
Decorating Proof-Nets with Lambda-Terms

Olivier . Laurent @ens-lyon.fr

November 14, 2015

1 Simply Typed λ-Calculus with Pairs

Given a countable set of λ-variables x, y, . . . , the terms of the λ-calculus (or λ-terms) with
pairs are:

t, u ::= x | λx.t | t u | 〈t, u〉 | π1 t | π2 t
where λ is a binder for x in λx.t and, in most cases, λ-terms are considered up to α-renaming
of bound variables (denoted =α). In λx. , x is not considered as an occurrence of x.

We take into account two different notions of substitution in the λ-calculus:

• the traditional capture-avoiding substitution t[u/x] where free occurrences of x in t are
replaced by u but with α-renaming allowed in t in such a way that no free variable of u
becomes bound in t[u/x];

• the naive syntactic (capture-allowing) substitution t{u/x} where free occurrences of x in
t are replaced by u without α-renaming in t so that free occurrences of variables in u
become bound when x occurs in the scope of binders for these variables.

For example, we have (λx.x)[y/x] = λx.x = (λx.x){y/x} (no free occurrence of x in λx.x) and
(λy.x)[y/x] =α λd.y 6=α λy.y = (λy.x){y/x}, and also (λy.t){u/x} = λy.(t{u/x}) if x 6= y.

The dynamics of λ-terms is described through the β-reduction relation, denoted →β, which
is the congruence generated by:

(λx.t)u→β t[
u/x]

π1 〈t, u〉 →β t

π2 〈t, u〉 →β u

We assume given a countable set of ground types α, β, . . . The simple types of the λ-calculus
with pairs are:

τ, σ ::= α | τ → σ | τ × σ
Typing judgements are of the shape Γ ` t : τ where Γ is a finite list of pairs (x, τ) where the

xs are distinct λ-variables and the τs are simple types. The typing rules of the simply typed
λ-calculus with pairs are:

var
Γ, x : τ,∆ ` x : τ

Γ, x : τ ` t : σ
abs

Γ ` λx.t : τ → σ
Γ ` t : τ → σ Γ ` u : τ app

Γ ` t u : σ

Γ ` t : τ Γ ` u : σ pair
Γ ` 〈t, u〉 : τ × σ

Γ ` t : τ × σ proj1Γ ` π1 t : τ
Γ ` t : τ × σ proj2Γ ` π2 t : σ

We consider two subsets of the set of λ-terms, the neutral terms and the results:

n ::= x | n r | π1 n | π2 n
r, s ::= n | λx.r | 〈r, s〉

1

Lemma 1 (Normal Forms)
A result is a normal form.

Proof: More generally, neutral terms and results are normal forms. This comes from the fact
that λ-abstractions and pairs are not neutral terms, while the argument of a projection
or the first argument of an application in this grammar is necessarily a neutral term. 2

2 Intuitionistic Linear Logic

2.1 IMELL

Given a countable set of atomic formulas X, Y , . . . , formulas of IMELL are given by:

A,B ::= X | A⊗B | A(B | !A

Sequents are intuitionistic: Γ ` A where Γ is a list of formulas, and the rules are:

ax
A ` A

Γ ` A ∆, A ` B
cut

Γ,∆ ` B

ς permutation

Γ ` A ex
ς(Γ) ` A

Γ ` A ∆ ` B ⊗R
Γ,∆ ` A⊗B

Γ, A,B ` C
⊗L

Γ, A⊗B ` C

Γ, A ` B
(R

Γ ` A(B

Γ ` A ∆, B ` C
(L

Γ,∆, A(B ` C

Γ ` B
!w

Γ, !A ` B
Γ, !A, !A ` B

!c
Γ, !A ` B

Γ, A ` B
!d

Γ, !A ` B
Γ, !!A ` B

!!
Γ, !A ` B

Γ ` A !f
!Γ ` !A

We will often let the (ex) rule implicit in derivations.

2.2 Decorating IMELL

Given a proof π in IMELL, a decoration of π is obtained by labelling left-hand side formulas with
λ-variables and right-hand side formulas with λ-terms in such a way that, for a sequent Γ ` A,
the formulas of Γ are labelled with different λ-variables and rules are decorated as follows:

ax
x : A ` x : A

Γ ` u : A ∆, x : A ` t : B
cut

Γ,∆ ` t[u/x] : B
Γ ` t : A ex
ς(Γ) ` t : A

Γ ` t : A ∆ ` u : B ⊗R
Γ,∆ ` 〈t, u〉 : A⊗B

Γ, x1 : A, x2 : B ` t : C
⊗L

Γ, x : A⊗B ` t[π1 x/x1 , π2 x/x2] : C

Γ, x : A ` t : B
(R

Γ ` λx.t : A(B

Γ ` u : A ∆, x : B ` t : C
(L

Γ,∆, y : A(B ` t[y u/x] : C

Γ ` t : B
!w

Γ, x : !A ` t : B
Γ, x1 : !A, x2 : !A ` t : B

!c
Γ, x : !A ` t[x/x1 , x/x2] : B

Γ, x : A ` t : B
!d

Γ, x : !A ` t : B

Γ, x : !!A ` t : B
!!

Γ, x : !A ` t : B
Γ ` t : A !f
!Γ ` t : !A

2

Lemma 2 (Unique Decoration)
Given a decoration of Γ by distinct λ-variables, there exists a unique decoration (up to renaming
of λ-variables and α-equivalence) of each IMELL proof of Γ ` A. Moreover, if ~x : Γ ` t : A is
such a decoration then ~y : Γ ` t[~y/~x] : A as well.

Proof: Simple induction on IMELL proofs. In the (cut) case for example, one can notice that
the choice of x has no impact on the λ-term in the conclusion. 2

2.3 Girard’s Translation

Given a function ()? from ground types of the λ-calculus to (atomic) formulas of IMELL, we
extend it to arbitrary simple types by Girard’s translation:

(τ → σ)? = !τ? (σ? (τ × σ)? = !τ? ⊗ !σ?

The key case is the translation of → where the ! connective allows us to reuse (or forget)
the argument of an implication. This corresponds to the presence of structural rules on the left
side of sequents in intuitionistic logic.

Proposition 1 (Girard’s Translation)
Given a typing derivation π with conclusion Γ ` t : τ in the simply typed λ-calculus with pairs,
there exists a derivation π? in IMELL with conclusion !Γ? ` τ?, whose decoration has conclusion
!Γ? ` t : τ? (when, given x : σ in Γ, !σ? in !Γ? is labelled with x).

Proof: We define π? by induction on π:

var
Γ, x : τ,∆ ` x : τ 7→

ax
x : τ? ` x : τ?

!d
x : !τ? ` x : τ?

!w
~x : !Γ?, x : !τ?, ~y : !∆? ` x : τ?

Γ, x : τ ` t : σ
abs

Γ ` λx.t : τ → σ
7→ ~x : !Γ?, x : !τ? ` t : σ?

(R
~x : !Γ? ` λx.t : !τ? (σ?

Γ ` t : τ → σ Γ ` u : τ app
Γ ` t u : σ

7→
~x1 : !Γ? ` t[~x1/~x] : !τ? (σ?

~x2 : !Γ? ` u[~x2/~x] : τ?
!f

~x2 : !!Γ? ` u[~x2/~x] : !τ?

!!
~x2 : !Γ? ` u[~x2/~x] : !τ?

ax
x : σ? ` x : σ?

(L
~x2 : !Γ?, y : !τ? (σ? ` y (u[~x2/~x]) : σ?

cut
~x1 : !Γ?, ~x2 : !Γ? ` t[~x1/~x]u[~x2/~x] : σ?

!c
~x : !Γ? ` t u : σ?

Γ ` t : τ Γ ` u : σ pair
Γ ` 〈t, u〉 : τ × σ 7→

~x1 : !Γ? ` t[~x1/~x] : τ?
!f

~x1 : !!Γ? ` t[~x1/~x] : !τ?

!!
~x1 : !Γ? ` t[~x1/~x] : !τ?

~x2 : !Γ? ` u[~x2/~x] : σ?
!f

~x2 : !!Γ? ` u[~x2/~x] : !σ?

!!
~x2 : !Γ? ` u[~x2/~x] : !σ?

⊗R
~x1 : !Γ?, ~x2 : !Γ? ` 〈t[~x1/~x], u[~x2/~x]〉 : !τ? ⊗ !σ?

!c
~x : !Γ? ` 〈t, u〉 : !τ? ⊗ !σ?

Γ ` t : τ × σ proj1Γ ` π1 t : τ
7→

~x : !Γ? ` t : !τ? ⊗ !σ?

ax
x1 : τ? ` x1 : τ?

!d
x1 : !τ? ` x1 : τ?

!w
x1 : !τ?, x2 : !σ? ` x1 : τ?

⊗L
x : !τ? ⊗ !σ? ` π1 x : τ?

cut
~x : !Γ? ` π1 t : τ?

3

Γ ` t : τ × σ proj2Γ ` π2 t : σ
7→

~x : !Γ? ` t : !τ? ⊗ !σ?

ax
x2 : σ? ` x2 : σ?

!d
x2 : !σ? ` x2 : σ?

!w
x1 : !τ?, x2 : !σ? ` x2 : σ?

⊗L
x : !τ? ⊗ !σ? ` π2 x : σ?

cut
~x : !Γ? ` π2 t : σ?

2

2.4 From IMELL to MELL

Formulas of IMELL can be represented as formulas of MELL by defining the linear implication
connective through:

A(B = A⊥ `B

It is natural to distinguish two sub-classes of formulas of MELL: those which correspond to the
representation of an IMELL formula and their duals. In this way, the O entry of the following
grammar exactly represents the image of IMELL formulas in MELL (and I corresponds to their
duals):

O ::= X | O ⊗O | I `O | !O
I ::= X⊥ | I ` I | O ⊗ I | ?I

Formulas from the O entry are called output formulas, those from the I entry are called input
formulas. Note that A is an output formula (resp. input formula) if and only if A⊥ is an input
formula (resp. output formula).

Any proof in IMELL of a sequent Γ ` A is then translated into a proof of ` Γ⊥, A in MELL,
where Γ⊥ is made of input formulas only and A is seen as an output formula (to make things
simpler, we identify A(B and A⊥ `B).

We can see the converse is true:

Lemma 3 (Conservativity)
If π is a proof of ` Γ in MELL which contains output and input formulas only, then Γ = I, O
(up to permutation) where I contains input formulas only, O is an output formula, and π is
the translation of an IMELL proof of I⊥ ` O.

Proof: Simple induction on π. We can consider for example the case of the (?w) rule:

π′

` Γ
?w` Γ, ?A

By assumption ?A must be an input or an output formula so that ?A = ?I is an input
formula. We thus have Γ = I, O by induction hypothesis and we have a proof π′0 of
I⊥ ` O in IMELL such that π′ = π′0

?. We can then build π0:

π′0

I⊥ ` O
!w

I⊥, !I⊥ ` O

with Γ, ?A = I, ?I,O, up to permutation, and π0
? = π.

Another important case is the (⊗) rule:

4

π′

` Γ, A
π′′

` ∆, B ⊗` Γ,∆, A⊗B

Since A ⊗ B is either an output formula or an input formula, we must have both A and
B output or one of them is output and the other one is input. In the first case, we
simply apply twice the induction hypothesis which proves that both Γ and ∆ contain
input formulas only and we can build:

Γ⊥ ` A ∆⊥ ` B ⊗R
Γ⊥,∆⊥ ` A⊗B

If A is an output formula and B is input (the converse being similar), by induction
hypothesis, Γ contains input formulas only and ∆ = I, O. We can then build:

Γ⊥ ` A I⊥, B⊥ ` O
(L

Γ⊥, I⊥, A(B⊥ ` O

where (A(B⊥)⊥ = A⊗B is an input formula. 2

3 I/O-Proof-Nets

3.1 From IMELL to Proof-Nets

Based on the relation between IMELL and MELL described in Section 2.4, one can consider
the restriction of MELL proof-structures where every formula is either an output formula or an
input formula. We call them ι/o-proof-structures. As a restriction of MELL proof-structures,
they come with the notion of DR-acyclicity from the Danos-Regnier correctness criterion. We
can define a new ι/o-orientation on the edges of these ι/o-proof-structures: upwardly if the
edge is labelled with an input formula (they are called input edges) and downwardly if it is
labelled with an output formula (called output edges). This leads also to the distinction of two
different kinds of ⊗-nodes and `-nodes depending on the associated formulas:

⊗o
O2

O1 ⊗O2

O1 I

O ⊗ I
⊗ι

O
`ι

I1 ` I2

I1 I2 `o
O

I `O

I

We define a specific correctness condition on ι/o-proof-structures.

Definition 1 (ι/o-graph)
The ι/o-graph of an ι/o-proof-structure is the directed graph obtained by forgetting the box
structure (keeping only the nodes), disconnecting the input premise (the left premise) of each
`o-node (thus creating new edges with no source node), and by endowing the edges with the
ι/o-orientation.

An ι/o-path (resp. ι/o-cycle) is a path (resp. cycle) in the ι/o-graph.

Lemma 4 (ι/o-acyclicity)
If an ι/o-proof-structure is DR-acyclic then its ι/o-graph is a directed acyclic graph (we say that
the ι/o-proof-structure is ι/o-acyclic).

5

Proof: Let R be an ι/o-proof-structure, and let us assume its ι/o-graph contains a directed
cycle with respect to the ι/o-orientation. We consider a minimal (with respect to inclusion)
such cycle ρ. We focus on the nodes at minimal depth. They are all contained in the
same box (or at depth 0). Given a `ι-node or a ?c-node belonging to ρ, by minimality,
ρ contains one incoming edge of the node and one outgoing edge of the node. Thus it
cannot contain the two premises of such a node. We can now build a DR-cycle from ρ:

• replace each part of ρ contained in a deeper box by a single node connecting the two
doors of the box used for going inside the box and outside the box;

• erase the input premise of each `o-node;

• erase, for each `ι-node and ?c-node, a premise not used by ρ (which must exist as
remarked just before).

This gives a DR-cycle thus a contradiction. 2

Definition 2 (ι/o-correctness)
An ι/o-proof-structure is ι/o-correct (or is an ι/o-proof-net) if:

• it has exactly one output conclusion;

• its is DR-acyclic (thus ι/o-acyclic by Lemma 4);

• any ι/o-path, starting from the input premise of a `o-node and ending in the output
conclusion of the proof-structure, crosses the `o-node (from its output premise to its
output conclusion).

`o

Starting from a proof π of Γ ` A in IMELL, and by going through MELL, we obtain a
proof-structure π with conclusions Γ⊥ and A.

Proposition 2 (Translation)
If π is a proof in IMELL, π is an ι/o-proof-net.

Proof: By induction on the definition of π. The key case is:

Γ, A ` B
(R

Γ ` A(B
7→ ` Γ⊥, A⊥, B `

` Γ⊥, A⊥ `B
7→

Γ⊥ `o

A⊥ `B

A⊥ B

Since any ι/o-path ending in A⊥ `B must go through B, the result is immediate. 2

Proposition 3 (Cut Elimination)
If R is an ι/o-proof-net and if R reduces to R′ by cut elimination then R′ is an ι/o-proof-net.

6

Proof: First notice that the number of output conclusions is not modified by cut elimination.
Second, we already know that DR-acyclicity is preserved under cut elimination. It remains
to prove the preservation of the third condition of ι/o-correctness.

The main case is the following one:

I `O

I⊥ O⊥

⊗ι

I⊥ ⊗O⊥

`o
I O

cut

1 2 3 4

7→
I⊥ O⊥ OI

cut

cut

1 2 3 4

Assume we have an ι/o-path p in R′ from the input premise e of a `o-node P to the
output conclusion o of R′. We build from it a similar ι/o-path in R. If p uses the cut
2− 4, we modify it into p′ in R which uses the path from 4 to 2 instead of this cut, thus
going through P by ι/o-correctness of R (so that p goes through P as well). If it uses the
cut 1− 3 then we can decompose p into a path p1 from e to 1 and a path p2 from 3 to o.
By ι/o-correctness of R, this path p2 goes through the `o-node with premises 3 and 4 in
R and thus p2 reaches 4. Let p′2 be the suffix of p2 starting from 2. By concatenating p1
and p′2, we obtain an ι/o-path in R which goes from e to o thus, by ι/o-correctness of R,
this ι/o-path goes through P , so that P belongs to p (since p1 and p′2 are contained in p).

⊗ι `o

cut

21 3 4`o
e

P

p′2
p1

p2

o

We also consider the ?c-case.

??

?O⊥

!

!O

?O⊥ ?O⊥
O

?c

cut

In

?I1 ?In

I1

7→

??!

O

?c

?O⊥!

O

?O⊥!O !O

? ?

?c

cut

In

?I1 ?In

I1

cut

InI1

?I1 ?In

?I1 ?In

7

Since main doors are the only output conclusions of boxes, an ι/o-path cannot exit twice
the same box without being a cycle. The condition is then preserved for `o-nodes outside
the copied box since a path which enters copies of the box must exit them to reach the
output conclusion of R′ and it cannot enter both copies otherwise this would contradict
the ι/o-acyclicity of R. Concerning copied `o-nodes, if we have a path p from the input
premise of a copy P ′ of a `o-node P to the conclusion of R′, thanks to ι/o-acyclicity of
R, it must exit its copy of the box, cannot enter it again, cannot enter the other one, and
thus corresponds to a path in R which must go through P , so that p goes through P ′. 2

Thanks to the ι/o-acyclicity property of ι/o-proof-nets (Lemma 4), it is possible to define
a partial order relation on the edges of such a proof-structure: e1 4 e2 if there is an ι/o-path
from e1 to e2. By finiteness of the proof-structures, this partial order is well-founded. The input
conclusions and the input premises of `o-nodes are the minimal edges. The input conclusions
of ?w-nodes and the unique output conclusion of the ι/o-proof-net are the maximal edges.

3.2 Decorating I/O-Proof-Nets

A decoration of an ι/o-proof-structure is a function from edges to λ-terms (except when it is
mentioned, λ-terms are not considered up to α-equivalence in decorations) which satisfies the
following local constraints:

ax
u u cut

u u

v u

v

u
⊗ι `o

u

λx.u

x
⊗o

v

〈u, v〉

u
`ι

u

π1 u π2 u

?c
u u

u

?w

u
?d

u

u

??

u

u

u

u

! ?

u

u

Proposition 4 (Uniqueness)
Given an ι/o-acyclic ι/o-proof-structure, if we fix a labelling of its input conclusions by λ-
terms and a labelling of the input premises of its `o-nodes by λ-variables, there exists a unique
decoration compatible with this labelling.

Proof: Relying on the ι/o-acyclicity, we can work by induction on the well-founded order 4.
The input conclusions and the input premises of `o-nodes are the minimal edges. We can
see that, in the ι/o-graph, the labels of the outgoing edges of a given node are uniquely
defined from the labels of its incoming edges (and of the input premise for `o-nodes)
through the local constraints coming from the definition of decoration. This allows us to
apply the induction over the rank in 4. 2

When the labelling of the input conclusions of an ι/o-proof-net R and of the input premises
of its `o-nodes is fixed, we denote by R the λ-term labelling the output conclusion of R in this
unique decoration.

We now prove a few technical properties concerning decorations and R to be used in Propo-
sitions 5 and 6.

Lemma 5 (Accessibility)
Given a decorated ι/o-acyclic ι/o-proof-structure R, if x occurs (resp. occurs freely) in the label

8

of an edge e, there exists an input conclusion or an input premise of `o-node c with an ι/o-path
p from c to e (thus in particular c 4 e) such that x occurs (resp. occurs freely) in the label of
every edge of p.

Proof: By induction on 4. 2

Lemma 6 (Substitution)
Given an ι/o-acyclic ι/o-proof-structure R with an associated decoration d, if we replace the
label v associated by d to an input conclusion c by u, the uniquely generated decoration d′ of
R is such that the label of each edge e in d′ is the same as its label in d if c 64 e, and can be
obtained from its label in d by replacing some sub-terms v with u otherwise.

Proof: By induction on 4. 2

Lemma 7 (Variable Substitution)
Given an ι/o-acyclic ι/o-proof-structure R with an associated decoration d such that a given
input conclusion c is labelled with a λ-variable x which does not occur freely in the label of any
other input conclusion or input premise of `o-node, if we replace the label x by u on c, the
uniquely generated decoration d′ of R is such that the label of each edge e in d′ is t{u/x} where
t is the label of e in d and t{u/x} denotes the substitution of free occurrences of x in t by u with
possible capture of free occurrences of λ-variables of u (see Section 1).

Proof: By induction on 4 (in fact, by Lemma 5, if c 64 e then t{u/x} = t).

If e is an input conclusion, we consider the cases e = c and e 6= c and the result is
immediate.

If e is an input premise of a `o-node, its label is unchanged.

If the e is the output conclusion of a `o-node, by induction hypothesis, if the label of its
output premise is t in d, it becomes t{u/x} in d′. Let y be the label of the input premise,
the label of e in d′ is λy.(t{u/x}) = (λy.t){u/x} since x 6= y.

The other cases are similar or easy. 2

If R be an ι/o-proof-net, a decoration of R is called simple if the input conclusions and the
input premises of `o-nodes are all labelled with distinct λ-variables.

Lemma 8 (Label Building)
Let R be an ι/o-proof-net and d be a simple decoration of R:

• if u v occurs in the label of an edge e, there exists a ⊗ι-node with input premise e′ labelled
u v and such that e′ 4 e;

• if λx.t occurs in the label of an edge e, there exists a `o-node with conclusion e′ labelled
λx.t and such that e′ 4 e.

Proof: By induction on 4 using that minimal edges are labelled with variables. 2

Lemma 9 (Proof-Net Decoration)
Let R be an ι/o-proof-net and d be a simple decoration of R, the value of R does not depend,
up to α-equivalence, on the labels of the input premises of `o-nodes. It only depends on the
labelling of the input conclusions by d.

Proof: Let d1 and d2 be two simple decorations of R with the same labelling of the input
conclusions and which differ only on the labelling of one premise c of a `o-node P by x1
and x2 respectively. If x1 occurs in R1 (the label of the output conclusion o of R in d1)
then, by Lemma 5 and by ι/o-correctness, x1 cannot occur freely in R1 since any path
from c to o goes through P and thus x1 is bound in R1 so that R1 =α R2. 2

9

Up to α-equivalence, one can modify the decoration of an IMELL proof in such a way that
bound λ-variables and the λ-variables labelling the context in the conclusion are all different.

Proposition 5 (Translation of Decorations)
The translation () from IMELL to ι/o-proof-nets maps such a decoration to a simple decoration
and preserves the λ-terms decorating the conclusions.

Proof: By induction on the proof in IMELL.

We consider the case where the last rule of the proof is a (cut) rule. By induction hy-
pothesis, we have ι/o-proof-nets R1 and R2 with simple decorations d1 and d2 giving to
their conclusions labels ~y, u and ~x, x, t. Using Lemma 7, if we replace x by u in d2, we
obtain a decoration d′2 with labels ~x, u, t{u/x} for the conclusions of R2 (since x /∈ ~x).
By introducing a cut-node between R1 and R2 and by using the labels from d1 and d2,
we build a simple decoration with labels ~y, ~x, t{u/x} for the conclusions. Since the free
λ-variables of u are among ~y and are different from any bound λ-variable of t, we have
t{u/x} = t[u/x].

The other cases are similar. 2

3.3 Cut Elimination

Proposition 6 (Reduction of Decorations)
Let R be an ι/o-proof-net with a simple decoration, we have:

• if R reduces to R′ by an ax-step or an exponential step then R =α R′;

• if R reduces to R′ by a ⊗/`-step then R →∗β R′;

where R′ is obtained by means of any simple decoration with the same labels on the input
conclusions as for the decoration of R.

Proof: Note first that, thanks to Lemma 9, it is meaningful to compare R and R′ when we
assume the labels of the input conclusions to be the same since the labels of the input
premises of `o-nodes do not matter up to α-equivalence. We call o the output conclusion
of R and R′.
The ax-step is immediate:

ax

u

cut

uu 7→ u

thus no label (including the label of o) is modified.

The case of exponential steps has no real impact on the decorations since the λ-terms
labelling the edges are all the same around a given exponential node. We just have to
check that we can preserve the fact that the decoration is simple. We focus on the ?c-step:

??

u

!

u

u u
u

?c

cut

vn

v1 vn

v1

10

7→

??!

?c

u!

u

uu u

? ?

?c

u

cut

vn

vn

v1

cut

v1

vn

v1 vnv1

v1

vn

Starting from the decoration d of R, we consider the decoration d′ of R′ with the same
labels on input conclusions and, for each input premise of `o-node, we give it the same
label as the one given by d to its unique antecedent in R. Since the minimal edges (with
respect to 4) of a box are its auxiliary doors and the input premises of its `o-nodes, by
Proposition 4, the labels of the main doors of the two copies of the box are both equal to
the label of the corresponding edge in d. This means that the labels of o in d and d′ are
the same. We now want to turn d′ into a simple decoration. We consider a `o-node P of
R which is copied into P1 and P2. Let x be the label of the input premise of P in d, we
define d′′ to be the decoration obtained by labelling the input premise of P2 with a fresh
λ-variable x2 (the input conclusions and the other input premises of `o-nodes keeping the
same labels) thanks to Proposition 4. Let e2 be the output conclusion of the main door
of the copy b2 of the box which contains P2. Since e2 is the only output conclusion of b2,
the only edges outside b2 which may have a modified label are those bigger than e2 with
respect to 4. If e2 64 o, then the label of o is not modified. If e2 4 o and if x2 occurs
in the label of e2, by ι/o-correctness, it is bound. This proves that the labels of e2 in d′

and d′′ are α-equivalent, and then that the labels of any edge outside b2 in d′ and d′′ are
α-equivalent (in particular for o). By renaming this way one of the two copies of each
input premise of a `o-node, we finally obtain a simple decoration which gives the same
label as d′ to o up to α-equivalence.

The key case is the ⊗ι/`o-case:

λx.t

u
⊗ι

λx.t

`o

x

(λx.t)u

t

cut

1 2 3 4

7→
u t{u/x}t{u/x} u

cut

cut

1 2 3 4

Let us first remark that x is not free in u: otherwise we would have 3 4 1 (by Lemma 5
in R) which is impossible by ι/o-acyclicity of R′ (Proposition 3 and Lemma 4). By
removing the ⊗ι-node, the `o-node and the cut-node in R, we obtain an ι/o-acyclic ι/o-
proof-structure R0 equipped with a decoration d0 labelling 1 with u, 2 with (λx.t)u, 3
with x and 4 with t. We replace x by u and we apply Lemma 7 (since x is not free in
(λx.t)u), we obtain a decoration d′0 of R0 which labels 1 with u{u/x} = u (since x is not
free in u), 2 with (λx.t)u (since x is not free in (λx.t)u), 3 with u and 4 with t{u/x}.
We cannot have x occurring freely in R which is the label of o by ι/o-correctness of R, so
that the label of o in d′0 is R. We now apply Lemma 6 by replacing (λx.t)u with t{u/x}
in the label of 2 in d′0 to obtain a decoration d′′0. By ι/o-acyclicity of R, we have 2 64 1

11

and 2 64 4 so that d′′0 labels 1 with u, 2 with t{u/x}, 3 with u and 4 with t{u/x}. Let v
be the label of o in d′′0, v is obtained from R by replacing some (λx.t)u with t{u/x}. If
we add two cut-nodes connecting 1 and 3, and 2 and 4 in R0, we obtain R′ and d′′0 is a
simple decoration of R′ compatible with the labelling of d on the input conclusions with
v =α R′ (Lemma 9). In order to conclude that R →∗β R′, we prove that if (λx.t)u occurs
in R, t{u/x} = t[u/x]. If it is not the case, a free occurrence of a λ-variable y in u should
have a binder in t. By Lemma 8 applied twice in R, there exists a ⊗ι-node T with output
premise e0 labelled u, input premise e1 labelled (λx.t)u, conclusion e2 labelled λx.t with
e1 4 o (we note p1 an associated ι/o-path from e1 to o), and a `o-node P with input
premise c labelled y and conclusion e3 labelled λy.v with e3 4 e2 (we note p2 an associated
ι/o-path from e3 to e2). By Lemma 5, we have an ι/o-path p0 from c to e0, which cannot
contain P since y is free in every edge of p0.

v

λy.v

y (λx.t)u

λx.t

⊗ι
u

o

e0 e1

e2e3

c

T`o P

p1
p′1

p0

p2

Since p0Tp1 is an ι/o-path from c to o, by ι/o-correctness, it goes through P thus P belongs
to p1. If we decompose p1 into p′1Pp

′′
1, we can build an ι/o-cycle p2Tp

′
1P contradicting

the ι/o-acyclicity of R.

Finally, in the ⊗o/`ι-case:

〈u, v〉

u
⊗o

〈u, v〉

`ι
v

π1 〈u, v〉
π2 〈u, v〉

cut

1 2 3 4

7→
uu v v

cut

cut

1 2 3 4

By removing the ⊗o-node, the `ι-node and the cut-node in R, we obtain an ι/o-acyclic
ι/o-proof-structure R0 equipped with a decoration d0 labelling 1 with u, 2 with v, 3 with
π1 〈u, v〉 and 4 with π2 〈u, v〉. We apply Lemma 6 by replacing π1 〈u, v〉 with u in the
label of 3 in d0 to obtain a decoration d′0. By ι/o-acyclicity of R, we have 3 64 1 and
3 64 2. This means d′0 labels 1 with u, 2 with v, 3 with u and 4 with π2 〈u, v〉. We apply
Lemma 6 again by replacing π2 〈u, v〉 with v in the label of 4 in d′0 to obtain a decoration
d′′0. d′′0 labels 1 with u, 2 with v, 3 with u and 4 with v. The label t of o in d′′0 is obtained
from R by replacing some π1 〈u, v〉 with u and then some π2 〈u, v〉 with v thus R →∗β t.
If we add two cut-nodes connecting 1 and 3, and 2 and 4 in R0, we obtain R′ and d′′0 is
a simple decoration of R′ compatible with the labelling of d on the input conclusions so
that t =α R′ (Lemma 9). 2

3.4 The λ-Calculus and Proof-Nets

Theorem 1 (Simulation)
If π is a typing derivation with conclusion Γ ` t : A in the simply typed λ-calculus with pairs,

12

and if π? reduces to R, then t→∗β R.

Proof: Putting together Propositions 1 and 5, the ι/o-proof-net Rπ = π? is such that Rπ is
t. So that, using Proposition 6, if Rπ reduces to R then t→∗β R. 2

Lemma 10 (Normal Forms)
If R is a cut-free ι/o-proof-net, R is a normal form (in simple decorations).

Proof: Let d be a simple decoration of R, we can prove by induction on 4 that input edges
are labelled with neutral terms and output edges are labelled with results. Since R is the
label of an output edge, we conclude with Lemma 1. 2

This means that, given a typing derivation π with conclusion Γ ` t : A, the normal form of
t can be obtained as R where R is the normal form of π?.

t 7→ t?

β ↓∗ ↓∗
R ←[R
6↓ 6↓

Thanks to P. Fermé, A. Grospellier and D. Rouhling for their useful comments and suggestions.

13

