_1 : c \to c'' \) and \(f_2 : c'' \to c' \) satisfy \(f = f_2 \circ f_1 \) then \(f_1 \) is a mono: if \(g_1, g_2 : c'' \to c \) satisfy \(f_1 \circ g_1 = f_1 \circ g_2 \) then \(f_2 \circ (f_1 \circ g_1) = f_2 \circ (f_1 \circ g_2) \), whereupon \(g_1 = g_2 \) since \(f \) is a mono.

Monos are preserved by pull-backs in the following sense: given a co-span \(f : c' \to c \) and \(g : c'' \to c \) such that the span \(f' : c''' \to c'' \) and \(g' : c''' \to c' \) is a pull-back thereof, it follows that \(g' \) is a mono. To see this, suppose that \(h_1, h_2 : c''' \to c'' \) such that \(g' \circ h_1 = g' \circ h_2 \); then \(f \circ (g' \circ h_1) = f \circ (g' \circ h_2) \) and so \(f' \circ h_1 = f' \circ h_2 \) since the square commutes and \(g \) is a mono. Moreover, the span \(g' \circ h_1 : c''' \to c' \) and \(f' \circ h_2 : c''' \to c' \) makes the square commute; so there is a unique \(h : c''' \to c'' \) such that \(g' \circ h = g \circ h_1 \) and \(f' \circ h = f' \circ h_2 \). But both \(h_1 \) and \(h_2 \) satisfy these conditions on \(h \), so \(h_1 = h_2 \).

An arrow \(f : c' \to c \) of \(C \) is an epi iff \(f^{op} : c \to c' \) is a mono in \(C^{op} \). An epi is thus pre-cancellable. We write \(f : c' \to c \) to specify that \(f \) is an epi. By definition, epis are preserved by push-outs in the dual of the preceding sense.
Chapter 3

Category theory III

Adjoint functors, ...

3.1 Adjoint functors

Let \(F : C \to C' \) be a functor and suppose that, for every object \(c' \) of \(C' \), we have an object \(c := Gc' \) and a given terminal arrow \(\varepsilon_{c'} : Fc \to c' \).

We extend the object mapping \(G \) to a functor \(G : C_0 \to C \) by sending each arrow \(f_0 : c_0 \to c_1 \) of \(C_0 \) to the unique arrow \(f : c_1 \to c_2 \) of \(C \) [where \(c_1 := Gc'_1 \) and \(c_2 := Gc'_2 \)] such that \(Ff_0 \circ \varepsilon_{c_0} = \varepsilon_{c_1} \).

This is indeed a functor since (i) \(1' : c' \to c' \) is sent to the unique arrow \(f : c \to c \) such that \(\varepsilon_{c'} = \varepsilon_{c'} \circ Ff \), so \(f = 1_c \) as \(F \) is a functor; and (ii) for \(f'_1 : c'_1 \to c'_2 \) and \(f'_2 : c'_2 \to c'_3 \), there is a unique arrow \(G(f'_2 \circ f'_1) := g : c_1 \to c_3 \) such that \((f'_2 \circ f'_1) \circ \varepsilon_{c'_1} = \varepsilon_{c'_3} \circ Fg \); and unique arrows \(Gf'_1 := g_1 : c_1 \to c_2 \) and \(Gf'_2 := g_2 : c_2 \to c_3 \) such that \(f'_1 \circ \varepsilon_{c'_1} = \varepsilon_{c'_2} \circ Fg_1 \) and \(f'_2 \circ \varepsilon_{c'_2} = \varepsilon_{c'_3} \circ Fg_2 \); so \(\varepsilon_{c'_3} \circ F(g_2 \circ g_1) = \varepsilon_{c'_3} \circ Fg_2 \circ Fg_1 = f'_2 \circ \varepsilon_{c'_2} \circ Fg_1 = f'_2 \circ f'_1 \circ \varepsilon_{c'_1} \), i.e. \(g = g_2 \circ g_1 \) as required. [Draw the diagrams!]

We say that \(F \) is left adjoint to \(G \); note that \(F \) does not determine \(G \) without the additional data of the terminal arrows \(\varepsilon_{c'} \).
The fact that \(G \) is a functor means that the terminal arrows \(\varepsilon_{c'} \) are in fact the co-ordinates of a natural transformation \(\varepsilon : F \circ G \to 1_{C'} \): given an arrow \(f' : c'_1 \to c'_2 \) of \(C' \), the required naturality square

\[
\begin{array}{ccc}
(F \circ G)c'_1 & \xrightarrow{\varepsilon_{c'_1}} & c'_1 \\
(F \circ G)f' \downarrow & & \downarrow f' \\
(F \circ G)c'_2 & \xrightarrow{\varepsilon_{c'_2}} & c'_2
\end{array}
\]

is simply the above triangle. The natural transformation \(\varepsilon \) is called the co-unit of the adjunction, a remarkably confusing terminology [from universal algebra] since it is induced by terminal, not initial, properties.

Given an object \(c \) of \(C \), define \(\eta_c : c \to (G \circ F)c \) to be the unique arrow of \(C \) such that

\[
\begin{array}{ccc}
Fc & \xrightarrow{1_{Fc}} & Fc \\
F\eta_c \downarrow & & \downarrow \varepsilon_{Fc} \\
(F \circ G \circ F)c & \xrightarrow{\varepsilon_{Fc}} & (F \circ G)c
\end{array}
\]

commutes, i.e. \(\eta_c := 1_{Fc}^\circ \varepsilon_c \). Given \(g' : Fc \to c' \), we have that \(F(Gg' \circ \eta_c) = FGg' \circ F\eta_c \), since \(F \) is a functor, and \(\varepsilon_{c'} \circ FGg' = g' \circ \varepsilon_{Fc} \), since \(\varepsilon \) is a natural transformation; therefore \(\varepsilon_{c'} \circ F(Gg' \circ \eta_c) = g' \circ (\varepsilon_{Fc} \circ F\eta_c) = g' \) which we can rephrase as \(g'^\circ = Gg' \circ \eta_c \).

If \(f : c \to Gc' \) is an arrow of \(C \), its left adjoint \(f^\circ := \varepsilon_{c'} \circ Ff \) factors, by definition, through \(Ff \) so that \(f = f^\circ \circ Ff \), i.e. \(f \) factors through \(Gf^\circ \).
If another \(g' : Fc \to c' \) satisfies \(f = Gg' \circ \eta_c \) then \(g'^\circ = Gg' \circ \eta_c = f = f^\circ \) and so \(f^\circ = g' \). This Establishes that \(\eta_c \) is an initial arrow from \(c \) to \(G \).

Moreover, given an arrow \(f : c_1 \to c_2 \) of \(C \), the left adjoint \((\eta_{c_2} \circ f)^\circ := \varepsilon_{Fc_2} \circ F(\eta_{c_2} \circ f) = \varepsilon_{Fc_2} \circ F\eta_{c_2} \circ Ff = Ff \) so that \(Ff \circ \eta_{c_1} = \eta_{c_2} \circ Ff \), i.e. \(\eta \) is a natural transformation.

Finally, the left adjoint \(1^\circ_{Gc'} = \varepsilon_{c'} \) so that \(G\varepsilon_{c'} \circ \eta_{Gc'} = 1_{Gc'} \); this is the so-called triangle identity for \(\eta \):
Let us recap: starting from a functor $F : C \to C'$ and a family of terminal arrows $\varepsilon_{c'}$ (in C', indexed by the objects of C'), we can define (i) a functor $G : C' \to C$ for which $\varepsilon : F \circ G \to 1_C$ becomes a natural transformation; and (ii) a family of initial arrows η_c (in C, indexed by the objects of C) that form a natural transformation $\eta : 1_C \to G \circ F$ that satisfies the triangle identities: one by definition; and the other as shown just above.

Recall that the left adjunct $f^1 : Fc \to c'$ of an arrow $f : c \to Gc'$ of C is defined to be $f^1 := \varepsilon_{c'} \circ Ff$. The induced mapping from $\hom_C(Fc, c')$ to $\hom_C(c, Gc')$ is (i) surjective, since every $f : c \to Gc'$ gives rise to some left adjunct; and (ii) injective, since $\varepsilon_{c'}$ being terminal means that f^2 is f's unique left adjunct.

This bijection $\phi_{c,c'}^{-1} : \hom_C(c, Gc') \cong \hom_C(Fc, c')$ is ‘natural’ in the sense that, given $g : c_0 \to c$, $\phi_{c_0,c'}^{-1}(f \circ g) := \varepsilon_{c'} \circ F(f \circ g) = \varepsilon_{c'} \circ Ff \circ Fg =: \phi_{c_0,c'}^{-1}(f) \circ Fg$; and, given $g' : c' \to c'_0$, $\phi_{c,c_0}^{-1}(Gg' \circ f) := \varepsilon_{c'_0} \circ F(Gg' \circ f) = \varepsilon_{c'_0} \circ FGg' \circ Ff = g \circ \varepsilon_{c'} \circ Ff =: g \circ \phi_{c_0}^{-1}(f)$.

If C and C' are locally small categories, this gives us a bona fide natural isomorphism $\phi_{c,c'} : \hom_C(Fc, c') \cong \hom_C(c, Gc')$ in \textbf{Set} with naturality in c [with respect to $g : c_0 \to c$]

$$
\begin{array}{ccc}
\hom_C(Fc, c') & \xrightarrow{\phi_{c,c'}} & \hom_C(c, Gc') \\
\lambda f'. f' \circ Fg & & \lambda f. f \circ g \\
\hom_C(Fc_0, c') & \xrightarrow{\phi_{c_0,c'}^{-1}} & \hom_C(c_0, Gc')
\end{array}
$$

and naturality in c' [with respect to $g' : c' \to c'_0$]

$$
\begin{array}{ccc}
\hom_C(Fc, c') & \xrightarrow{\phi_{c,c'}} & \hom_C(c, Gc') \\
\lambda f'. g \circ f' & & \lambda f. Gg' \circ f \\
\hom_C(Fc, c'_0) & \xrightarrow{\phi_{c,c'_0}^{-1}} & \hom_C(c, Gc'_0)
\end{array}
$$

dually to the above.

Note how the terminal arrows $\varepsilon_{c'}$ allow a generalization of the case, found in equivalences of categories, where F being a fully faithful functor induces a bijection $\hom_C(c_1, c_2) \cong \hom_C(Fc_1, Fc_2)$. In the case of an adjunction, despite the lack of the assumption that F be full and faithful, we obtain our bijection by virtue of the universal property of $\varepsilon_{c'}$.

16